block.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/block.hpp"
29#include "opto/cfgnode.hpp"
30#include "opto/chaitin.hpp"
31#include "opto/loopnode.hpp"
32#include "opto/machnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/opcodes.hpp"
35#include "opto/rootnode.hpp"
36#include "utilities/copy.hpp"
37
38void Block_Array::grow( uint i ) {
39  assert(i >= Max(), "must be an overflow");
40  debug_only(_limit = i+1);
41  if( i < _size )  return;
42  if( !_size ) {
43    _size = 1;
44    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
45    _blocks[0] = NULL;
46  }
47  uint old = _size;
48  while( i >= _size ) _size <<= 1;      // Double to fit
49  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
50  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
51}
52
53void Block_List::remove(uint i) {
54  assert(i < _cnt, "index out of bounds");
55  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
56  pop(); // shrink list by one block
57}
58
59void Block_List::insert(uint i, Block *b) {
60  push(b); // grow list by one block
61  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
62  _blocks[i] = b;
63}
64
65#ifndef PRODUCT
66void Block_List::print() {
67  for (uint i=0; i < size(); i++) {
68    tty->print("B%d ", _blocks[i]->_pre_order);
69  }
70  tty->print("size = %d\n", size());
71}
72#endif
73
74uint Block::code_alignment() {
75  // Check for Root block
76  if (_pre_order == 0) return CodeEntryAlignment;
77  // Check for Start block
78  if (_pre_order == 1) return InteriorEntryAlignment;
79  // Check for loop alignment
80  if (has_loop_alignment()) return loop_alignment();
81
82  return relocInfo::addr_unit(); // no particular alignment
83}
84
85uint Block::compute_loop_alignment() {
86  Node *h = head();
87  int unit_sz = relocInfo::addr_unit();
88  if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
89    // Pre- and post-loops have low trip count so do not bother with
90    // NOPs for align loop head.  The constants are hidden from tuning
91    // but only because my "divide by 4" heuristic surely gets nearly
92    // all possible gain (a "do not align at all" heuristic has a
93    // chance of getting a really tiny gain).
94    if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
95                                h->as_CountedLoop()->is_post_loop())) {
96      return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
97    }
98    // Loops with low backedge frequency should not be aligned.
99    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
100    if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
101      return unit_sz; // Loop does not loop, more often than not!
102    }
103    return OptoLoopAlignment; // Otherwise align loop head
104  }
105
106  return unit_sz; // no particular alignment
107}
108
109// Compute the size of first 'inst_cnt' instructions in this block.
110// Return the number of instructions left to compute if the block has
111// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
112// exceeds OptoLoopAlignment.
113uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
114                                    PhaseRegAlloc* ra) {
115  uint last_inst = number_of_nodes();
116  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
117    uint inst_size = get_node(j)->size(ra);
118    if( inst_size > 0 ) {
119      inst_cnt--;
120      uint sz = sum_size + inst_size;
121      if( sz <= (uint)OptoLoopAlignment ) {
122        // Compute size of instructions which fit into fetch buffer only
123        // since all inst_cnt instructions will not fit even if we align them.
124        sum_size = sz;
125      } else {
126        return 0;
127      }
128    }
129  }
130  return inst_cnt;
131}
132
133uint Block::find_node( const Node *n ) const {
134  for( uint i = 0; i < number_of_nodes(); i++ ) {
135    if( get_node(i) == n )
136      return i;
137  }
138  ShouldNotReachHere();
139  return 0;
140}
141
142// Find and remove n from block list
143void Block::find_remove( const Node *n ) {
144  remove_node(find_node(n));
145}
146
147// Return empty status of a block.  Empty blocks contain only the head, other
148// ideal nodes, and an optional trailing goto.
149int Block::is_Empty() const {
150
151  // Root or start block is not considered empty
152  if (head()->is_Root() || head()->is_Start()) {
153    return not_empty;
154  }
155
156  int success_result = completely_empty;
157  int end_idx = number_of_nodes() - 1;
158
159  // Check for ending goto
160  if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
161    success_result = empty_with_goto;
162    end_idx--;
163  }
164
165  // Unreachable blocks are considered empty
166  if (num_preds() <= 1) {
167    return success_result;
168  }
169
170  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
171  // turn directly into code, because only MachNodes have non-trivial
172  // emit() functions.
173  while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
174    end_idx--;
175  }
176
177  // No room for any interesting instructions?
178  if (end_idx == 0) {
179    return success_result;
180  }
181
182  return not_empty;
183}
184
185// Return true if the block's code implies that it is likely to be
186// executed infrequently.  Check to see if the block ends in a Halt or
187// a low probability call.
188bool Block::has_uncommon_code() const {
189  Node* en = end();
190
191  if (en->is_MachGoto())
192    en = en->in(0);
193  if (en->is_Catch())
194    en = en->in(0);
195  if (en->is_MachProj() && en->in(0)->is_MachCall()) {
196    MachCallNode* call = en->in(0)->as_MachCall();
197    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
198      // This is true for slow-path stubs like new_{instance,array},
199      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
200      // The magic number corresponds to the probability of an uncommon_trap,
201      // even though it is a count not a probability.
202      return true;
203    }
204  }
205
206  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
207  return op == Op_Halt;
208}
209
210// True if block is low enough frequency or guarded by a test which
211// mostly does not go here.
212bool PhaseCFG::is_uncommon(const Block* block) {
213  // Initial blocks must never be moved, so are never uncommon.
214  if (block->head()->is_Root() || block->head()->is_Start())  return false;
215
216  // Check for way-low freq
217  if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
218
219  // Look for code shape indicating uncommon_trap or slow path
220  if (block->has_uncommon_code()) return true;
221
222  const float epsilon = 0.05f;
223  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
224  uint uncommon_preds = 0;
225  uint freq_preds = 0;
226  uint uncommon_for_freq_preds = 0;
227
228  for( uint i=1; i< block->num_preds(); i++ ) {
229    Block* guard = get_block_for_node(block->pred(i));
230    // Check to see if this block follows its guard 1 time out of 10000
231    // or less.
