block.cpp revision 3718:b9a9ed0f8eeb
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "opto/block.hpp"
29#include "opto/cfgnode.hpp"
30#include "opto/chaitin.hpp"
31#include "opto/loopnode.hpp"
32#include "opto/machnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/opcodes.hpp"
35#include "opto/rootnode.hpp"
36#include "utilities/copy.hpp"
37
38// Optimization - Graph Style
39
40
41//-----------------------------------------------------------------------------
42void Block_Array::grow( uint i ) {
43  assert(i >= Max(), "must be an overflow");
44  debug_only(_limit = i+1);
45  if( i < _size )  return;
46  if( !_size ) {
47    _size = 1;
48    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
49    _blocks[0] = NULL;
50  }
51  uint old = _size;
52  while( i >= _size ) _size <<= 1;      // Double to fit
53  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
54  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
55}
56
57//=============================================================================
58void Block_List::remove(uint i) {
59  assert(i < _cnt, "index out of bounds");
60  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
61  pop(); // shrink list by one block
62}
63
64void Block_List::insert(uint i, Block *b) {
65  push(b); // grow list by one block
66  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
67  _blocks[i] = b;
68}
69
70#ifndef PRODUCT
71void Block_List::print() {
72  for (uint i=0; i < size(); i++) {
73    tty->print("B%d ", _blocks[i]->_pre_order);
74  }
75  tty->print("size = %d\n", size());
76}
77#endif
78
79//=============================================================================
80
81uint Block::code_alignment() {
82  // Check for Root block
83  if (_pre_order == 0) return CodeEntryAlignment;
84  // Check for Start block
85  if (_pre_order == 1) return InteriorEntryAlignment;
86  // Check for loop alignment
87  if (has_loop_alignment()) return loop_alignment();
88
89  return relocInfo::addr_unit(); // no particular alignment
90}
91
92uint Block::compute_loop_alignment() {
93  Node *h = head();
94  int unit_sz = relocInfo::addr_unit();
95  if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
96    // Pre- and post-loops have low trip count so do not bother with
97    // NOPs for align loop head.  The constants are hidden from tuning
98    // but only because my "divide by 4" heuristic surely gets nearly
99    // all possible gain (a "do not align at all" heuristic has a
100    // chance of getting a really tiny gain).
101    if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
102                                h->as_CountedLoop()->is_post_loop())) {
103      return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
104    }
105    // Loops with low backedge frequency should not be aligned.
106    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
107    if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
108      return unit_sz; // Loop does not loop, more often than not!
109    }
110    return OptoLoopAlignment; // Otherwise align loop head
111  }
112
113  return unit_sz; // no particular alignment
114}
115
116//-----------------------------------------------------------------------------
117// Compute the size of first 'inst_cnt' instructions in this block.
118// Return the number of instructions left to compute if the block has
119// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
120// exceeds OptoLoopAlignment.
121uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
122                                    PhaseRegAlloc* ra) {
123  uint last_inst = _nodes.size();
124  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
125    uint inst_size = _nodes[j]->size(ra);
126    if( inst_size > 0 ) {
127      inst_cnt--;
128      uint sz = sum_size + inst_size;
129      if( sz <= (uint)OptoLoopAlignment ) {
130        // Compute size of instructions which fit into fetch buffer only
131        // since all inst_cnt instructions will not fit even if we align them.
132        sum_size = sz;
133      } else {
134        return 0;
135      }
136    }
137  }
138  return inst_cnt;
139}
140
141//-----------------------------------------------------------------------------
142uint Block::find_node( const Node *n ) const {
143  for( uint i = 0; i < _nodes.size(); i++ ) {
144    if( _nodes[i] == n )
145      return i;
146  }
147  ShouldNotReachHere();
148  return 0;
149}
150
151// Find and remove n from block list
152void Block::find_remove( const Node *n ) {
153  _nodes.remove(find_node(n));
154}
155
156//------------------------------is_Empty---------------------------------------
157// Return empty status of a block.  Empty blocks contain only the head, other
158// ideal nodes, and an optional trailing goto.
