block.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/block.hpp"
29#include "opto/cfgnode.hpp"
30#include "opto/chaitin.hpp"
31#include "opto/loopnode.hpp"
32#include "opto/machnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/opcodes.hpp"
35#include "opto/rootnode.hpp"
36#include "utilities/copy.hpp"
37
38void Block_Array::grow( uint i ) {
39  assert(i >= Max(), "must be an overflow");
40  debug_only(_limit = i+1);
41  if( i < _size )  return;
42  if( !_size ) {
43    _size = 1;
44    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
45    _blocks[0] = NULL;
46  }
47  uint old = _size;
48  while( i >= _size ) _size <<= 1;      // Double to fit
49  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
50  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
51}
52
53void Block_List::remove(uint i) {
54  assert(i < _cnt, "index out of bounds");
55  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
56  pop(); // shrink list by one block
57}
58
59void Block_List::insert(uint i, Block *b) {
60  push(b); // grow list by one block
61  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
62  _blocks[i] = b;
63}
64
65#ifndef PRODUCT
66void Block_List::print() {
67  for (uint i=0; i < size(); i++) {
68    tty->print("B%d ", _blocks[i]->_pre_order);
69  }
70  tty->print("size = %d\n", size());
71}
72#endif
73
74uint Block::code_alignment() {
75  // Check for Root block
76  if (_pre_order == 0) return CodeEntryAlignment;
77  // Check for Start block
78  if (_pre_order == 1) return InteriorEntryAlignment;
79  // Check for loop alignment
80  if (has_loop_alignment()) return loop_alignment();
81
82  return relocInfo::addr_unit(); // no particular alignment
83}
84
85uint Block::compute_loop_alignment() {
86  Node *h = head();
87  int unit_sz = relocInfo::addr_unit();
88  if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
89    // Pre- and post-loops have low trip count so do not bother with
90    // NOPs for align loop head.  The constants are hidden from tuning
91    // but only because my "divide by 4" heuristic surely gets nearly
92    // all possible gain (a "do not align at all" heuristic has a
93    // chance of getting a really tiny gain).
94    if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
95                                h->as_CountedLoop()->is_post_loop())) {
96      return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
97    }
98    // Loops with low backedge frequency should not be aligned.
99    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
100    if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
101      return unit_sz; // Loop does not loop, more often than not!
102    }
103    return OptoLoopAlignment; // Otherwise align loop head
104  }
105
106  return unit_sz; // no particular alignment
107}
108
109// Compute the size of first 'inst_cnt' instructions in this block.
110// Return the number of instructions left to compute if the block has
111// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
112// exceeds OptoLoopAlignment.
113uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
114                                    PhaseRegAlloc* ra) {
115  uint last_inst = number_of_nodes();
116  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
117    uint inst_size = get_node(j)->size(ra);
118    if( inst_size > 0 ) {
119      inst_cnt--;
120      uint sz = sum_size + inst_size;
121      if( sz <= (uint)OptoLoopAlignment ) {
122        // Compute size of instructions which fit into fetch buffer only
123        // since all inst_cnt instructions will not fit even if we align them.
124        sum_size = sz;
125      } else {
126        return 0;
127      }
128    }
129  }
130  return inst_cnt;
131}
132
133uint Block::find_node( const Node *n ) const {
134  for( uint i = 0; i < number_of_nodes(); i++ ) {
135    if( get_node(i) == n )
136      return i;
137  }
138  ShouldNotReachHere();
139  return 0;
140}
141
142// Find and remove n from block list
143void Block::find_remove( const Node *n ) {
144  remove_node(find_node(n));
145}
146
147bool Block::contains(const Node *n) const {
148  return _nodes.contains(n);
149}
150
151// Return empty status of a block.  Empty blocks contain only the head, other
152// ideal nodes, and an optional trailing goto.
153int Block::is_Empty() const {
154
155  // Root or start block is not considered empty
156  if (head()->is_Root() || head()->is_Start()) {
157    return not_empty;
158  }
159
160  int success_result = completely_empty;
161  int end_idx = number_of_nodes() - 1;
162
163  // Check for ending goto
164  if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
165    success_result = empty_with_goto;
166    end_idx--;
167  }
168
169  // Unreachable blocks are considered empty
170  if (num_preds() <= 1) {
171    return success_result;
172  }
173
174  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
175  // turn directly into code, because only MachNodes have non-trivial
176  // emit() functions.
177  while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
178    end_idx--;
179  }
180
181  // No room for any interesting instructions?
182  if (end_idx == 0) {
183    return success_result;
184  }
185
186  return not_empty;
187}
188
189// Return true if the block's code implies that it is likely to be
190// executed infrequently.  Check to see if the block ends in a Halt or
191// a low probability call.
192bool Block::has_uncommon_code() const {
193  Node* en = end();
194
195  if (en->is_MachGoto())
196    en = en->in(0);
197  if (en->is_Catch())
198    en = en->in(0);
199  if (en->is_MachProj() && en->in(0)->is_MachCall()) {
200    MachCallNode* call = en->in(0)->as_MachCall();
201    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
202      // This is true for slow-path stubs like new_{instance,array},
203      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
204      // The magic number corresponds to the probability of an uncommon_trap,
205      // even though it is a count not a probability.
206      return true;
207    }
208  }
209
210  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
211  return op == Op_Halt;
212}
213
214// True if block is low enough frequency or guarded by a test which
215// mostly does not go here.
216bool PhaseCFG::is_uncommon(const Block* block) {
217  // Initial blocks must never be moved, so are never uncommon.
218  if (block->head()->is_Root() || block->head()->is_Start())  return false;
219
220  // Check for way-low freq
221  if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
222
223  // Look for code shape indicating uncommon_trap or slow path
224  if (block->has_uncommon_code()) return true;
225
226  const float epsilon = 0.05f;
227  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
228  uint uncommon_preds = 0;
229  uint freq_preds = 0;
230  uint uncommon_for_freq_preds = 0;
231
232  for( uint i=1; i< block->num_preds(); i++ ) {
233    Block* guard = get_block_for_node(block->pred(i));
234    // Check to see if this block follows its guard 1 time out of 10000
235    // or less.
236    //
237    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
238    // we intend to be "uncommon", such as slow-path TLE allocation,
239    // predicted call failure, and uncommon trap triggers.
240    //
241    // Use an epsilon value of 5% to allow for variability in frequency
242    // predictions and floating point calculations. The net effect is
243    // that guard_factor is set to 9500.
244    //
245    // Ignore low-frequency blocks.
246    // The next check is (guard->_freq < 1.e-5 * 9500.).
247    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
248      uncommon_preds++;
249    } else {
250      freq_preds++;
251      if(block->_freq < guard->_freq * guard_factor ) {
252        uncommon_for_freq_preds++;
253      }
254    }
255  }
256  if( block->num_preds() > 1 &&
257      // The block is uncommon if all preds are uncommon or
258      (uncommon_preds == (block->num_preds()-1) ||
259      // it is uncommon for all frequent preds.