232    //
233    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
234    // we intend to be "uncommon", such as slow-path TLE allocation,
235    // predicted call failure, and uncommon trap triggers.
236    //
237    // Use an epsilon value of 5% to allow for variability in frequency
238    // predictions and floating point calculations. The net effect is
239    // that guard_factor is set to 9500.
240    //
241    // Ignore low-frequency blocks.
242    // The next check is (guard->_freq < 1.e-5 * 9500.).
243    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
244      uncommon_preds++;
245    } else {
246      freq_preds++;
247      if(block->_freq < guard->_freq * guard_factor ) {
248        uncommon_for_freq_preds++;
249      }
250    }
251  }
252  if( block->num_preds() > 1 &&
253      // The block is uncommon if all preds are uncommon or
254      (uncommon_preds == (block->num_preds()-1) ||
255      // it is uncommon for all frequent preds.
256       uncommon_for_freq_preds == freq_preds) ) {
257    return true;
258  }
259  return false;
260}
261
262#ifndef PRODUCT
263void Block::dump_bidx(const Block* orig, outputStream* st) const {
264  if (_pre_order) st->print("B%d",_pre_order);
265  else st->print("N%d", head()->_idx);
266
267  if (Verbose && orig != this) {
268    // Dump the original block's idx
269    st->print(" (");
270    orig->dump_bidx(orig, st);
271    st->print(")");
272  }
273}
274
275void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
276  if (is_connector()) {
277    for (uint i=1; i<num_preds(); i++) {
278      Block *p = cfg->get_block_for_node(pred(i));
279      p->dump_pred(cfg, orig, st);
280    }
281  } else {
282    dump_bidx(orig, st);
283    st->print(" ");
284  }
285}
286
287void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
288  // Print the basic block
289  dump_bidx(this, st);
290  st->print(": #\t");
291
292  // Print the incoming CFG edges and the outgoing CFG edges
293  for( uint i=0; i<_num_succs; i++ ) {
294    non_connector_successor(i)->dump_bidx(_succs[i], st);
295    st->print(" ");
296  }
297  st->print("<- ");
298  if( head()->is_block_start() ) {
299    for (uint i=1; i<num_preds(); i++) {
300      Node *s = pred(i);
301      if (cfg != NULL) {
302        Block *p = cfg->get_block_for_node(s);
303        p->dump_pred(cfg, p, st);
304      } else {
305        while (!s->is_block_start())
306          s = s->in(0);
307        st->print("N%d ", s->_idx );
308      }
309    }
310  } else {
311    st->print("BLOCK HEAD IS JUNK  ");
312  }
313
314  // Print loop, if any
315  const Block *bhead = this;    // Head of self-loop
316  Node *bh = bhead->head();
317
318  if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
319    LoopNode *loop = bh->as_Loop();
320    const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
321    while (bx->is_connector()) {
322      bx = cfg->get_block_for_node(bx->pred(1));
323    }
324    st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
325    // Dump any loop-specific bits, especially for CountedLoops.
326    loop->dump_spec(st);
327  } else if (has_loop_alignment()) {
328    st->print(" top-of-loop");
329  }
330  st->print(" Freq: %g",_freq);
331  if( Verbose || WizardMode ) {
332    st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
333    st->print(" RegPressure: %d",_reg_pressure);
334    st->print(" IHRP Index: %d",_ihrp_index);
335    st->print(" FRegPressure: %d",_freg_pressure);
336    st->print(" FHRP Index: %d",_fhrp_index);
337  }
338  st->print_cr("");
339}
340
341void Block::dump() const {
342  dump(NULL);
343}
344
345void Block::dump(const PhaseCFG* cfg) const {
346  dump_head(cfg);
347  for (uint i=0; i< number_of_nodes(); i++) {
348    get_node(i)->dump();
349  }
350  tty->print("\n");
351}
352#endif
353
354PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
355: Phase(CFG)
356, _block_arena(arena)
357, _root(root)
358, _matcher(matcher)
359, _node_to_block_mapping(arena)
360, _node_latency(NULL)
361#ifndef PRODUCT
362, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
363#endif
364#ifdef ASSERT
365, _raw_oops(arena)
366#endif
367{
368  ResourceMark rm;
369  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
370  // then Match it into a machine-specific Node.  Then clone the machine
371  // Node on demand.
372  Node *x = new (C) GotoNode(NULL);
373  x->init_req(0, x);
374  _goto = matcher.match_tree(x);
375  assert(_goto != NULL, "");
376  _goto->set_req(0,_goto);
377
378  // Build the CFG in Reverse Post Order
379  _number_of_blocks = build_cfg();
380  _root_block = get_block_for_node(_root);
381}
382
383// Build a proper looking CFG.  Make every block begin with either a StartNode
384// or a RegionNode.  Make every block end with either a Goto, If or Return.
385// The RootNode both starts and ends it's own block.  Do this with a recursive
386// backwards walk over the control edges.
387uint PhaseCFG::build_cfg() {
388  Arena *a = Thread::current()->resource_area();
389  VectorSet visited(a);
390
391  // Allocate stack with enough space to avoid frequent realloc
392  Node_Stack nstack(a, C->unique() >> 1);
393  nstack.push(_root, 0);
394  uint sum = 0;                 // Counter for blocks
395
396  while (nstack.is_nonempty()) {
397    // node and in's index from stack's top
398    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
399    // only nodes which point to the start of basic block (see below).
400    Node *np = nstack.node();
401    // idx > 0, except for the first node (_root) pushed on stack
402    // at the beginning when idx == 0.
403    // We will use the condition (idx == 0) later to end the build.
404    uint idx = nstack.index();
405    Node *proj = np->in(idx);
406    const Node *x = proj->is_block_proj();
407    // Does the block end with a proper block-ending Node?  One of Return,
408    // If or Goto? (This check should be done for visited nodes also).
409    if (x == NULL) {                    // Does not end right...
