block.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27class Block;
28class CFGLoop;
29class MachCallNode;
30class Matcher;
31class RootNode;
32class VectorSet;
33struct Tarjan;
34
35//------------------------------Block_Array------------------------------------
36// Map dense integer indices to Blocks.  Uses classic doubling-array trick.
37// Abstractly provides an infinite array of Block*'s, initialized to NULL.
38// Note that the constructor just zeros things, and since I use Arena
39// allocation I do not need a destructor to reclaim storage.
40class Block_Array : public ResourceObj {
41  uint _size;                   // allocated size, as opposed to formal limit
42  debug_only(uint _limit;)      // limit to formal domain
43protected:
44  Block **_blocks;
45  void grow( uint i );          // Grow array node to fit
46
47public:
48  Arena *_arena;                // Arena to allocate in
49
50  Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
51    debug_only(_limit=0);
52    _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
53    for( int i = 0; i < OptoBlockListSize; i++ ) {
54      _blocks[i] = NULL;
55    }
56  }
57  Block *lookup( uint i ) const // Lookup, or NULL for not mapped
58  { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
59  Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
60  { assert( i < Max(), "oob" ); return _blocks[i]; }
61  // Extend the mapping: index i maps to Block *n.
62  void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
63  uint Max() const { debug_only(return _limit); return _size; }
64};
65
66
67class Block_List : public Block_Array {
68public:
69  uint _cnt;
70  Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
71  void push( Block *b ) { map(_cnt++,b); }
72  Block *pop() { return _blocks[--_cnt]; }
73  Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
74  void remove( uint i );
75  void insert( uint i, Block *n );
76  uint size() const { return _cnt; }
77  void reset() { _cnt = 0; }
78  void print();
79};
80
81
82class CFGElement : public ResourceObj {
83 public:
84  float _freq; // Execution frequency (estimate)
85
86  CFGElement() : _freq(0.0f) {}
87  virtual bool is_block() { return false; }
88  virtual bool is_loop()  { return false; }
89  Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
90  CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
91};
92
93//------------------------------Block------------------------------------------
94// This class defines a Basic Block.
95// Basic blocks are used during the output routines, and are not used during
96// any optimization pass.  They are created late in the game.
97class Block : public CFGElement {
98 public:
99  // Nodes in this block, in order
100  Node_List _nodes;
101
102  // Basic blocks have a Node which defines Control for all Nodes pinned in
103  // this block.  This Node is a RegionNode.  Exception-causing Nodes
104  // (division, subroutines) and Phi functions are always pinned.  Later,
105  // every Node will get pinned to some block.
106  Node *head() const { return _nodes[0]; }
107
108  // CAUTION: num_preds() is ONE based, so that predecessor numbers match
109  // input edges to Regions and Phis.
110  uint num_preds() const { return head()->req(); }
111  Node *pred(uint i) const { return head()->in(i); }
112
113  // Array of successor blocks, same size as projs array
114  Block_Array _succs;
115
116  // Basic blocks have some number of Nodes which split control to all
117  // following blocks.  These Nodes are always Projections.  The field in
118  // the Projection and the block-ending Node determine which Block follows.
119  uint _num_succs;
120
121  // Basic blocks also carry all sorts of good old fashioned DFS information
122  // used to find loops, loop nesting depth, dominators, etc.
123  uint _pre_order;              // Pre-order DFS number
124
125  // Dominator tree
126  uint _dom_depth;              // Depth in dominator tree for fast LCA
127  Block* _idom;                 // Immediate dominator block
128
129  CFGLoop *_loop;               // Loop to which this block belongs
130  uint _rpo;                    // Number in reverse post order walk
131
132  virtual bool is_block() { return true; }
133  float succ_prob(uint i);      // return probability of i'th successor
134  int num_fall_throughs();      // How many fall-through candidate this block has
135  void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
136  bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
137  Block* lone_fall_through();   // Return lone fall-through Block or null
138
139  Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
140#ifdef ASSERT
141  bool dominates(Block* that) {
142    int dom_diff = this->_dom_depth - that->_dom_depth;
143    if (dom_diff > 0)  return false;
144    for (; dom_diff < 0; dom_diff++)  that = that->_idom;
145    return this == that;
146  }
147#endif
148
149  // Report the alignment required by this block.  Must be a power of 2.
150  // The previous block will insert nops to get this alignment.
151  uint code_alignment();
152  uint compute_loop_alignment();
153
154  // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
155  // It is currently also used to scale such frequencies relative to
156  // FreqCountInvocations relative to the old value of 1500.