260       uncommon_for_freq_preds == freq_preds) ) {
261    return true;
262  }
263  return false;
264}
265
266#ifndef PRODUCT
267void Block::dump_bidx(const Block* orig, outputStream* st) const {
268  if (_pre_order) st->print("B%d",_pre_order);
269  else st->print("N%d", head()->_idx);
270
271  if (Verbose && orig != this) {
272    // Dump the original block's idx
273    st->print(" (");
274    orig->dump_bidx(orig, st);
275    st->print(")");
276  }
277}
278
279void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
280  if (is_connector()) {
281    for (uint i=1; i<num_preds(); i++) {
282      Block *p = cfg->get_block_for_node(pred(i));
283      p->dump_pred(cfg, orig, st);
284    }
285  } else {
286    dump_bidx(orig, st);
287    st->print(" ");
288  }
289}
290
291void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
292  // Print the basic block
293  dump_bidx(this, st);
294  st->print(": #\t");
295
296  // Print the incoming CFG edges and the outgoing CFG edges
297  for( uint i=0; i<_num_succs; i++ ) {
298    non_connector_successor(i)->dump_bidx(_succs[i], st);
299    st->print(" ");
300  }
301  st->print("<- ");
302  if( head()->is_block_start() ) {
303    for (uint i=1; i<num_preds(); i++) {
304      Node *s = pred(i);
305      if (cfg != NULL) {
306        Block *p = cfg->get_block_for_node(s);
307        p->dump_pred(cfg, p, st);
308      } else {
309        while (!s->is_block_start())
310          s = s->in(0);
311        st->print("N%d ", s->_idx );
312      }
313    }
314  } else {
315    st->print("BLOCK HEAD IS JUNK  ");
316  }
317
318  // Print loop, if any
319  const Block *bhead = this;    // Head of self-loop
320  Node *bh = bhead->head();
321
322  if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
323    LoopNode *loop = bh->as_Loop();
324    const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
325    while (bx->is_connector()) {
326      bx = cfg->get_block_for_node(bx->pred(1));
327    }
328    st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
329    // Dump any loop-specific bits, especially for CountedLoops.
330    loop->dump_spec(st);
331  } else if (has_loop_alignment()) {
332    st->print(" top-of-loop");
333  }
334  st->print(" Freq: %g",_freq);
335  if( Verbose || WizardMode ) {
336    st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
337    st->print(" RegPressure: %d",_reg_pressure);
338    st->print(" IHRP Index: %d",_ihrp_index);
339    st->print(" FRegPressure: %d",_freg_pressure);
340    st->print(" FHRP Index: %d",_fhrp_index);
341  }
342  st->cr();
343}
344
345void Block::dump() const {
346  dump(NULL);
347}
348
349void Block::dump(const PhaseCFG* cfg) const {
350  dump_head(cfg);
351  for (uint i=0; i< number_of_nodes(); i++) {
352    get_node(i)->dump();
353  }
354  tty->print("\n");
355}
356#endif
357
358PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
359: Phase(CFG)
360, _block_arena(arena)
361, _root(root)
362, _matcher(matcher)
363, _node_to_block_mapping(arena)
364, _node_latency(NULL)
365#ifndef PRODUCT
366, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
367#endif
368#ifdef ASSERT
369, _raw_oops(arena)
370#endif
371{
372  ResourceMark rm;
373  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
374  // then Match it into a machine-specific Node.  Then clone the machine
375  // Node on demand.
376  Node *x = new (C) GotoNode(NULL);
377  x->init_req(0, x);
378  _goto = matcher.match_tree(x);
379  assert(_goto != NULL, "");
380  _goto->set_req(0,_goto);
381
382  // Build the CFG in Reverse Post Order
383  _number_of_blocks = build_cfg();
384  _root_block = get_block_for_node(_root);
385}
386
387// Build a proper looking CFG.  Make every block begin with either a StartNode
388// or a RegionNode.  Make every block end with either a Goto, If or Return.
389// The RootNode both starts and ends it's own block.  Do this with a recursive
390// backwards walk over the control edges.
391uint PhaseCFG::build_cfg() {
392  Arena *a = Thread::current()->resource_area();
393  VectorSet visited(a);
394
395  // Allocate stack with enough space to avoid frequent realloc
396  Node_Stack nstack(a, C->unique() >> 1);
397  nstack.push(_root, 0);
398  uint sum = 0;                 // Counter for blocks
399
400  while (nstack.is_nonempty()) {
401    // node and in's index from stack's top
402    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
403    // only nodes which point to the start of basic block (see below).
404    Node *np = nstack.node();
405    // idx > 0, except for the first node (_root) pushed on stack
406    // at the beginning when idx == 0.
407    // We will use the condition (idx == 0) later to end the build.
408    uint idx = nstack.index();
409    Node *proj = np->in(idx);
410    const Node *x = proj->is_block_proj();
411    // Does the block end with a proper block-ending Node?  One of Return,
412    // If or Goto? (This check should be done for visited nodes also).
413    if (x == NULL) {                    // Does not end right...
414      Node *g = _goto->clone(); // Force it to end in a Goto
415      g->set_req(0, proj);
416      np->set_req(idx, g);
417      x = proj = g;
418    }
419    if (!visited.test_set(x->_idx)) { // Visit this block once
420      // Skip any control-pinned middle'in stuff
421      Node *p = proj;
422      do {
423        proj = p;                   // Update pointer to last Control
424        p = p->in(0);               // Move control forward
425      } while( !p->is_block_proj() &&
426               !p->is_block_start() );
427      // Make the block begin with one of Region or StartNode.
428      if( !p->is_block_start() ) {
429        RegionNode *r = new (C) RegionNode( 2 );
430        r->init_req(1, p);         // Insert RegionNode in the way
431        proj->set_req(0, r);        // Insert RegionNode in the way
432        p = r;
433      }
434      // 'p' now points to the start of this basic block
435
436      // Put self in array of basic blocks
437      Block *bb = new (_block_arena) Block(_block_arena, p);
438      map_node_to_block(p, bb);
439      map_node_to_block(x, bb);
440      if( x != p ) {                // Only for root is x == p
441        bb->push_node((Node*)x);
442      }
443      // Now handle predecessors
444      ++sum;                        // Count 1 for self block
445      uint cnt = bb->num_preds();
446      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
447        Node *prevproj = p->in(i);  // Get prior input
448        assert( !prevproj->is_Con(), "dead input not removed" );
449        // Check to see if p->in(i) is a "control-dependent" CFG edge -
450        // i.e., it splits at the source (via an IF or SWITCH) and merges
451        // at the destination (via a many-input Region).
452        // This breaks critical edges.  The RegionNode to start the block
453        // will be added when <p,i> is pulled off the node stack
454        if ( cnt > 2 ) {             // Merging many things?
455          assert( prevproj== bb->pred(i),"");
456          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
457            // Force a block on the control-dependent edge
458            Node *g = _goto->clone();       // Force it to end in a Goto
459            g->set_req(0,prevproj);
460            p->set_req(i,g);
461          }
462        }
463        nstack.push(p, i);  // 'p' is RegionNode or StartNode
464      }
465    } else { // Post-processing visited nodes
466      nstack.pop();                 // remove node from stack
467      // Check if it the fist node pushed on stack at the beginning.