410      Node *g = _goto->clone(); // Force it to end in a Goto
411      g->set_req(0, proj);
412      np->set_req(idx, g);
413      x = proj = g;
414    }
415    if (!visited.test_set(x->_idx)) { // Visit this block once
416      // Skip any control-pinned middle'in stuff
417      Node *p = proj;
418      do {
419        proj = p;                   // Update pointer to last Control
420        p = p->in(0);               // Move control forward
421      } while( !p->is_block_proj() &&
422               !p->is_block_start() );
423      // Make the block begin with one of Region or StartNode.
424      if( !p->is_block_start() ) {
425        RegionNode *r = new (C) RegionNode( 2 );
426        r->init_req(1, p);         // Insert RegionNode in the way
427        proj->set_req(0, r);        // Insert RegionNode in the way
428        p = r;
429      }
430      // 'p' now points to the start of this basic block
431
432      // Put self in array of basic blocks
433      Block *bb = new (_block_arena) Block(_block_arena, p);
434      map_node_to_block(p, bb);
435      map_node_to_block(x, bb);
436      if( x != p ) {                // Only for root is x == p
437        bb->push_node((Node*)x);
438      }
439      // Now handle predecessors
440      ++sum;                        // Count 1 for self block
441      uint cnt = bb->num_preds();
442      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
443        Node *prevproj = p->in(i);  // Get prior input
444        assert( !prevproj->is_Con(), "dead input not removed" );
445        // Check to see if p->in(i) is a "control-dependent" CFG edge -
446        // i.e., it splits at the source (via an IF or SWITCH) and merges
447        // at the destination (via a many-input Region).
448        // This breaks critical edges.  The RegionNode to start the block
449        // will be added when <p,i> is pulled off the node stack
450        if ( cnt > 2 ) {             // Merging many things?
451          assert( prevproj== bb->pred(i),"");
452          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
453            // Force a block on the control-dependent edge
454            Node *g = _goto->clone();       // Force it to end in a Goto
455            g->set_req(0,prevproj);
456            p->set_req(i,g);
457          }
458        }
459        nstack.push(p, i);  // 'p' is RegionNode or StartNode
460      }
461    } else { // Post-processing visited nodes
462      nstack.pop();                 // remove node from stack
463      // Check if it the fist node pushed on stack at the beginning.
464      if (idx == 0) break;          // end of the build
465      // Find predecessor basic block
466      Block *pb = get_block_for_node(x);
467      // Insert into nodes array, if not already there
468      if (!has_block(proj)) {
469        assert( x != proj, "" );
470        // Map basic block of projection
471        map_node_to_block(proj, pb);
472        pb->push_node(proj);
473      }
474      // Insert self as a child of my predecessor block
475      pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
476      assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
477              "too many control users, not a CFG?" );
478    }
479  }
480  // Return number of basic blocks for all children and self
481  return sum;
482}
483
484// Inserts a goto & corresponding basic block between
485// block[block_no] and its succ_no'th successor block
486void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
487  // get block with block_no
488  assert(block_no < number_of_blocks(), "illegal block number");
489  Block* in  = get_block(block_no);
490  // get successor block succ_no
491  assert(succ_no < in->_num_succs, "illegal successor number");
492  Block* out = in->_succs[succ_no];
493  // Compute frequency of the new block. Do this before inserting
494  // new block in case succ_prob() needs to infer the probability from
495  // surrounding blocks.
496  float freq = in->_freq * in->succ_prob(succ_no);
497  // get ProjNode corresponding to the succ_no'th successor of the in block
498  ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
499  // create region for basic block
500  RegionNode* region = new (C) RegionNode(2);
501  region->init_req(1, proj);
502  // setup corresponding basic block
503  Block* block = new (_block_arena) Block(_block_arena, region);
504  map_node_to_block(region, block);
505  C->regalloc()->set_bad(region->_idx);
506  // add a goto node
507  Node* gto = _goto->clone(); // get a new goto node
508  gto->set_req(0, region);
509  // add it to the basic block
510  block->push_node(gto);
511  map_node_to_block(gto, block);
512  C->regalloc()->set_bad(gto->_idx);
513  // hook up successor block
514  block->_succs.map(block->_num_succs++, out);
515  // remap successor's predecessors if necessary
516  for (uint i = 1; i < out->num_preds(); i++) {
517    if (out->pred(i) == proj) out->head()->set_req(i, gto);
518  }
519  // remap predecessor's successor to new block
520  in->_succs.map(succ_no, block);
521  // Set the frequency of the new block
522  block->_freq = freq;
523  // add new basic block to basic block list
524  add_block_at(block_no + 1, block);
525}
526
527// Does this block end in a multiway branch that cannot have the default case
528// flipped for another case?
529static bool no_flip_branch( Block *b ) {
530  int branch_idx = b->number_of_nodes() - b->_num_succs-1;
531  if( branch_idx < 1 ) return false;
532  Node *bra = b->get_node(branch_idx);
533  if( bra->is_Catch() )
534    return true;
535  if( bra->is_Mach() ) {
536    if( bra->is_MachNullCheck() )
537      return true;
538    int iop = bra->as_Mach()->ideal_Opcode();
539    if( iop == Op_FastLock || iop == Op_FastUnlock )
540      return true;
541  }
542  return false;
543}
544
545// Check for NeverBranch at block end.  This needs to become a GOTO to the
546// true target.  NeverBranch are treated as a conditional branch that always
547// goes the same direction for most of the optimizer and are used to give a
548// fake exit path to infinite loops.  At this late stage they need to turn
549// into Goto's so that when you enter the infinite loop you indeed hang.