159int Block::is_Empty() const {
160
161  // Root or start block is not considered empty
162  if (head()->is_Root() || head()->is_Start()) {
163    return not_empty;
164  }
165
166  int success_result = completely_empty;
167  int end_idx = _nodes.size()-1;
168
169  // Check for ending goto
170  if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
171    success_result = empty_with_goto;
172    end_idx--;
173  }
174
175  // Unreachable blocks are considered empty
176  if (num_preds() <= 1) {
177    return success_result;
178  }
179
180  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
181  // turn directly into code, because only MachNodes have non-trivial
182  // emit() functions.
183  while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
184    end_idx--;
185  }
186
187  // No room for any interesting instructions?
188  if (end_idx == 0) {
189    return success_result;
190  }
191
192  return not_empty;
193}
194
195//------------------------------has_uncommon_code------------------------------
196// Return true if the block's code implies that it is likely to be
197// executed infrequently.  Check to see if the block ends in a Halt or
198// a low probability call.
199bool Block::has_uncommon_code() const {
200  Node* en = end();
201
202  if (en->is_MachGoto())
203    en = en->in(0);
204  if (en->is_Catch())
205    en = en->in(0);
206  if (en->is_MachProj() && en->in(0)->is_MachCall()) {
207    MachCallNode* call = en->in(0)->as_MachCall();
208    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
209      // This is true for slow-path stubs like new_{instance,array},
210      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
211      // The magic number corresponds to the probability of an uncommon_trap,
212      // even though it is a count not a probability.
213      return true;
214    }
215  }
216
217  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
218  return op == Op_Halt;
219}
220
221//------------------------------is_uncommon------------------------------------
222// True if block is low enough frequency or guarded by a test which
223// mostly does not go here.
224bool Block::is_uncommon( Block_Array &bbs ) const {
225  // Initial blocks must never be moved, so are never uncommon.
226  if (head()->is_Root() || head()->is_Start())  return false;
227
228  // Check for way-low freq
229  if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
230
231  // Look for code shape indicating uncommon_trap or slow path
232  if (has_uncommon_code()) return true;
233
234  const float epsilon = 0.05f;
235  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
236  uint uncommon_preds = 0;
237  uint freq_preds = 0;
238  uint uncommon_for_freq_preds = 0;
239
240  for( uint i=1; i<num_preds(); i++ ) {
241    Block* guard = bbs[pred(i)->_idx];
242    // Check to see if this block follows its guard 1 time out of 10000
243    // or less.
244    //
245    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
246    // we intend to be "uncommon", such as slow-path TLE allocation,
247    // predicted call failure, and uncommon trap triggers.
248    //
249    // Use an epsilon value of 5% to allow for variability in frequency
250    // predictions and floating point calculations. The net effect is
251    // that guard_factor is set to 9500.
252    //
253    // Ignore low-frequency blocks.
254    // The next check is (guard->_freq < 1.e-5 * 9500.).
255    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
256      uncommon_preds++;
257    } else {
258      freq_preds++;
259      if( _freq < guard->_freq * guard_factor ) {
260        uncommon_for_freq_preds++;
261      }
262    }
263  }
264  if( num_preds() > 1 &&
265      // The block is uncommon if all preds are uncommon or
266      (uncommon_preds == (num_preds()-1) ||
267      // it is uncommon for all frequent preds.