468      if (idx == 0) break;          // end of the build
469      // Find predecessor basic block
470      Block *pb = get_block_for_node(x);
471      // Insert into nodes array, if not already there
472      if (!has_block(proj)) {
473        assert( x != proj, "" );
474        // Map basic block of projection
475        map_node_to_block(proj, pb);
476        pb->push_node(proj);
477      }
478      // Insert self as a child of my predecessor block
479      pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
480      assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
481              "too many control users, not a CFG?" );
482    }
483  }
484  // Return number of basic blocks for all children and self
485  return sum;
486}
487
488// Inserts a goto & corresponding basic block between
489// block[block_no] and its succ_no'th successor block
490void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
491  // get block with block_no
492  assert(block_no < number_of_blocks(), "illegal block number");
493  Block* in  = get_block(block_no);
494  // get successor block succ_no
495  assert(succ_no < in->_num_succs, "illegal successor number");
496  Block* out = in->_succs[succ_no];
497  // Compute frequency of the new block. Do this before inserting
498  // new block in case succ_prob() needs to infer the probability from
499  // surrounding blocks.
500  float freq = in->_freq * in->succ_prob(succ_no);
501  // get ProjNode corresponding to the succ_no'th successor of the in block
502  ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
503  // create region for basic block
504  RegionNode* region = new (C) RegionNode(2);
505  region->init_req(1, proj);
506  // setup corresponding basic block
507  Block* block = new (_block_arena) Block(_block_arena, region);
508  map_node_to_block(region, block);
509  C->regalloc()->set_bad(region->_idx);
510  // add a goto node
511  Node* gto = _goto->clone(); // get a new goto node
512  gto->set_req(0, region);
513  // add it to the basic block
514  block->push_node(gto);
515  map_node_to_block(gto, block);
516  C->regalloc()->set_bad(gto->_idx);
517  // hook up successor block
518  block->_succs.map(block->_num_succs++, out);
519  // remap successor's predecessors if necessary
520  for (uint i = 1; i < out->num_preds(); i++) {
521    if (out->pred(i) == proj) out->head()->set_req(i, gto);
522  }
523  // remap predecessor's successor to new block
524  in->_succs.map(succ_no, block);
525  // Set the frequency of the new block
526  block->_freq = freq;
527  // add new basic block to basic block list
528  add_block_at(block_no + 1, block);
529}
530
531// Does this block end in a multiway branch that cannot have the default case
532// flipped for another case?
533static bool no_flip_branch(Block *b) {
534  int branch_idx = b->number_of_nodes() - b->_num_succs-1;
535  if (branch_idx < 1) {
536    return false;
537  }
538  Node *branch = b->get_node(branch_idx);
539  if (branch->is_Catch()) {
540    return true;
541  }
542  if (branch->is_Mach()) {
543    if (branch->is_MachNullCheck()) {
544      return true;
545    }
546    int iop = branch->as_Mach()->ideal_Opcode();
547    if (iop == Op_FastLock || iop == Op_FastUnlock) {
548      return true;
549    }
550    // Don't flip if branch has an implicit check.
551    if (branch->as_Mach()->is_TrapBasedCheckNode()) {
552      return true;
553    }
554  }
555  return false;
556}
557
558// Check for NeverBranch at block end.  This needs to become a GOTO to the
559// true target.  NeverBranch are treated as a conditional branch that always
560// goes the same direction for most of the optimizer and are used to give a
561// fake exit path to infinite loops.  At this late stage they need to turn
562// into Goto's so that when you enter the infinite loop you indeed hang.
563void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
564  // Find true target
565  int end_idx = b->end_idx();
566  int idx = b->get_node(end_idx+1)->as_Proj()->_con;
567  Block *succ = b->_succs[idx];
568  Node* gto = _goto->clone(); // get a new goto node
569  gto->set_req(0, b->head());
570  Node *bp = b->get_node(end_idx);
571  b->map_node(gto, end_idx); // Slam over NeverBranch
572  map_node_to_block(gto, b);
573  C->regalloc()->set_bad(gto->_idx);
574  b->pop_node();              // Yank projections
575  b->pop_node();              // Yank projections
576  b->_succs.map(0,succ);        // Map only successor
577  b->_num_succs = 1;
578  // remap successor's predecessors if necessary
579  uint j;
580  for( j = 1; j < succ->num_preds(); j++)
581    if( succ->pred(j)->in(0) == bp )
582      succ->head()->set_req(j, gto);
583  // Kill alternate exit path
584  Block *dead = b->_succs[1-idx];
585  for( j = 1; j < dead->num_preds(); j++)
586    if( dead->pred(j)->in(0) == bp )
587      break;
588  // Scan through block, yanking dead path from
589  // all regions and phis.
590  dead->head()->del_req(j);
591  for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
592    dead->get_node(k)->del_req(j);
593}
594
595// Helper function to move block bx to the slot following b_index. Return
596// true if the move is successful, otherwise false
597bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
598  if (bx == NULL) return false;
599
600  // Return false if bx is already scheduled.
601  uint bx_index = bx->_pre_order;
602  if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
603    return false;
604  }
605
606  // Find the current index of block bx on the block list
607  bx_index = b_index + 1;
608  while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
609    bx_index++;
610  }
611  assert(get_block(bx_index) == bx, "block not found");
612
613  // If the previous block conditionally falls into bx, return false,
614  // because moving bx will create an extra jump.
615  for(uint k = 1; k < bx->num_preds(); k++ ) {
616    Block* pred = get_block_for_node(bx->pred(k));
617    if (pred == get_block(bx_index - 1)) {
618      if (pred->_num_succs != 1) {
619        return false;
620      }
621    }
622  }
623
624  // Reinsert bx just past block 'b'
625  _blocks.remove(bx_index);
626  _blocks.insert(b_index + 1, bx);
627  return true;
628}
629
630// Move empty and uncommon blocks to the end.
631void PhaseCFG::move_to_end(Block *b, uint i) {
632  int e = b->is_Empty();
633  if (e != Block::not_empty) {
634    if (e == Block::empty_with_goto) {
635      // Remove the goto, but leave the block.
636      b->pop_node();
637    }
638    // Mark this block as a connector block, which will cause it to be
639    // ignored in certain functions such as non_connector_successor().
640    b->set_connector();
641  }
642  // Move the empty block to the end, and don't recheck.
643  _blocks.remove(i);
644  _blocks.push(b);
645}
646
647// Set loop alignment for every block
648void PhaseCFG::set_loop_alignment() {
649  uint last = number_of_blocks();
650  assert(get_block(0) == get_root_block(), "");
651
652  for (uint i = 1; i < last; i++) {
653    Block* block = get_block(i);
654    if (block->head()->is_Loop()) {
655      block->set_loop_alignment(block);
656    }
657  }
658}
659
660// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
661// to the end.
662void PhaseCFG::remove_empty_blocks() {
663  // Move uncommon blocks to the end
664  uint last = number_of_blocks();
665  assert(get_block(0) == get_root_block(), "");
666
667  for (uint i = 1; i < last; i++) {
668    Block* block = get_block(i);
669    if (block->is_connector()) {
670      break;
671    }
672
673    // Check for NeverBranch at block end.  This needs to become a GOTO to the
674    // true target.  NeverBranch are treated as a conditional branch that
675    // always goes the same direction for most of the optimizer and are used
676    // to give a fake exit path to infinite loops.  At this late stage they
677    // need to turn into Goto's so that when you enter the infinite loop you
678    // indeed hang.
679    if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
680      convert_NeverBranch_to_Goto(block);
681    }
682
683    // Look for uncommon blocks and move to end.