550void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
551  // Find true target
552  int end_idx = b->end_idx();
553  int idx = b->get_node(end_idx+1)->as_Proj()->_con;
554  Block *succ = b->_succs[idx];
555  Node* gto = _goto->clone(); // get a new goto node
556  gto->set_req(0, b->head());
557  Node *bp = b->get_node(end_idx);
558  b->map_node(gto, end_idx); // Slam over NeverBranch
559  map_node_to_block(gto, b);
560  C->regalloc()->set_bad(gto->_idx);
561  b->pop_node();              // Yank projections
562  b->pop_node();              // Yank projections
563  b->_succs.map(0,succ);        // Map only successor
564  b->_num_succs = 1;
565  // remap successor's predecessors if necessary
566  uint j;
567  for( j = 1; j < succ->num_preds(); j++)
568    if( succ->pred(j)->in(0) == bp )
569      succ->head()->set_req(j, gto);
570  // Kill alternate exit path
571  Block *dead = b->_succs[1-idx];
572  for( j = 1; j < dead->num_preds(); j++)
573    if( dead->pred(j)->in(0) == bp )
574      break;
575  // Scan through block, yanking dead path from
576  // all regions and phis.
577  dead->head()->del_req(j);
578  for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
579    dead->get_node(k)->del_req(j);
580}
581
582// Helper function to move block bx to the slot following b_index. Return
583// true if the move is successful, otherwise false
584bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
585  if (bx == NULL) return false;
586
587  // Return false if bx is already scheduled.
588  uint bx_index = bx->_pre_order;
589  if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
590    return false;
591  }
592
593  // Find the current index of block bx on the block list
594  bx_index = b_index + 1;
595  while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
596    bx_index++;
597  }
598  assert(get_block(bx_index) == bx, "block not found");
599
600  // If the previous block conditionally falls into bx, return false,
601  // because moving bx will create an extra jump.
602  for(uint k = 1; k < bx->num_preds(); k++ ) {
603    Block* pred = get_block_for_node(bx->pred(k));
604    if (pred == get_block(bx_index - 1)) {
605      if (pred->_num_succs != 1) {
606        return false;
607      }
608    }
609  }
610
611  // Reinsert bx just past block 'b'
612  _blocks.remove(bx_index);
613  _blocks.insert(b_index + 1, bx);
614  return true;
615}
616
617// Move empty and uncommon blocks to the end.
618void PhaseCFG::move_to_end(Block *b, uint i) {
619  int e = b->is_Empty();
620  if (e != Block::not_empty) {
621    if (e == Block::empty_with_goto) {
622      // Remove the goto, but leave the block.
623      b->pop_node();
624    }
625    // Mark this block as a connector block, which will cause it to be
626    // ignored in certain functions such as non_connector_successor().
627    b->set_connector();
628  }
629  // Move the empty block to the end, and don't recheck.
630  _blocks.remove(i);
631  _blocks.push(b);
632}
633
634// Set loop alignment for every block
635void PhaseCFG::set_loop_alignment() {
636  uint last = number_of_blocks();
637  assert(get_block(0) == get_root_block(), "");
638
639  for (uint i = 1; i < last; i++) {
640    Block* block = get_block(i);
641    if (block->head()->is_Loop()) {
642      block->set_loop_alignment(block);
643    }
644  }
645}
646
647// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
648// to the end.
649void PhaseCFG::remove_empty_blocks() {
650  // Move uncommon blocks to the end
651  uint last = number_of_blocks();
652  assert(get_block(0) == get_root_block(), "");
653
654  for (uint i = 1; i < last; i++) {
655    Block* block = get_block(i);
656    if (block->is_connector()) {
657      break;
658    }
659
660    // Check for NeverBranch at block end.  This needs to become a GOTO to the
661    // true target.  NeverBranch are treated as a conditional branch that
662    // always goes the same direction for most of the optimizer and are used
663    // to give a fake exit path to infinite loops.  At this late stage they
664    // need to turn into Goto's so that when you enter the infinite loop you
665    // indeed hang.
666    if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
667      convert_NeverBranch_to_Goto(block);
668    }
669
670    // Look for uncommon blocks and move to end.
671    if (!C->do_freq_based_layout()) {
672      if (is_uncommon(block)) {
673        move_to_end(block, i);
674        last--;                   // No longer check for being uncommon!
675        if (no_flip_branch(block)) { // Fall-thru case must follow?
676          // Find the fall-thru block
677          block = get_block(i);
678          move_to_end(block, i);
679          last--;
680        }
681        // backup block counter post-increment
682        i--;
683      }
684    }
685  }
686
687  // Move empty blocks to the end
688  last = number_of_blocks();
689  for (uint i = 1; i < last; i++) {
690    Block* block = get_block(i);
691    if (block->is_Empty() != Block::not_empty) {
692      move_to_end(block, i);
693      last--;
694      i--;
695    }
696  } // End of for all blocks
697}
698
699// Fix up the final control flow for basic blocks.
700void PhaseCFG::fixup_flow() {
701  // Fixup final control flow for the blocks.  Remove jump-to-next
702  // block.  If neither arm of a IF follows the conditional branch, we
703  // have to add a second jump after the conditional.  We place the
704  // TRUE branch target in succs[0] for both GOTOs and IFs.
705  for (uint i = 0; i < number_of_blocks(); i++) {
706    Block* block = get_block(i);
707    block->_pre_order = i;          // turn pre-order into block-index
708
709    // Connector blocks need no further processing.
710    if (block->is_connector()) {
711      assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
712      continue;
713    }
714    assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
715
716    Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
717    Block* bs0 = block->non_connector_successor(0);
718
719    // Check for multi-way branches where I cannot negate the test to
720    // exchange the true and false targets.
721    if (no_flip_branch(block)) {
722      // Find fall through case - if must fall into its target
723      int branch_idx = block->number_of_nodes() - block->_num_succs;
724      for (uint j2 = 0; j2 < block->_num_succs; j2++) {
725        const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
726        if (p->_con == 0) {
727          // successor j2 is fall through case
728          if (block->non_connector_successor(j2) != bnext) {
729            // but it is not the next block => insert a goto
730            insert_goto_at(i, j2);
731          }
732          // Put taken branch in slot 0
733          if (j2 == 0 && block->_num_succs == 2) {
734            // Flip targets in succs map
735            Block *tbs0 = block->_succs[0];
736            Block *tbs1 = block->_succs[1];
737            block->_succs.map(0, tbs1);
738            block->_succs.map(1, tbs0);
739          }
740          break;
741        }
742      }
743
744      // Remove all CatchProjs
745      for (uint j = 0; j < block->_num_succs; j++) {
746        block->pop_node();
747      }
748
749    } else if (block->_num_succs == 1) {
750      // Block ends in a Goto?