157#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
158
159  // Register Pressure (estimate) for Splitting heuristic
160  uint _reg_pressure;
161  uint _ihrp_index;
162  uint _freg_pressure;
163  uint _fhrp_index;
164
165  // Mark and visited bits for an LCA calculation in insert_anti_dependences.
166  // Since they hold unique node indexes, they do not need reinitialization.
167  node_idx_t _raise_LCA_mark;
168  void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
169  node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
170  node_idx_t _raise_LCA_visited;
171  void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
172  node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
173
174  // Estimated size in bytes of first instructions in a loop.
175  uint _first_inst_size;
176  uint first_inst_size() const     { return _first_inst_size; }
177  void set_first_inst_size(uint s) { _first_inst_size = s; }
178
179  // Compute the size of first instructions in this block.
180  uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
181
182  // Compute alignment padding if the block needs it.
183  // Align a loop if loop's padding is less or equal to padding limit
184  // or the size of first instructions in the loop > padding.
185  uint alignment_padding(int current_offset) {
186    int block_alignment = code_alignment();
187    int max_pad = block_alignment-relocInfo::addr_unit();
188    if( max_pad > 0 ) {
189      assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
190      int current_alignment = current_offset & max_pad;
191      if( current_alignment != 0 ) {
192        uint padding = (block_alignment-current_alignment) & max_pad;
193        if( has_loop_alignment() &&
194            padding > (uint)MaxLoopPad &&
195            first_inst_size() <= padding ) {
196          return 0;
197        }
198        return padding;
199      }
200    }
201    return 0;
202  }
203
204  // Connector blocks. Connector blocks are basic blocks devoid of
205  // instructions, but may have relevant non-instruction Nodes, such as
206  // Phis or MergeMems. Such blocks are discovered and marked during the
207  // RemoveEmpty phase, and elided during Output.
208  bool _connector;
209  void set_connector() { _connector = true; }
210  bool is_connector() const { return _connector; };
211
212  // Loop_alignment will be set for blocks which are at the top of loops.
213  // The block layout pass may rotate loops such that the loop head may not
214  // be the sequentially first block of the loop encountered in the linear
215  // list of blocks.  If the layout pass is not run, loop alignment is set
216  // for each block which is the head of a loop.
217  uint _loop_alignment;
218  void set_loop_alignment(Block *loop_top) {
219    uint new_alignment = loop_top->compute_loop_alignment();
220    if (new_alignment > _loop_alignment) {
221      _loop_alignment = new_alignment;
222    }
223  }
224  uint loop_alignment() const { return _loop_alignment; }
225  bool has_loop_alignment() const { return loop_alignment() > 0; }
226
227  // Create a new Block with given head Node.
228  // Creates the (empty) predecessor arrays.
229  Block( Arena *a, Node *headnode )
230    : CFGElement(),
231      _nodes(a),
232      _succs(a),
233      _num_succs(0),
234      _pre_order(0),
235      _idom(0),
236      _loop(NULL),
237      _reg_pressure(0),
238      _ihrp_index(1),
239      _freg_pressure(0),
240      _fhrp_index(1),
241      _raise_LCA_mark(0),
242      _raise_LCA_visited(0),
243      _first_inst_size(999999),
244      _connector(false),
245      _loop_alignment(0) {
246    _nodes.push(headnode);
247  }
248
249  // Index of 'end' Node
250  uint end_idx() const {
251    // %%%%% add a proj after every goto
252    // so (last->is_block_proj() != last) always, then simplify this code
253    // This will not give correct end_idx for block 0 when it only contains root.
254    int last_idx = _nodes.size() - 1;
255    Node *last  = _nodes[last_idx];
256    assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
257    return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
258  }
259
260  // Basic blocks have a Node which ends them.  This Node determines which
261  // basic block follows this one in the program flow.  This Node is either an
262  // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
263  Node *end() const { return _nodes[end_idx()]; }
264
265  // Add an instruction to an existing block.  It must go after the head
266  // instruction and before the end instruction.
267  void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
268  // Find node in block
269  uint find_node( const Node *n ) const;
270  // Find and remove n from block list
271  void find_remove( const Node *n );
272
273  // Schedule a call next in the block
274  uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
275
276  // Perform basic-block local scheduling
277  Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
278  void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
279  void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
280  bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
281  // Cleanup if any code lands between a Call and his Catch
282  void call_catch_cleanup(Block_Array &bbs);
283  // Detect implicit-null-check opportunities.  Basically, find NULL checks
284  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
285  // I can generate a memory op if there is not one nearby.