684    if (!C->do_freq_based_layout()) {
685      if (is_uncommon(block)) {
686        move_to_end(block, i);
687        last--;                   // No longer check for being uncommon!
688        if (no_flip_branch(block)) { // Fall-thru case must follow?
689          // Find the fall-thru block
690          block = get_block(i);
691          move_to_end(block, i);
692          last--;
693        }
694        // backup block counter post-increment
695        i--;
696      }
697    }
698  }
699
700  // Move empty blocks to the end
701  last = number_of_blocks();
702  for (uint i = 1; i < last; i++) {
703    Block* block = get_block(i);
704    if (block->is_Empty() != Block::not_empty) {
705      move_to_end(block, i);
706      last--;
707      i--;
708    }
709  } // End of for all blocks
710}
711
712Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
713  // Trap based checks must fall through to the successor with
714  // PROB_ALWAYS.
715  // They should be an If with 2 successors.
716  assert(branch->is_MachIf(),   "must be If");
717  assert(block->_num_succs == 2, "must have 2 successors");
718
719  // Get the If node and the projection for the first successor.
720  MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
721  ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
722  ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
723  ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
724  ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
725
726  // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
727  assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
728  assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
729
730  ProjNode *proj_always;
731  ProjNode *proj_never;
732  // We must negate the branch if the implicit check doesn't follow
733  // the branch's TRUE path. Then, the new TRUE branch target will
734  // be the old FALSE branch target.
735  if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
736    proj_never  = projt;
737    proj_always = projf;
738  } else {
739    // We must negate the branch if the trap doesn't follow the
740    // branch's TRUE path. Then, the new TRUE branch target will
741    // be the old FALSE branch target.
742    proj_never  = projf;
743    proj_always = projt;
744    iff->negate();
745  }
746  assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
747  // Map the successors properly
748  block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
749  block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
750
751  if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
752    block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
753    block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
754  }
755
756  // Place the fall through block after this block.
757  Block *bs1 = block->non_connector_successor(1);
758  if (bs1 != bnext && move_to_next(bs1, block_pos)) {
759    bnext = bs1;
760  }
761  // If the fall through block still is not the next block, insert a goto.
762  if (bs1 != bnext) {
763    insert_goto_at(block_pos, 1);
764  }
765  return bnext;
766}
767
768// Fix up the final control flow for basic blocks.
769void PhaseCFG::fixup_flow() {
770  // Fixup final control flow for the blocks.  Remove jump-to-next
771  // block. If neither arm of an IF follows the conditional branch, we
772  // have to add a second jump after the conditional.  We place the
773  // TRUE branch target in succs[0] for both GOTOs and IFs.
774  for (uint i = 0; i < number_of_blocks(); i++) {
775    Block* block = get_block(i);
776    block->_pre_order = i;          // turn pre-order into block-index
777
778    // Connector blocks need no further processing.
779    if (block->is_connector()) {
780      assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
781      continue;
782    }
783    assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
784
785    Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
786    Block* bs0 = block->non_connector_successor(0);
787
788    // Check for multi-way branches where I cannot negate the test to
789    // exchange the true and false targets.
790    if (no_flip_branch(block)) {
791      // Find fall through case - if must fall into its target.
792      // Get the index of the branch's first successor.
793      int branch_idx = block->number_of_nodes() - block->_num_succs;
794
795      // The branch is 1 before the branch's first successor.
796      Node *branch = block->get_node(branch_idx-1);
797
798      // Handle no-flip branches which have implicit checks and which require
799      // special block ordering and individual semantics of the 'fall through
800      // case'.
801      if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
802          branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
803        bnext = fixup_trap_based_check(branch, block, i, bnext);
804      } else {
805        // Else, default handling for no-flip branches
806        for (uint j2 = 0; j2 < block->_num_succs; j2++) {
807          const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
808          if (p->_con == 0) {
809            // successor j2 is fall through case
810            if (block->non_connector_successor(j2) != bnext) {
811              // but it is not the next block => insert a goto
812              insert_goto_at(i, j2);
813            }
814            // Put taken branch in slot 0
815            if (j2 == 0 && block->_num_succs == 2) {
816              // Flip targets in succs map
817              Block *tbs0 = block->_succs[0];
818              Block *tbs1 = block->_succs[1];
819              block->_succs.map(0, tbs1);
820              block->_succs.map(1, tbs0);
821            }
822            break;
823          }
824        }
825      }
826
827      // Remove all CatchProjs
828      for (uint j = 0; j < block->_num_succs; j++) {
829        block->pop_node();
830      }
831
832    } else if (block->_num_succs == 1) {
833      // Block ends in a Goto?
834      if (bnext == bs0) {
835        // We fall into next block; remove the Goto
836        block->pop_node();
837      }
838
839    } else if(block->_num_succs == 2) { // Block ends in a If?
840      // Get opcode of 1st projection (matches _succs[0])
841      // Note: Since this basic block has 2 exits, the last 2 nodes must
842      //       be projections (in any order), the 3rd last node must be
843      //       the IfNode (we have excluded other 2-way exits such as
844      //       CatchNodes already).
845      MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
846      ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
847      ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
848
849      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
850      assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
851      assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
852
853      Block* bs1 = block->non_connector_successor(1);
854
855      // Check for neither successor block following the current
856      // block ending in a conditional. If so, move one of the
857      // successors after the current one, provided that the
858      // successor was previously unscheduled, but moveable
859      // (i.e., all paths to it involve a branch).
860      if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
861        // Choose the more common successor based on the probability
862        // of the conditional branch.
863        Block* bx = bs0;
864        Block* by = bs1;
865
866        // _prob is the probability of taking the true path. Make
867        // p the probability of taking successor #1.
868        float p = iff->as_MachIf()->_prob;
869        if (proj0->Opcode() == Op_IfTrue) {
870          p = 1.0 - p;
871        }
872
873        // Prefer successor #1 if p > 0.5
874        if (p > PROB_FAIR) {
875          bx = bs1;
876          by = bs0;
877        }
878
879        // Attempt the more common successor first
880        if (move_to_next(bx, i)) {
881          bnext = bx;
882        } else if (move_to_next(by, i)) {
883          bnext = by;
884        }
885      }
886
887      // Check for conditional branching the wrong way.  Negate
888      // conditional, if needed, so it falls into the following block
889      // and branches to the not-following block.
890
891      // Check for the next block being in succs[0].  We are going to branch
892      // to succs[0], so we want the fall-thru case as the next block in
893      // succs[1].
894      if (bnext == bs0) {
895        // Fall-thru case in succs[0], so flip targets in succs map
896        Block* tbs0 = block->_succs[0];
897        Block* tbs1 = block->_succs[1];
898        block->_succs.map(0, tbs1);
899        block->_succs.map(1, tbs0);
900        // Flip projection for each target
901        ProjNode* tmp = proj0;
902        proj0 = proj1;
903        proj1 = tmp;
904
905      } else if(bnext != bs1) {
906        // Need a double-branch
907        // The existing conditional branch need not change.
908        // Add a unconditional branch to the false target.
909        // Alas, it must appear in its own block and adding a
910        // block this late in the game is complicated.  Sigh.