751      if (bnext == bs0) {
752        // We fall into next block; remove the Goto
753        block->pop_node();
754      }
755
756    } else if(block->_num_succs == 2) { // Block ends in a If?
757      // Get opcode of 1st projection (matches _succs[0])
758      // Note: Since this basic block has 2 exits, the last 2 nodes must
759      //       be projections (in any order), the 3rd last node must be
760      //       the IfNode (we have excluded other 2-way exits such as
761      //       CatchNodes already).
762      MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
763      ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
764      ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
765
766      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
767      assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
768      assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
769
770      Block* bs1 = block->non_connector_successor(1);
771
772      // Check for neither successor block following the current
773      // block ending in a conditional. If so, move one of the
774      // successors after the current one, provided that the
775      // successor was previously unscheduled, but moveable
776      // (i.e., all paths to it involve a branch).
777      if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
778        // Choose the more common successor based on the probability
779        // of the conditional branch.
780        Block* bx = bs0;
781        Block* by = bs1;
782
783        // _prob is the probability of taking the true path. Make
784        // p the probability of taking successor #1.
785        float p = iff->as_MachIf()->_prob;
786        if (proj0->Opcode() == Op_IfTrue) {
787          p = 1.0 - p;
788        }
789
790        // Prefer successor #1 if p > 0.5
791        if (p > PROB_FAIR) {
792          bx = bs1;
793          by = bs0;
794        }
795
796        // Attempt the more common successor first
797        if (move_to_next(bx, i)) {
798          bnext = bx;
799        } else if (move_to_next(by, i)) {
800          bnext = by;
801        }
802      }
803
804      // Check for conditional branching the wrong way.  Negate
805      // conditional, if needed, so it falls into the following block
806      // and branches to the not-following block.
807
808      // Check for the next block being in succs[0].  We are going to branch
809      // to succs[0], so we want the fall-thru case as the next block in
810      // succs[1].
811      if (bnext == bs0) {
812        // Fall-thru case in succs[0], so flip targets in succs map
813        Block* tbs0 = block->_succs[0];
814        Block* tbs1 = block->_succs[1];
815        block->_succs.map(0, tbs1);
816        block->_succs.map(1, tbs0);
817        // Flip projection for each target
818        ProjNode* tmp = proj0;
819        proj0 = proj1;
820        proj1 = tmp;
821
822      } else if(bnext != bs1) {
823        // Need a double-branch
824        // The existing conditional branch need not change.
825        // Add a unconditional branch to the false target.
826        // Alas, it must appear in its own block and adding a
827        // block this late in the game is complicated.  Sigh.
828        insert_goto_at(i, 1);
829      }
830
831      // Make sure we TRUE branch to the target
832      if (proj0->Opcode() == Op_IfFalse) {
833        iff->as_MachIf()->negate();
834      }
835
836      block->pop_node();          // Remove IfFalse & IfTrue projections
837      block->pop_node();
838
839    } else {
840      // Multi-exit block, e.g. a switch statement
841      // But we don't need to do anything here
842    }
843  } // End of for all blocks
844}
845
846
847#ifndef PRODUCT
848void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
849  const Node *x = end->is_block_proj();
850  assert( x, "not a CFG" );
851
852  // Do not visit this block again
853  if( visited.test_set(x->_idx) ) return;
854
855  // Skip through this block
856  const Node *p = x;
857  do {
858    p = p->in(0);               // Move control forward
859    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
860  } while( !p->is_block_start() );
861
862  // Recursively visit
863  for (uint i = 1; i < p->req(); i++) {
864    _dump_cfg(p->in(i), visited);
865  }
866
867  // Dump the block
868  get_block_for_node(p)->dump(this);
869}
870
871void PhaseCFG::dump( ) const {
872  tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
873  if (_blocks.size()) {        // Did we do basic-block layout?
874    for (uint i = 0; i < number_of_blocks(); i++) {
875      const Block* block = get_block(i);
876      block->dump(this);
877    }
878  } else {                      // Else do it with a DFS
879    VectorSet visited(_block_arena);
880    _dump_cfg(_root,visited);
881  }
882}
883
884void PhaseCFG::dump_headers() {
885  for (uint i = 0; i < number_of_blocks(); i++) {
886    Block* block = get_block(i);
887    if (block != NULL) {
888      block->dump_head(this);
889    }
890  }
891}
892
893void PhaseCFG::verify() const {
894#ifdef ASSERT
895  // Verify sane CFG
896  for (uint i = 0; i < number_of_blocks(); i++) {
897    Block* block = get_block(i);
898    uint cnt = block->number_of_nodes();
899    uint j;
900    for (j = 0; j < cnt; j++)  {
901      Node *n = block->get_node(j);
902      assert(get_block_for_node(n) == block, "");
903      if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
904        assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
905      }
906      for (uint k = 0; k < n->req(); k++) {
907        Node *def = n->in(k);
908        if (def && def != n) {
909          assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
910          // Verify that instructions in the block is in correct order.
911          // Uses must follow their definition if they are at the same block.
912          // Mostly done to check that MachSpillCopy nodes are placed correctly
913          // when CreateEx node is moved in build_ifg_physical().