286  void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
287
288  // Return the empty status of a block
289  enum { not_empty, empty_with_goto, completely_empty };
290  int is_Empty() const;
291
292  // Forward through connectors
293  Block* non_connector() {
294    Block* s = this;
295    while (s->is_connector()) {
296      s = s->_succs[0];
297    }
298    return s;
299  }
300
301  // Return true if b is a successor of this block
302  bool has_successor(Block* b) const {
303    for (uint i = 0; i < _num_succs; i++ ) {
304      if (non_connector_successor(i) == b) {
305        return true;
306      }
307    }
308    return false;
309  }
310
311  // Successor block, after forwarding through connectors
312  Block* non_connector_successor(int i) const {
313    return _succs[i]->non_connector();
314  }
315
316  // Examine block's code shape to predict if it is not commonly executed.
317  bool has_uncommon_code() const;
318
319  // Use frequency calculations and code shape to predict if the block
320  // is uncommon.
321  bool is_uncommon( Block_Array &bbs ) const;
322
323#ifndef PRODUCT
324  // Debugging print of basic block
325  void dump_bidx(const Block* orig) const;
326  void dump_pred(const Block_Array *bbs, Block* orig) const;
327  void dump_head( const Block_Array *bbs ) const;
328  void dump( ) const;
329  void dump( const Block_Array *bbs ) const;
330#endif
331};
332
333
334//------------------------------PhaseCFG---------------------------------------
335// Build an array of Basic Block pointers, one per Node.
336class PhaseCFG : public Phase {
337 private:
338  // Build a proper looking cfg.  Return count of basic blocks
339  uint build_cfg();
340
341  // Perform DFS search.
342  // Setup 'vertex' as DFS to vertex mapping.
343  // Setup 'semi' as vertex to DFS mapping.
344  // Set 'parent' to DFS parent.
345  uint DFS( Tarjan *tarjan );
346
347  // Helper function to insert a node into a block
348  void schedule_node_into_block( Node *n, Block *b );
349
350  void replace_block_proj_ctrl( Node *n );
351
352  // Set the basic block for pinned Nodes
353  void schedule_pinned_nodes( VectorSet &visited );
354
355  // I'll need a few machine-specific GotoNodes.  Clone from this one.
356  MachNode *_goto;
357
358  Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
359  void verify_anti_dependences(Block* LCA, Node* load) {
360    assert(LCA == _bbs[load->_idx], "should already be scheduled");
361    insert_anti_dependences(LCA, load, true);
362  }
363
364 public:
365  PhaseCFG( Arena *a, RootNode *r, Matcher &m );
366
367  uint _num_blocks;             // Count of basic blocks
368  Block_List _blocks;           // List of basic blocks
369  RootNode *_root;              // Root of whole program
370  Block_Array _bbs;             // Map Nodes to owning Basic Block
371  Block *_broot;                // Basic block of root
372  uint _rpo_ctr;
373  CFGLoop* _root_loop;
374  float _outer_loop_freq;       // Outmost loop frequency
375
376  // Per node latency estimation, valid only during GCM
377  GrowableArray<uint> _node_latency;
378
379#ifndef PRODUCT
380  bool _trace_opto_pipelining;  // tracing flag
381#endif
382
383#ifdef ASSERT
384  Unique_Node_List _raw_oops;
385#endif
386
387  // Build dominators
388  void Dominators();
389
390  // Estimate block frequencies based on IfNode probabilities
391  void Estimate_Block_Frequency();
392
393  // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
394  // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
395  void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
396
397  // Compute the (backwards) latency of a node from the uses
398  void latency_from_uses(Node *n);
399
400  // Compute the (backwards) latency of a node from a single use
401  int latency_from_use(Node *n, const Node *def, Node *use);
402
403  // Compute the (backwards) latency of a node from the uses of this instruction
404  void partial_latency_of_defs(Node *n);
405
406  // Schedule Nodes early in their basic blocks.
407  bool schedule_early(VectorSet &visited, Node_List &roots);
408
409  // For each node, find the latest block it can be scheduled into
410  // and then select the cheapest block between the latest and earliest
411  // block to place the node.
412  void schedule_late(VectorSet &visited, Node_List &stack);
413
414  // Pick a block between early and late that is a cheaper alternative
415  // to late. Helper for schedule_late.
416  Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
417
418  // Compute the instruction global latency with a backwards walk
419  void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
420
421  // Set loop alignment
422  void set_loop_alignment();
423
424  // Remove empty basic blocks
425  void remove_empty();
426  void fixup_flow();
427  bool move_to_next(Block* bx, uint b_index);
428  void move_to_end(Block* bx, uint b_index);
429  void insert_goto_at(uint block_no, uint succ_no);
430
431  // Check for NeverBranch at block end.  This needs to become a GOTO to the
432  // true target.  NeverBranch are treated as a conditional branch that always
433  // goes the same direction for most of the optimizer and are used to give a
434  // fake exit path to infinite loops.  At this late stage they need to turn
435  // into Goto's so that when you enter the infinite loop you indeed hang.