911        insert_goto_at(i, 1);
912      }
913
914      // Make sure we TRUE branch to the target
915      if (proj0->Opcode() == Op_IfFalse) {
916        iff->as_MachIf()->negate();
917      }
918
919      block->pop_node();          // Remove IfFalse & IfTrue projections
920      block->pop_node();
921
922    } else {
923      // Multi-exit block, e.g. a switch statement
924      // But we don't need to do anything here
925    }
926  } // End of for all blocks
927}
928
929
930// postalloc_expand: Expand nodes after register allocation.
931//
932// postalloc_expand has to be called after register allocation, just
933// before output (i.e. scheduling). It only gets called if
934// Matcher::require_postalloc_expand is true.
935//
936// Background:
937//
938// Nodes that are expandend (one compound node requiring several
939// assembler instructions to be implemented split into two or more
940// non-compound nodes) after register allocation are not as nice as
941// the ones expanded before register allocation - they don't
942// participate in optimizations as global code motion. But after
943// register allocation we can expand nodes that use registers which
944// are not spillable or registers that are not allocated, because the
945// old compound node is simply replaced (in its location in the basic
946// block) by a new subgraph which does not contain compound nodes any
947// more. The scheduler called during output can later on process these
948// non-compound nodes.
949//
950// Implementation:
951//
952// Nodes requiring postalloc expand are specified in the ad file by using
953// a postalloc_expand statement instead of ins_encode. A postalloc_expand
954// contains a single call to an encoding, as does an ins_encode
955// statement. Instead of an emit() function a postalloc_expand() function
956// is generated that doesn't emit assembler but creates a new
957// subgraph. The code below calls this postalloc_expand function for each
958// node with the appropriate attribute. This function returns the new
959// nodes generated in an array passed in the call. The old node,
960// potential MachTemps before and potential Projs after it then get
961// disconnected and replaced by the new nodes. The instruction
962// generating the result has to be the last one in the array. In
963// general it is assumed that Projs after the node expanded are
964// kills. These kills are not required any more after expanding as
965// there are now explicitly visible def-use chains and the Projs are
966// removed. This does not hold for calls: They do not only have
967// kill-Projs but also Projs defining values. Therefore Projs after
968// the node expanded are removed for all but for calls. If a node is
969// to be reused, it must be added to the nodes list returned, and it
970// will be added again.
971//
972// Implementing the postalloc_expand function for a node in an enc_class
973// is rather tedious. It requires knowledge about many node details, as
974// the nodes and the subgraph must be hand crafted. To simplify this,
975// adlc generates some utility variables into the postalloc_expand function,
976// e.g., holding the operands as specified by the postalloc_expand encoding
977// specification, e.g.:
978//  * unsigned idx_<par_name>  holding the index of the node in the ins
979//  * Node *n_<par_name>       holding the node loaded from the ins
980//  * MachOpnd *op_<par_name>  holding the corresponding operand
981//
982// The ordering of operands can not be determined by looking at a
983// rule. Especially if a match rule matches several different trees,
984// several nodes are generated from one instruct specification with
985// different operand orderings. In this case the adlc generated
986// variables are the only way to access the ins and operands
987// deterministically.
988//
989// If assigning a register to a node that contains an oop, don't
990// forget to call ra_->set_oop() for the node.
991void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
992  GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
993  GrowableArray <Node *> remove(32);
994  GrowableArray <Node *> succs(32);
995  unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
996  DEBUG_ONLY(bool foundNode = false);
997
998  // for all blocks
999  for (uint i = 0; i < number_of_blocks(); i++) {
1000    Block *b = _blocks[i];
1001    // For all instructions in the current block.
1002    for (uint j = 0; j < b->number_of_nodes(); j++) {
1003      Node *n = b->get_node(j);
1004      if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1005#ifdef ASSERT
1006        if (TracePostallocExpand) {
1007          if (!foundNode) {
1008            foundNode = true;
1009            tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1010                       C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1011          }
1012          tty->print("  postalloc expanding "); n->dump();
1013          if (Verbose) {
1014            tty->print("    with ins:\n");
1015            for (uint k = 0; k < n->len(); ++k) {
1016              if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1017            }
1018          }
1019        }
1020#endif
1021        new_nodes.clear();
1022        // Collect nodes that have to be removed from the block later on.
1023        uint req = n->req();
1024        remove.clear();
1025        for (uint k = 0; k < req; ++k) {
1026          if (n->in(k) && n->in(k)->is_MachTemp()) {
1027            remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1028            n->in(k)->del_req(0);
1029            j--;
1030          }
1031        }
1032
1033        // Check whether we can allocate enough nodes. We set a fix limit for
1034        // the size of postalloc expands with this.
1035        uint unique_limit = C->unique() + 40;
1036        if (unique_limit >= _ra->node_regs_max_index()) {
1037          Compile::current()->record_failure("out of nodes in postalloc expand");
1038          return;
1039        }
1040
1041        // Emit (i.e. generate new nodes).
1042        n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1043
1044        assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1045
1046        // Disconnect the inputs of the old node.
1047        //
1048        // We reuse MachSpillCopy nodes. If we need to expand them, there
1049        // are many, so reusing pays off. If reused, the node already
1050        // has the new ins. n must be the last node on new_nodes list.
1051        if (!n->is_MachSpillCopy()) {
1052          for (int k = req - 1; k >= 0; --k) {
1053            n->del_req(k);
1054          }
1055        }
1056
1057#ifdef ASSERT
1058        // Check that all nodes have proper operands.
1059        for (int k = 0; k < new_nodes.length(); ++k) {
1060          if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1061          MachNode *m = new_nodes.at(k)->as_Mach();
1062          for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1063            if (MachOper::notAnOper(m->_opnds[l])) {
1064              outputStream *os = tty;
1065              os->print("Node %s ", m->Name());
1066              os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1067              assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1068            }
1069          }
1070        }
1071#endif
1072
1073        // Collect succs of old node in remove (for projections) and in succs (for
1074        // all other nodes) do _not_ collect projections in remove (but in succs)
1075        // in case the node is a call. We need the projections for calls as they are
1076        // associated with registes (i.e. they are defs).
1077        succs.clear();
1078        for (DUIterator k = n->outs(); n->has_out(k); k++) {
1079          if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1080            remove.push(n->out(k));
1081          } else {
1082            succs.push(n->out(k));
1083          }
1084        }
1085        // Replace old node n as input of its succs by last of the new nodes.
1086        for (int k = 0; k < succs.length(); ++k) {
1087          Node *succ = succs.at(k);
1088          for (uint l = 0; l < succ->req(); ++l) {
1089            if (succ->in(l) == n) {
1090              succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1091            }
1092          }
1093          for (uint l = succ->req(); l < succ->len(); ++l) {
1094            if (succ->in(l) == n) {
1095              succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1096            }
1097          }
1098        }
1099
1100        // Index of old node in block.
1101        uint index = b->find_node(n);
1102        // Insert new nodes into block and map them in nodes->blocks array
1103        // and remember last node in n2.
1104        Node *n2 = NULL;
1105        for (int k = 0; k < new_nodes.length(); ++k) {
1106          n2 = new_nodes.at(k);
1107          b->insert_node(n2, ++index);
1108          map_node_to_block(n2, b);
1109        }
1110
1111        // Add old node n to remove and remove them all from block.