914          if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
915              // See (+++) comment in reg_split.cpp
916              !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
917            bool is_loop = false;
918            if (n->is_Phi()) {
919              for (uint l = 1; l < def->req(); l++) {
920                if (n == def->in(l)) {
921                  is_loop = true;
922                  break; // Some kind of loop
923                }
924              }
925            }
926            assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
927          }
928        }
929      }
930    }
931
932    j = block->end_idx();
933    Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
934    assert(bp, "last instruction must be a block proj");
935    assert(bp == block->get_node(j), "wrong number of successors for this block");
936    if (bp->is_Catch()) {
937      while (block->get_node(--j)->is_MachProj()) {
938        ;
939      }
940      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
941    } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
942      assert(block->_num_succs == 2, "Conditional branch must have two targets");
943    }
944  }
945#endif
946}
947#endif
948
949UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
950  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
951}
952
953void UnionFind::extend( uint from_idx, uint to_idx ) {
954  _nesting.check();
955  if( from_idx >= _max ) {
956    uint size = 16;
957    while( size <= from_idx ) size <<=1;
958    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
959    _max = size;
960  }
961  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
962  _indices[from_idx] = to_idx;
963}
964
965void UnionFind::reset( uint max ) {
966  assert( max <= max_uint, "Must fit within uint" );
967  // Force the Union-Find mapping to be at least this large
968  extend(max,0);
969  // Initialize to be the ID mapping.
970  for( uint i=0; i<max; i++ ) map(i,i);
971}
972
973// Straight out of Tarjan's union-find algorithm
974uint UnionFind::Find_compress( uint idx ) {
975  uint cur  = idx;
976  uint next = lookup(cur);
977  while( next != cur ) {        // Scan chain of equivalences
978    assert( next < cur, "always union smaller" );
979    cur = next;                 // until find a fixed-point
980    next = lookup(cur);
981  }
982  // Core of union-find algorithm: update chain of
983  // equivalences to be equal to the root.
984  while( idx != next ) {
985    uint tmp = lookup(idx);
986    map(idx, next);
987    idx = tmp;
988  }
989  return idx;
990}
991
992// Like Find above, but no path compress, so bad asymptotic behavior
993uint UnionFind::Find_const( uint idx ) const {
994  if( idx == 0 ) return idx;    // Ignore the zero idx
995  // Off the end?  This can happen during debugging dumps
996  // when data structures have not finished being updated.
997  if( idx >= _max ) return idx;
998  uint next = lookup(idx);
999  while( next != idx ) {        // Scan chain of equivalences
1000    idx = next;                 // until find a fixed-point
1001    next = lookup(idx);
1002  }
1003  return next;
1004}
1005
1006// union 2 sets together.
1007void UnionFind::Union( uint idx1, uint idx2 ) {
1008  uint src = Find(idx1);
1009  uint dst = Find(idx2);
1010  assert( src, "" );
1011  assert( dst, "" );
1012  assert( src < _max, "oob" );
1013  assert( dst < _max, "oob" );
1014  assert( src < dst, "always union smaller" );
1015  map(dst,src);
1016}
1017
1018#ifndef PRODUCT
1019void Trace::dump( ) const {
1020  tty->print_cr("Trace (freq %f)", first_block()->_freq);
1021  for (Block *b = first_block(); b != NULL; b = next(b)) {
1022    tty->print("  B%d", b->_pre_order);
1023    if (b->head()->is_Loop()) {
1024      tty->print(" (L%d)", b->compute_loop_alignment());
1025    }
1026    if (b->has_loop_alignment()) {
1027      tty->print(" (T%d)", b->code_alignment());
1028    }
1029  }
1030  tty->cr();
1031}
1032
1033void CFGEdge::dump( ) const {
1034  tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1035             from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1036  switch(state()) {
1037  case connected:
1038    tty->print("connected");
1039    break;
1040  case open:
1041    tty->print("open");
1042    break;
1043  case interior:
1044    tty->print("interior");
1045    break;
1046  }
1047  if (infrequent()) {
1048    tty->print("  infrequent");
1049  }
1050  tty->cr();
1051}
1052#endif
1053
1054// Comparison function for edges
1055static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1056  float freq0 = (*e0)->freq();
1057  float freq1 = (*e1)->freq();
1058  if (freq0 != freq1) {
1059    return freq0 > freq1 ? -1 : 1;
1060  }
1061
1062  int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1063  int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1064
1065  return dist1 - dist0;
1066}
1067
1068// Comparison function for edges
1069extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1070  Trace *tr0 = *(Trace **) p0;
1071  Trace *tr1 = *(Trace **) p1;
1072  Block *b0 = tr0->first_block();
1073  Block *b1 = tr1->first_block();
1074
1075  // The trace of connector blocks goes at the end;
1076  // we only expect one such trace
1077  if (b0->is_connector() != b1->is_connector()) {
1078    return b1->is_connector() ? -1 : 1;
1079  }
1080
1081  // Pull more frequently executed blocks to the beginning
1082  float freq0 = b0->_freq;
1083  float freq1 = b1->_freq;
1084  if (freq0 != freq1) {
1085    return freq0 > freq1 ? -1 : 1;
1086  }
1087
1088  int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1089
1090  return diff;
1091}
1092
1093// Find edges of interest, i.e, those which can fall through. Presumes that
1094// edges which don't fall through are of low frequency and can be generally
1095// ignored.  Initialize the list of traces.
1096void PhaseBlockLayout::find_edges() {
1097  // Walk the blocks, creating edges and Traces
1098  uint i;
1099  Trace *tr = NULL;
1100  for (i = 0; i < _cfg.number_of_blocks(); i++) {
1101    Block* b = _cfg.get_block(i);
1102    tr = new Trace(b, next, prev);
1103    traces[tr->id()] = tr;
1104
1105    // All connector blocks should be at the end of the list
1106    if (b->is_connector()) break;
1107
1108    // If this block and the next one have a one-to-one successor
1109    // predecessor relationship, simply append the next block
1110    int nfallthru = b->num_fall_throughs();
1111    while (nfallthru == 1 &&
1112           b->succ_fall_through(0)) {
1113      Block *n = b->_succs[0];
1114
1115      // Skip over single-entry connector blocks, we don't want to
1116      // add them to the trace.