436  void convert_NeverBranch_to_Goto(Block *b);
437
438  CFGLoop* create_loop_tree();
439
440  // Insert a node into a block, and update the _bbs
441  void insert( Block *b, uint idx, Node *n ) {
442    b->_nodes.insert( idx, n );
443    _bbs.map( n->_idx, b );
444  }
445
446#ifndef PRODUCT
447  bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
448
449  // Debugging print of CFG
450  void dump( ) const;           // CFG only
451  void _dump_cfg( const Node *end, VectorSet &visited  ) const;
452  void verify() const;
453  void dump_headers();
454#else
455  bool trace_opto_pipelining() const { return false; }
456#endif
457};
458
459
460//------------------------------UnionFind--------------------------------------
461// Map Block indices to a block-index for a cfg-cover.
462// Array lookup in the optimized case.
463class UnionFind : public ResourceObj {
464  uint _cnt, _max;
465  uint* _indices;
466  ReallocMark _nesting;  // assertion check for reallocations
467public:
468  UnionFind( uint max );
469  void reset( uint max );  // Reset to identity map for [0..max]
470
471  uint lookup( uint nidx ) const {
472    return _indices[nidx];
473  }
474  uint operator[] (uint nidx) const { return lookup(nidx); }
475
476  void map( uint from_idx, uint to_idx ) {
477    assert( from_idx < _cnt, "oob" );
478    _indices[from_idx] = to_idx;
479  }
480  void extend( uint from_idx, uint to_idx );
481
482  uint Size() const { return _cnt; }
483
484  uint Find( uint idx ) {
485    assert( idx < 65536, "Must fit into uint");
486    uint uf_idx = lookup(idx);
487    return (uf_idx == idx) ? uf_idx : Find_compress(idx);
488  }
489  uint Find_compress( uint idx );
490  uint Find_const( uint idx ) const;
491  void Union( uint idx1, uint idx2 );
492
493};
494
495//----------------------------BlockProbPair---------------------------
496// Ordered pair of Node*.
497class BlockProbPair VALUE_OBJ_CLASS_SPEC {
498protected:
499  Block* _target;      // block target
500  float  _prob;        // probability of edge to block
501public:
502  BlockProbPair() : _target(NULL), _prob(0.0) {}
503  BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
504
505  Block* get_target() const { return _target; }
506  float get_prob() const { return _prob; }
507};
508
509//------------------------------CFGLoop-------------------------------------------
510class CFGLoop : public CFGElement {
511  int _id;
512  int _depth;
513  CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
514  CFGLoop *_sibling;     // null terminated list
515  CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
516  GrowableArray<CFGElement*> _members; // list of members of loop
517  GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
518  float _exit_prob;       // probability any loop exit is taken on a single loop iteration
519  void update_succ_freq(Block* b, float freq);
520
521 public:
522  CFGLoop(int id) :
523    CFGElement(),
524    _id(id),
525    _depth(0),
526    _parent(NULL),
527    _sibling(NULL),
528    _child(NULL),
529    _exit_prob(1.0f) {}
530  CFGLoop* parent() { return _parent; }
531  void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
532  void add_member(CFGElement *s) { _members.push(s); }
533  void add_nested_loop(CFGLoop* cl);
534  Block* head() {
535    assert(_members.at(0)->is_block(), "head must be a block");
536    Block* hd = _members.at(0)->as_Block();
537    assert(hd->_loop == this, "just checking");
538    assert(hd->head()->is_Loop(), "must begin with loop head node");
539    return hd;
540  }
541  Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
542  void compute_loop_depth(int depth);
543  void compute_freq(); // compute frequency with loop assuming head freq 1.0f
544  void scale_freq();   // scale frequency by loop trip count (including outer loops)
545  float outer_loop_freq() const; // frequency of outer loop
546  bool in_loop_nest(Block* b);
547  float trip_count() const { return 1.0f / _exit_prob; }
548  virtual bool is_loop()  { return true; }
549  int id() { return _id; }
550
551#ifndef PRODUCT
552  void dump( ) const;
553  void dump_tree() const;
554#endif
555};
556
557
558//----------------------------------CFGEdge------------------------------------
559// A edge between two basic blocks that will be embodied by a branch or a
560// fall-through.