1112        remove.push(n);
1113        j--;
1114#ifdef ASSERT
1115        if (TracePostallocExpand && Verbose) {
1116          tty->print("    removing:\n");
1117          for (int k = 0; k < remove.length(); ++k) {
1118            tty->print("        "); remove.at(k)->dump();
1119          }
1120          tty->print("    inserting:\n");
1121          for (int k = 0; k < new_nodes.length(); ++k) {
1122            tty->print("        "); new_nodes.at(k)->dump();
1123          }
1124        }
1125#endif
1126        for (int k = 0; k < remove.length(); ++k) {
1127          if (b->contains(remove.at(k))) {
1128            b->find_remove(remove.at(k));
1129          } else {
1130            assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1131          }
1132        }
1133        // If anything has been inserted (n2 != NULL), continue after last node inserted.
1134        // This does not always work. Some postalloc expands don't insert any nodes, if they
1135        // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1136        j = n2 ? b->find_node(n2) : j;
1137      }
1138    }
1139  }
1140
1141#ifdef ASSERT
1142  if (foundNode) {
1143    tty->print("FINISHED %d %s\n", C->compile_id(),
1144               C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1145    tty->flush();
1146  }
1147#endif
1148}
1149
1150
1151//------------------------------dump-------------------------------------------
1152#ifndef PRODUCT
1153void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1154  const Node *x = end->is_block_proj();
1155  assert( x, "not a CFG" );
1156
1157  // Do not visit this block again
1158  if( visited.test_set(x->_idx) ) return;
1159
1160  // Skip through this block
1161  const Node *p = x;
1162  do {
1163    p = p->in(0);               // Move control forward
1164    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1165  } while( !p->is_block_start() );
1166
1167  // Recursively visit
1168  for (uint i = 1; i < p->req(); i++) {
1169    _dump_cfg(p->in(i), visited);
1170  }
1171
1172  // Dump the block
1173  get_block_for_node(p)->dump(this);
1174}
1175
1176void PhaseCFG::dump( ) const {
1177  tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1178  if (_blocks.size()) {        // Did we do basic-block layout?
1179    for (uint i = 0; i < number_of_blocks(); i++) {
1180      const Block* block = get_block(i);
1181      block->dump(this);
1182    }
1183  } else {                      // Else do it with a DFS
1184    VectorSet visited(_block_arena);
1185    _dump_cfg(_root,visited);
1186  }
1187}
1188
1189void PhaseCFG::dump_headers() {
1190  for (uint i = 0; i < number_of_blocks(); i++) {
1191    Block* block = get_block(i);
1192    if (block != NULL) {
1193      block->dump_head(this);
1194    }
1195  }
1196}
1197
1198void PhaseCFG::verify() const {
1199#ifdef ASSERT
1200  // Verify sane CFG
1201  for (uint i = 0; i < number_of_blocks(); i++) {
1202    Block* block = get_block(i);
1203    uint cnt = block->number_of_nodes();
1204    uint j;
1205    for (j = 0; j < cnt; j++)  {
1206      Node *n = block->get_node(j);
1207      assert(get_block_for_node(n) == block, "");
1208      if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1209        assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1210      }
1211      for (uint k = 0; k < n->req(); k++) {
1212        Node *def = n->in(k);
1213        if (def && def != n) {
1214          assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1215          // Verify that instructions in the block is in correct order.
1216          // Uses must follow their definition if they are at the same block.
1217          // Mostly done to check that MachSpillCopy nodes are placed correctly
1218          // when CreateEx node is moved in build_ifg_physical().
1219          if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1220              // See (+++) comment in reg_split.cpp
1221              !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1222            bool is_loop = false;
1223            if (n->is_Phi()) {
1224              for (uint l = 1; l < def->req(); l++) {
1225                if (n == def->in(l)) {
1226                  is_loop = true;
1227                  break; // Some kind of loop
1228                }
1229              }
1230            }
1231            assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1232          }
1233        }
1234      }
1235    }
1236
1237    j = block->end_idx();
1238    Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1239    assert(bp, "last instruction must be a block proj");
1240    assert(bp == block->get_node(j), "wrong number of successors for this block");
1241    if (bp->is_Catch()) {
1242      while (block->get_node(--j)->is_MachProj()) {
1243        ;
1244      }
1245      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1246    } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1247      assert(block->_num_succs == 2, "Conditional branch must have two targets");
1248    }
1249  }
1250#endif
1251}
1252#endif
1253
1254UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1255  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1256}
1257
1258void UnionFind::extend( uint from_idx, uint to_idx ) {
1259  _nesting.check();
1260  if( from_idx >= _max ) {
1261    uint size = 16;
1262    while( size <= from_idx ) size <<=1;
1263    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1264    _max = size;
1265  }
1266  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1267  _indices[from_idx] = to_idx;
1268}
1269
1270void UnionFind::reset( uint max ) {
1271  assert( max <= max_uint, "Must fit within uint" );
1272  // Force the Union-Find mapping to be at least this large
1273  extend(max,0);
1274  // Initialize to be the ID mapping.
1275  for( uint i=0; i<max; i++ ) map(i,i);
1276}
1277
1278// Straight out of Tarjan's union-find algorithm
1279uint UnionFind::Find_compress( uint idx ) {
1280  uint cur  = idx;
1281  uint next = lookup(cur);
1282  while( next != cur ) {        // Scan chain of equivalences
1283    assert( next < cur, "always union smaller" );
1284    cur = next;                 // until find a fixed-point
1285    next = lookup(cur);
1286  }
1287  // Core of union-find algorithm: update chain of
1288  // equivalences to be equal to the root.
1289  while( idx != next ) {
1290    uint tmp = lookup(idx);
1291    map(idx, next);
1292    idx = tmp;
1293  }
1294  return idx;
1295}
1296
1297// Like Find above, but no path compress, so bad asymptotic behavior
1298uint UnionFind::Find_const( uint idx ) const {
1299  if( idx == 0 ) return idx;    // Ignore the zero idx
1300  // Off the end?  This can happen during debugging dumps
1301  // when data structures have not finished being updated.
1302  if( idx >= _max ) return idx;
1303  uint next = lookup(idx);
1304  while( next != idx ) {        // Scan chain of equivalences
1305    idx = next;                 // until find a fixed-point
1306    next = lookup(idx);
1307  }
1308  return next;
1309}
1310
1311// union 2 sets together.