1117      while (n->is_connector() && n->num_preds() == 1) {
1118        n = n->_succs[0];
1119      }
1120
1121      // We see a merge point, so stop search for the next block
1122      if (n->num_preds() != 1) break;
1123
1124      i++;
1125      assert(n = _cfg.get_block(i), "expecting next block");
1126      tr->append(n);
1127      uf->map(n->_pre_order, tr->id());
1128      traces[n->_pre_order] = NULL;
1129      nfallthru = b->num_fall_throughs();
1130      b = n;
1131    }
1132
1133    if (nfallthru > 0) {
1134      // Create a CFGEdge for each outgoing
1135      // edge that could be a fall-through.
1136      for (uint j = 0; j < b->_num_succs; j++ ) {
1137        if (b->succ_fall_through(j)) {
1138          Block *target = b->non_connector_successor(j);
1139          float freq = b->_freq * b->succ_prob(j);
1140          int from_pct = (int) ((100 * freq) / b->_freq);
1141          int to_pct = (int) ((100 * freq) / target->_freq);
1142          edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1143        }
1144      }
1145    }
1146  }
1147
1148  // Group connector blocks into one trace
1149  for (i++; i < _cfg.number_of_blocks(); i++) {
1150    Block *b = _cfg.get_block(i);
1151    assert(b->is_connector(), "connector blocks at the end");
1152    tr->append(b);
1153    uf->map(b->_pre_order, tr->id());
1154    traces[b->_pre_order] = NULL;
1155  }
1156}
1157
1158// Union two traces together in uf, and null out the trace in the list
1159void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1160  uint old_id = old_trace->id();
1161  uint updated_id = updated_trace->id();
1162
1163  uint lo_id = updated_id;
1164  uint hi_id = old_id;
1165
1166  // If from is greater than to, swap values to meet
1167  // UnionFind guarantee.
1168  if (updated_id > old_id) {
1169    lo_id = old_id;
1170    hi_id = updated_id;
1171
1172    // Fix up the trace ids
1173    traces[lo_id] = traces[updated_id];
1174    updated_trace->set_id(lo_id);
1175  }
1176
1177  // Union the lower with the higher and remove the pointer
1178  // to the higher.
1179  uf->Union(lo_id, hi_id);
1180  traces[hi_id] = NULL;
1181}
1182
1183// Append traces together via the most frequently executed edges
1184void PhaseBlockLayout::grow_traces() {
1185  // Order the edges, and drive the growth of Traces via the most
1186  // frequently executed edges.
1187  edges->sort(edge_order);
1188  for (int i = 0; i < edges->length(); i++) {
1189    CFGEdge *e = edges->at(i);
1190
1191    if (e->state() != CFGEdge::open) continue;
1192
1193    Block *src_block = e->from();
1194    Block *targ_block = e->to();
1195
1196    // Don't grow traces along backedges?
1197    if (!BlockLayoutRotateLoops) {
1198      if (targ_block->_rpo <= src_block->_rpo) {
1199        targ_block->set_loop_alignment(targ_block);
1200        continue;
1201      }
1202    }
1203
1204    Trace *src_trace = trace(src_block);
1205    Trace *targ_trace = trace(targ_block);
1206
1207    // If the edge in question can join two traces at their ends,
1208    // append one trace to the other.
1209   if (src_trace->last_block() == src_block) {
1210      if (src_trace == targ_trace) {
1211        e->set_state(CFGEdge::interior);
1212        if (targ_trace->backedge(e)) {
1213          // Reset i to catch any newly eligible edge
1214          // (Or we could remember the first "open" edge, and reset there)
1215          i = 0;
1216        }
1217      } else if (targ_trace->first_block() == targ_block) {
1218        e->set_state(CFGEdge::connected);
1219        src_trace->append(targ_trace);
1220        union_traces(src_trace, targ_trace);
1221      }
1222    }
1223  }
1224}
1225
1226// Embed one trace into another, if the fork or join points are sufficiently
1227// balanced.
1228void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1229  // Walk the edge list a another time, looking at unprocessed edges.
1230  // Fold in diamonds
1231  for (int i = 0; i < edges->length(); i++) {
1232    CFGEdge *e = edges->at(i);
1233
1234    if (e->state() != CFGEdge::open) continue;
1235    if (fall_thru_only) {
1236      if (e->infrequent()) continue;
1237    }
1238
1239    Block *src_block = e->from();
1240    Trace *src_trace = trace(src_block);
1241    bool src_at_tail = src_trace->last_block() == src_block;
1242
1243    Block *targ_block  = e->to();
1244    Trace *targ_trace  = trace(targ_block);
1245    bool targ_at_start = targ_trace->first_block() == targ_block;
1246
1247    if (src_trace == targ_trace) {
1248      // This may be a loop, but we can't do much about it.
1249      e->set_state(CFGEdge::interior);
1250      continue;
1251    }
1252
1253    if (fall_thru_only) {
1254      // If the edge links the middle of two traces, we can't do anything.
1255      // Mark the edge and continue.
1256      if (!src_at_tail & !targ_at_start) {
1257        continue;
1258      }
1259
1260      // Don't grow traces along backedges?
1261      if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1262          continue;
1263      }
1264
1265      // If both ends of the edge are available, why didn't we handle it earlier?
1266      assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1267
1268      if (targ_at_start) {
1269        // Insert the "targ" trace in the "src" trace if the insertion point
1270        // is a two way branch.
1271        // Better profitability check possible, but may not be worth it.
1272        // Someday, see if the this "fork" has an associated "join";
1273        // then make a policy on merging this trace at the fork or join.
1274        // For example, other things being equal, it may be better to place this
1275        // trace at the join point if the "src" trace ends in a two-way, but
1276        // the insertion point is one-way.
1277        assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1278        e->set_state(CFGEdge::connected);
1279        src_trace->insert_after(src_block, targ_trace);
1280        union_traces(src_trace, targ_trace);
1281      } else if (src_at_tail) {
1282        if (src_trace != trace(_cfg.get_root_block())) {
1283          e->set_state(CFGEdge::connected);
1284          targ_trace->insert_before(targ_block, src_trace);
1285          union_traces(targ_trace, src_trace);
1286        }
1287      }
1288    } else if (e->state() == CFGEdge::open) {
1289      // Append traces, even without a fall-thru connection.