561class CFGEdge : public ResourceObj {
562 private:
563  Block * _from;        // Source basic block
564  Block * _to;          // Destination basic block
565  float _freq;          // Execution frequency (estimate)
566  int   _state;
567  bool  _infrequent;
568  int   _from_pct;
569  int   _to_pct;
570
571  // Private accessors
572  int  from_pct() const { return _from_pct; }
573  int  to_pct()   const { return _to_pct;   }
574  int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
575  int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
576
577 public:
578  enum {
579    open,               // initial edge state; unprocessed
580    connected,          // edge used to connect two traces together
581    interior            // edge is interior to trace (could be backedge)
582  };
583
584  CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
585    _from(from), _to(to), _freq(freq),
586    _from_pct(from_pct), _to_pct(to_pct), _state(open) {
587    _infrequent = from_infrequent() || to_infrequent();
588  }
589
590  float  freq() const { return _freq; }
591  Block* from() const { return _from; }
592  Block* to  () const { return _to;   }
593  int  infrequent() const { return _infrequent; }
594  int state() const { return _state; }
595
596  void set_state(int state) { _state = state; }
597
598#ifndef PRODUCT
599  void dump( ) const;
600#endif
601};
602
603
604//-----------------------------------Trace-------------------------------------
605// An ordered list of basic blocks.
606class Trace : public ResourceObj {
607 private:
608  uint _id;             // Unique Trace id (derived from initial block)
609  Block ** _next_list;  // Array mapping index to next block
610  Block ** _prev_list;  // Array mapping index to previous block
611  Block * _first;       // First block in the trace
612  Block * _last;        // Last block in the trace
613
614  // Return the block that follows "b" in the trace.
615  Block * next(Block *b) const { return _next_list[b->_pre_order]; }
616  void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
617
618  // Return the block that precedes "b" in the trace.
619  Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
620  void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
621
622  // We've discovered a loop in this trace. Reset last to be "b", and first as
623  // the block following "b
624  void break_loop_after(Block *b) {
625    _last = b;
626    _first = next(b);
627    set_prev(_first, NULL);
628    set_next(_last, NULL);
629  }
630
631 public:
632
633  Trace(Block *b, Block **next_list, Block **prev_list) :
634    _first(b),
635    _last(b),
636    _next_list(next_list),
637    _prev_list(prev_list),
638    _id(b->_pre_order) {
639    set_next(b, NULL);
640    set_prev(b, NULL);
641  };
642
643  // Return the id number
644  uint id() const { return _id; }
645  void set_id(uint id) { _id = id; }
646
647  // Return the first block in the trace
648  Block * first_block() const { return _first; }
649
650  // Return the last block in the trace
651  Block * last_block() const { return _last; }
652
653  // Insert a trace in the middle of this one after b
654  void insert_after(Block *b, Trace *tr) {
655    set_next(tr->last_block(), next(b));
656    if (next(b) != NULL) {
657      set_prev(next(b), tr->last_block());
658    }
659
660    set_next(b, tr->first_block());
661    set_prev(tr->first_block(), b);
662
663    if (b == _last) {
664      _last = tr->last_block();
665    }
666  }
667
668  void insert_before(Block *b, Trace *tr) {
669    Block *p = prev(b);
670    assert(p != NULL, "use append instead");
671    insert_after(p, tr);
672  }
673
674  // Append another trace to this one.
675  void append(Trace *tr) {
676    insert_after(_last, tr);
677  }
678
679  // Append a block at the end of this trace
680  void append(Block *b) {
681    set_next(_last, b);
682    set_prev(b, _last);
683    _last = b;
684  }
685
686  // Adjust the the blocks in this trace
687  void fixup_blocks(PhaseCFG &cfg);
688  bool backedge(CFGEdge *e);
689
690#ifndef PRODUCT
691  void dump( ) const;
692#endif
693};
694
695//------------------------------PhaseBlockLayout-------------------------------
696// Rearrange blocks into some canonical order, based on edges and their frequencies
697class PhaseBlockLayout : public Phase {
698  PhaseCFG &_cfg;               // Control flow graph
699
700  GrowableArray<CFGEdge *> *edges;
701  Trace **traces;
702  Block **next;
703  Block **prev;
704  UnionFind *uf;
705
706  // Given a block, find its encompassing Trace
707  Trace * trace(Block *b) {
708    return traces[uf->Find_compress(b->_pre_order)];
709  }
710 public:
711  PhaseBlockLayout(PhaseCFG &cfg);
712
713  void find_edges();
714  void grow_traces();
715  void merge_traces(bool loose_connections);
716  void reorder_traces(int count);
717  void union_traces(Trace* from, Trace* to);
718};
719