1312void UnionFind::Union( uint idx1, uint idx2 ) {
1313  uint src = Find(idx1);
1314  uint dst = Find(idx2);
1315  assert( src, "" );
1316  assert( dst, "" );
1317  assert( src < _max, "oob" );
1318  assert( dst < _max, "oob" );
1319  assert( src < dst, "always union smaller" );
1320  map(dst,src);
1321}
1322
1323#ifndef PRODUCT
1324void Trace::dump( ) const {
1325  tty->print_cr("Trace (freq %f)", first_block()->_freq);
1326  for (Block *b = first_block(); b != NULL; b = next(b)) {
1327    tty->print("  B%d", b->_pre_order);
1328    if (b->head()->is_Loop()) {
1329      tty->print(" (L%d)", b->compute_loop_alignment());
1330    }
1331    if (b->has_loop_alignment()) {
1332      tty->print(" (T%d)", b->code_alignment());
1333    }
1334  }
1335  tty->cr();
1336}
1337
1338void CFGEdge::dump( ) const {
1339  tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1340             from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1341  switch(state()) {
1342  case connected:
1343    tty->print("connected");
1344    break;
1345  case open:
1346    tty->print("open");
1347    break;
1348  case interior:
1349    tty->print("interior");
1350    break;
1351  }
1352  if (infrequent()) {
1353    tty->print("  infrequent");
1354  }
1355  tty->cr();
1356}
1357#endif
1358
1359// Comparison function for edges
1360static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1361  float freq0 = (*e0)->freq();
1362  float freq1 = (*e1)->freq();
1363  if (freq0 != freq1) {
1364    return freq0 > freq1 ? -1 : 1;
1365  }
1366
1367  int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1368  int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1369
1370  return dist1 - dist0;
1371}
1372
1373// Comparison function for edges
1374extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1375  Trace *tr0 = *(Trace **) p0;
1376  Trace *tr1 = *(Trace **) p1;
1377  Block *b0 = tr0->first_block();
1378  Block *b1 = tr1->first_block();
1379
1380  // The trace of connector blocks goes at the end;
1381  // we only expect one such trace
1382  if (b0->is_connector() != b1->is_connector()) {
1383    return b1->is_connector() ? -1 : 1;
1384  }
1385
1386  // Pull more frequently executed blocks to the beginning
1387  float freq0 = b0->_freq;
1388  float freq1 = b1->_freq;
1389  if (freq0 != freq1) {
1390    return freq0 > freq1 ? -1 : 1;
1391  }
1392
1393  int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1394
1395  return diff;
1396}
1397
1398// Find edges of interest, i.e, those which can fall through. Presumes that
1399// edges which don't fall through are of low frequency and can be generally
1400// ignored.  Initialize the list of traces.
1401void PhaseBlockLayout::find_edges() {
1402  // Walk the blocks, creating edges and Traces
1403  uint i;
1404  Trace *tr = NULL;
1405  for (i = 0; i < _cfg.number_of_blocks(); i++) {
1406    Block* b = _cfg.get_block(i);
1407    tr = new Trace(b, next, prev);
1408    traces[tr->id()] = tr;
1409
1410    // All connector blocks should be at the end of the list
1411    if (b->is_connector()) break;
1412
1413    // If this block and the next one have a one-to-one successor
1414    // predecessor relationship, simply append the next block
1415    int nfallthru = b->num_fall_throughs();
1416    while (nfallthru == 1 &&
1417           b->succ_fall_through(0)) {
1418      Block *n = b->_succs[0];
1419
1420      // Skip over single-entry connector blocks, we don't want to
1421      // add them to the trace.
1422      while (n->is_connector() && n->num_preds() == 1) {
1423        n = n->_succs[0];
1424      }
1425
1426      // We see a merge point, so stop search for the next block
1427      if (n->num_preds() != 1) break;
1428
1429      i++;
1430      assert(n = _cfg.get_block(i), "expecting next block");
1431      tr->append(n);
1432      uf->map(n->_pre_order, tr->id());
1433      traces[n->_pre_order] = NULL;
1434      nfallthru = b->num_fall_throughs();
1435      b = n;
1436    }
1437
1438    if (nfallthru > 0) {
1439      // Create a CFGEdge for each outgoing
1440      // edge that could be a fall-through.
1441      for (uint j = 0; j < b->_num_succs; j++ ) {
1442        if (b->succ_fall_through(j)) {
1443          Block *target = b->non_connector_successor(j);
1444          float freq = b->_freq * b->succ_prob(j);
1445          int from_pct = (int) ((100 * freq) / b->_freq);
1446          int to_pct = (int) ((100 * freq) / target->_freq);
1447          edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1448        }
1449      }
1450    }
1451  }
1452
1453  // Group connector blocks into one trace
1454  for (i++; i < _cfg.number_of_blocks(); i++) {
1455    Block *b = _cfg.get_block(i);
1456    assert(b->is_connector(), "connector blocks at the end");
1457    tr->append(b);
1458    uf->map(b->_pre_order, tr->id());
1459    traces[b->_pre_order] = NULL;
1460  }
1461}
1462
1463// Union two traces together in uf, and null out the trace in the list
1464void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1465  uint old_id = old_trace->id();
1466  uint updated_id = updated_trace->id();
1467
1468  uint lo_id = updated_id;
1469  uint hi_id = old_id;
1470
1471  // If from is greater than to, swap values to meet
1472  // UnionFind guarantee.
1473  if (updated_id > old_id) {
1474    lo_id = old_id;
1475    hi_id = updated_id;
1476
1477    // Fix up the trace ids
1478    traces[lo_id] = traces[updated_id];
1479    updated_trace->set_id(lo_id);
1480  }
1481
1482  // Union the lower with the higher and remove the pointer
1483  // to the higher.
1484  uf->Union(lo_id, hi_id);
1485  traces[hi_id] = NULL;
1486}
1487
1488// Append traces together via the most frequently executed edges
1489void PhaseBlockLayout::grow_traces() {
1490  // Order the edges, and drive the growth of Traces via the most
1491  // frequently executed edges.
1492  edges->sort(edge_order);
1493  for (int i = 0; i < edges->length(); i++) {
1494    CFGEdge *e = edges->at(i);
1495
1496    if (e->state() != CFGEdge::open) continue;
1497
1498    Block *src_block = e->from();
1499    Block *targ_block = e->to();
1500
1501    // Don't grow traces along backedges?
1502    if (!BlockLayoutRotateLoops) {
1503      if (targ_block->_rpo <= src_block->_rpo) {
1504        targ_block->set_loop_alignment(targ_block);
1505        continue;
1506      }
1507    }
1508
1509    Trace *src_trace = trace(src_block);
1510    Trace *targ_trace = trace(targ_block);
1511
1512    // If the edge in question can join two traces at their ends,
1513    // append one trace to the other.
1514   if (src_trace->last_block() == src_block) {
1515      if (src_trace == targ_trace) {
1516        e->set_state(CFGEdge::interior);
1517        if (targ_trace->backedge(e)) {
1518          // Reset i to catch any newly eligible edge
1519          // (Or we could remember the first "open" edge, and reset there)
1520          i = 0;
1521        }
1522      } else if (targ_trace->first_block() == targ_block) {
1523        e->set_state(CFGEdge::connected);
1524        src_trace->append(targ_trace);
1525        union_traces(src_trace, targ_trace);
1526      }
1527    }
1528  }
1529}
1530
1531// Embed one trace into another, if the fork or join points are sufficiently
1532// balanced.
1533void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1534  // Walk the edge list a another time, looking at unprocessed edges.
1535  // Fold in diamonds
1536  for (int i = 0; i < edges->length(); i++) {
1537    CFGEdge *e = edges->at(i);
1538
1539    if (e->state() != CFGEdge::open) continue;
1540    if (fall_thru_only) {
1541      if (e->infrequent()) continue;
1542    }
1543
1544    Block *src_block = e->from();
1545    Trace *src_trace = trace(src_block);
1546    bool src_at_tail = src_trace->last_block() == src_block;
1547
1548    Block *targ_block  = e->to();
1549    Trace *targ_trace  = trace(targ_block);
1550    bool targ_at_start = targ_trace->first_block() == targ_block;
1551
1552    if (src_trace == targ_trace) {
1553      // This may be a loop, but we can't do much about it.
1554      e->set_state(CFGEdge::interior);
1555      continue;
1556    }
1557
1558    if (fall_thru_only) {
1559      // If the edge links the middle of two traces, we can't do anything.