1290      // But leave root entry at the beginning of the block list.
1291      if (targ_trace != trace(_cfg.get_root_block())) {
1292        e->set_state(CFGEdge::connected);
1293        src_trace->append(targ_trace);
1294        union_traces(src_trace, targ_trace);
1295      }
1296    }
1297  }
1298}
1299
1300// Order the sequence of the traces in some desirable way, and fixup the
1301// jumps at the end of each block.
1302void PhaseBlockLayout::reorder_traces(int count) {
1303  ResourceArea *area = Thread::current()->resource_area();
1304  Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1305  Block_List worklist;
1306  int new_count = 0;
1307
1308  // Compact the traces.
1309  for (int i = 0; i < count; i++) {
1310    Trace *tr = traces[i];
1311    if (tr != NULL) {
1312      new_traces[new_count++] = tr;
1313    }
1314  }
1315
1316  // The entry block should be first on the new trace list.
1317  Trace *tr = trace(_cfg.get_root_block());
1318  assert(tr == new_traces[0], "entry trace misplaced");
1319
1320  // Sort the new trace list by frequency
1321  qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1322
1323  // Patch up the successor blocks
1324  _cfg.clear_blocks();
1325  for (int i = 0; i < new_count; i++) {
1326    Trace *tr = new_traces[i];
1327    if (tr != NULL) {
1328      tr->fixup_blocks(_cfg);
1329    }
1330  }
1331}
1332
1333// Order basic blocks based on frequency
1334PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1335: Phase(BlockLayout)
1336, _cfg(cfg) {
1337  ResourceMark rm;
1338  ResourceArea *area = Thread::current()->resource_area();
1339
1340  // List of traces
1341  int size = _cfg.number_of_blocks() + 1;
1342  traces = NEW_ARENA_ARRAY(area, Trace *, size);
1343  memset(traces, 0, size*sizeof(Trace*));
1344  next = NEW_ARENA_ARRAY(area, Block *, size);
1345  memset(next,   0, size*sizeof(Block *));
1346  prev = NEW_ARENA_ARRAY(area, Block *, size);
1347  memset(prev  , 0, size*sizeof(Block *));
1348
1349  // List of edges
1350  edges = new GrowableArray<CFGEdge*>;
1351
1352  // Mapping block index --> block_trace
1353  uf = new UnionFind(size);
1354  uf->reset(size);
1355
1356  // Find edges and create traces.
1357  find_edges();
1358
1359  // Grow traces at their ends via most frequent edges.
1360  grow_traces();
1361
1362  // Merge one trace into another, but only at fall-through points.
1363  // This may make diamonds and other related shapes in a trace.
1364  merge_traces(true);
1365
1366  // Run merge again, allowing two traces to be catenated, even if
1367  // one does not fall through into the other. This appends loosely
1368  // related traces to be near each other.
1369  merge_traces(false);
1370
1371  // Re-order all the remaining traces by frequency
1372  reorder_traces(size);
1373
1374  assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1375}
1376
1377
1378// Edge e completes a loop in a trace. If the target block is head of the
1379// loop, rotate the loop block so that the loop ends in a conditional branch.
1380bool Trace::backedge(CFGEdge *e) {
1381  bool loop_rotated = false;
1382  Block *src_block  = e->from();
1383  Block *targ_block    = e->to();
1384
1385  assert(last_block() == src_block, "loop discovery at back branch");
1386  if (first_block() == targ_block) {
1387    if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1388      // Find the last block in the trace that has a conditional
1389      // branch.
1390      Block *b;
1391      for (b = last_block(); b != NULL; b = prev(b)) {
1392        if (b->num_fall_throughs() == 2) {
1393          break;
1394        }
1395      }
1396
1397      if (b != last_block() && b != NULL) {
1398        loop_rotated = true;
1399
1400        // Rotate the loop by doing two-part linked-list surgery.
1401        append(first_block());
1402        break_loop_after(b);
1403      }
1404    }
1405
1406    // Backbranch to the top of a trace
1407    // Scroll forward through the trace from the targ_block. If we find
1408    // a loop head before another loop top, use the the loop head alignment.
1409    for (Block *b = targ_block; b != NULL; b = next(b)) {
1410      if (b->has_loop_alignment()) {
1411        break;
1412      }
1413      if (b->head()->is_Loop()) {
1414        targ_block = b;
1415        break;
1416      }
1417    }
1418
1419    first_block()->set_loop_alignment(targ_block);
1420
1421  } else {
1422    // Backbranch into the middle of a trace
1423    targ_block->set_loop_alignment(targ_block);
1424  }
1425
1426  return loop_rotated;
1427}
1428
1429// push blocks onto the CFG list
1430// ensure that blocks have the correct two-way branch sense
1431void Trace::fixup_blocks(PhaseCFG &cfg) {
1432  Block *last = last_block();
1433  for (Block *b = first_block(); b != NULL; b = next(b)) {
1434    cfg.add_block(b);
1435    if (!b->is_connector()) {
1436      int nfallthru = b->num_fall_throughs();
1437      if (b != last) {
1438        if (nfallthru == 2) {
1439          // Ensure that the sense of the branch is correct
1440          Block *bnext = next(b);
1441          Block *bs0 = b->non_connector_successor(0);
1442
1443          MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1444          ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1445          ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1446
1447          if (bnext == bs0) {
1448            // Fall-thru case in succs[0], should be in succs[1]
1449
1450            // Flip targets in _succs map
1451            Block *tbs0 = b->_succs[0];
1452            Block *tbs1 = b->_succs[1];
1453            b->_succs.map( 0, tbs1 );
1454            b->_succs.map( 1, tbs0 );
1455
1456            // Flip projections to match targets
1457            b->map_node(proj1, b->number_of_nodes() - 2);
1458            b->map_node(proj0, b->number_of_nodes() - 1);
1459          }
1460        }
1461      }
1462    }
1463  }
1464}
1465