1560      // Mark the edge and continue.
1561      if (!src_at_tail & !targ_at_start) {
1562        continue;
1563      }
1564
1565      // Don't grow traces along backedges?
1566      if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1567          continue;
1568      }
1569
1570      // If both ends of the edge are available, why didn't we handle it earlier?
1571      assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1572
1573      if (targ_at_start) {
1574        // Insert the "targ" trace in the "src" trace if the insertion point
1575        // is a two way branch.
1576        // Better profitability check possible, but may not be worth it.
1577        // Someday, see if the this "fork" has an associated "join";
1578        // then make a policy on merging this trace at the fork or join.
1579        // For example, other things being equal, it may be better to place this
1580        // trace at the join point if the "src" trace ends in a two-way, but
1581        // the insertion point is one-way.
1582        assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1583        e->set_state(CFGEdge::connected);
1584        src_trace->insert_after(src_block, targ_trace);
1585        union_traces(src_trace, targ_trace);
1586      } else if (src_at_tail) {
1587        if (src_trace != trace(_cfg.get_root_block())) {
1588          e->set_state(CFGEdge::connected);
1589          targ_trace->insert_before(targ_block, src_trace);
1590          union_traces(targ_trace, src_trace);
1591        }
1592      }
1593    } else if (e->state() == CFGEdge::open) {
1594      // Append traces, even without a fall-thru connection.
1595      // But leave root entry at the beginning of the block list.
1596      if (targ_trace != trace(_cfg.get_root_block())) {
1597        e->set_state(CFGEdge::connected);
1598        src_trace->append(targ_trace);
1599        union_traces(src_trace, targ_trace);
1600      }
1601    }
1602  }
1603}
1604
1605// Order the sequence of the traces in some desirable way, and fixup the
1606// jumps at the end of each block.
1607void PhaseBlockLayout::reorder_traces(int count) {
1608  ResourceArea *area = Thread::current()->resource_area();
1609  Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1610  Block_List worklist;
1611  int new_count = 0;
1612
1613  // Compact the traces.
1614  for (int i = 0; i < count; i++) {
1615    Trace *tr = traces[i];
1616    if (tr != NULL) {
1617      new_traces[new_count++] = tr;
1618    }
1619  }
1620
1621  // The entry block should be first on the new trace list.
1622  Trace *tr = trace(_cfg.get_root_block());
1623  assert(tr == new_traces[0], "entry trace misplaced");
1624
1625  // Sort the new trace list by frequency
1626  qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1627
1628  // Patch up the successor blocks
1629  _cfg.clear_blocks();
1630  for (int i = 0; i < new_count; i++) {
1631    Trace *tr = new_traces[i];
1632    if (tr != NULL) {
1633      tr->fixup_blocks(_cfg);
1634    }
1635  }
1636}
1637
1638// Order basic blocks based on frequency
1639PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1640: Phase(BlockLayout)
1641, _cfg(cfg) {
1642  ResourceMark rm;
1643  ResourceArea *area = Thread::current()->resource_area();
1644
1645  // List of traces
1646  int size = _cfg.number_of_blocks() + 1;
1647  traces = NEW_ARENA_ARRAY(area, Trace *, size);
1648  memset(traces, 0, size*sizeof(Trace*));
1649  next = NEW_ARENA_ARRAY(area, Block *, size);
1650  memset(next,   0, size*sizeof(Block *));
1651  prev = NEW_ARENA_ARRAY(area, Block *, size);
1652  memset(prev  , 0, size*sizeof(Block *));
1653
1654  // List of edges
1655  edges = new GrowableArray<CFGEdge*>;
1656
1657  // Mapping block index --> block_trace
1658  uf = new UnionFind(size);
1659  uf->reset(size);
1660
1661  // Find edges and create traces.
1662  find_edges();
1663
1664  // Grow traces at their ends via most frequent edges.
1665  grow_traces();
1666
1667  // Merge one trace into another, but only at fall-through points.
1668  // This may make diamonds and other related shapes in a trace.
1669  merge_traces(true);
1670
1671  // Run merge again, allowing two traces to be catenated, even if
1672  // one does not fall through into the other. This appends loosely
1673  // related traces to be near each other.
1674  merge_traces(false);
1675
1676  // Re-order all the remaining traces by frequency
1677  reorder_traces(size);
1678
1679  assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1680}
1681
1682
1683// Edge e completes a loop in a trace. If the target block is head of the
1684// loop, rotate the loop block so that the loop ends in a conditional branch.
1685bool Trace::backedge(CFGEdge *e) {
1686  bool loop_rotated = false;
1687  Block *src_block  = e->from();
1688  Block *targ_block    = e->to();
1689
1690  assert(last_block() == src_block, "loop discovery at back branch");
1691  if (first_block() == targ_block) {
1692    if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1693      // Find the last block in the trace that has a conditional
1694      // branch.
1695      Block *b;
1696      for (b = last_block(); b != NULL; b = prev(b)) {
1697        if (b->num_fall_throughs() == 2) {
1698          break;
1699        }
1700      }
1701
1702      if (b != last_block() && b != NULL) {
1703        loop_rotated = true;
1704
1705        // Rotate the loop by doing two-part linked-list surgery.
1706        append(first_block());
1707        break_loop_after(b);
1708      }
1709    }
1710
1711    // Backbranch to the top of a trace
1712    // Scroll forward through the trace from the targ_block. If we find
1713    // a loop head before another loop top, use the the loop head alignment.
1714    for (Block *b = targ_block; b != NULL; b = next(b)) {
1715      if (b->has_loop_alignment()) {
1716        break;
1717      }
1718      if (b->head()->is_Loop()) {
1719        targ_block = b;
1720        break;
1721      }
1722    }
1723
1724    first_block()->set_loop_alignment(targ_block);
1725
1726  } else {
1727    // Backbranch into the middle of a trace
1728    targ_block->set_loop_alignment(targ_block);
1729  }
1730
1731  return loop_rotated;
1732}
1733
1734// push blocks onto the CFG list
1735// ensure that blocks have the correct two-way branch sense
1736void Trace::fixup_blocks(PhaseCFG &cfg) {
1737  Block *last = last_block();
1738  for (Block *b = first_block(); b != NULL; b = next(b)) {
1739    cfg.add_block(b);
1740    if (!b->is_connector()) {
1741      int nfallthru = b->num_fall_throughs();
1742      if (b != last) {
1743        if (nfallthru == 2) {
1744          // Ensure that the sense of the branch is correct
1745          Block *bnext = next(b);
1746          Block *bs0 = b->non_connector_successor(0);
1747
1748          MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1749          ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1750          ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1751
1752          if (bnext == bs0) {
1753            // Fall-thru case in succs[0], should be in succs[1]
1754
1755            // Flip targets in _succs map
1756            Block *tbs0 = b->_succs[0];
1757            Block *tbs1 = b->_succs[1];
1758            b->_succs.map( 0, tbs1 );
1759            b->_succs.map( 1, tbs0 );
1760
1761            // Flip projections to match targets
1762            b->map_node(proj1, b->number_of_nodes() - 2);
1763            b->map_node(proj0, b->number_of_nodes() - 1);
1764          }
1765        }
1766      }
1767    }
1768  }
1769}
1770