268       uncommon_for_freq_preds == freq_preds) ) {
269    return true;
270  }
271  return false;
272}
273
274//------------------------------dump-------------------------------------------
275#ifndef PRODUCT
276void Block::dump_bidx(const Block* orig, outputStream* st) const {
277  if (_pre_order) st->print("B%d",_pre_order);
278  else st->print("N%d", head()->_idx);
279
280  if (Verbose && orig != this) {
281    // Dump the original block's idx
282    st->print(" (");
283    orig->dump_bidx(orig, st);
284    st->print(")");
285  }
286}
287
288void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) const {
289  if (is_connector()) {
290    for (uint i=1; i<num_preds(); i++) {
291      Block *p = ((*bbs)[pred(i)->_idx]);
292      p->dump_pred(bbs, orig, st);
293    }
294  } else {
295    dump_bidx(orig, st);
296    st->print(" ");
297  }
298}
299
300void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
301  // Print the basic block
302  dump_bidx(this, st);
303  st->print(": #\t");
304
305  // Print the incoming CFG edges and the outgoing CFG edges
306  for( uint i=0; i<_num_succs; i++ ) {
307    non_connector_successor(i)->dump_bidx(_succs[i], st);
308    st->print(" ");
309  }
310  st->print("<- ");
311  if( head()->is_block_start() ) {
312    for (uint i=1; i<num_preds(); i++) {
313      Node *s = pred(i);
314      if (bbs) {
315        Block *p = (*bbs)[s->_idx];
316        p->dump_pred(bbs, p, st);
317      } else {
318        while (!s->is_block_start())
319          s = s->in(0);
320        st->print("N%d ", s->_idx );
321      }
322    }
323  } else
324    st->print("BLOCK HEAD IS JUNK  ");
325
326  // Print loop, if any
327  const Block *bhead = this;    // Head of self-loop
328  Node *bh = bhead->head();
329  if( bbs && bh->is_Loop() && !head()->is_Root() ) {
330    LoopNode *loop = bh->as_Loop();
331    const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
332    while (bx->is_connector()) {
333      bx = (*bbs)[bx->pred(1)->_idx];
334    }
335    st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
336    // Dump any loop-specific bits, especially for CountedLoops.
337    loop->dump_spec(st);
338  } else if (has_loop_alignment()) {
339    st->print(" top-of-loop");
340  }
341  st->print(" Freq: %g",_freq);
342  if( Verbose || WizardMode ) {
343    st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
344    st->print(" RegPressure: %d",_reg_pressure);
345    st->print(" IHRP Index: %d",_ihrp_index);
346    st->print(" FRegPressure: %d",_freg_pressure);
347    st->print(" FHRP Index: %d",_fhrp_index);
348  }
349  st->print_cr("");
350}
351
352void Block::dump() const { dump(NULL); }
353
354void Block::dump( const Block_Array *bbs ) const {
355  dump_head(bbs);
356  uint cnt = _nodes.size();
357  for( uint i=0; i<cnt; i++ )
358    _nodes[i]->dump();
359  tty->print("\n");
360}
361#endif
362
363//=============================================================================
364//------------------------------PhaseCFG---------------------------------------
365PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
366  Phase(CFG),
367  _bbs(a),
368  _root(r),
369  _node_latency(NULL)
370#ifndef PRODUCT
371  , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
372#endif
373#ifdef ASSERT
374  , _raw_oops(a)
375#endif
376{
377  ResourceMark rm;
378  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
379  // then Match it into a machine-specific Node.  Then clone the machine
380  // Node on demand.
381  Node *x = new (C) GotoNode(NULL);
382  x->init_req(0, x);
383  _goto = m.match_tree(x);
384  assert(_goto != NULL, "");
385  _goto->set_req(0,_goto);
386
387  // Build the CFG in Reverse Post Order
388  _num_blocks = build_cfg();
389  _broot = _bbs[_root->_idx];
390}
391
392//------------------------------build_cfg--------------------------------------
393// Build a proper looking CFG.  Make every block begin with either a StartNode
394// or a RegionNode.  Make every block end with either a Goto, If or Return.
395// The RootNode both starts and ends it's own block.  Do this with a recursive
396// backwards walk over the control edges.
397uint PhaseCFG::build_cfg() {
398  Arena *a = Thread::current()->resource_area();
399  VectorSet visited(a);
400
401  // Allocate stack with enough space to avoid frequent realloc
402  Node_Stack nstack(a, C->unique() >> 1);
403  nstack.push(_root, 0);
404  uint sum = 0;                 // Counter for blocks
405
406  while (nstack.is_nonempty()) {
407    // node and in's index from stack's top
408    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
409    // only nodes which point to the start of basic block (see below).
410    Node *np = nstack.node();
411    // idx > 0, except for the first node (_root) pushed on stack
412    // at the beginning when idx == 0.
413    // We will use the condition (idx == 0) later to end the build.
414    uint idx = nstack.index();
415    Node *proj = np->in(idx);
416    const Node *x = proj->is_block_proj();
417    // Does the block end with a proper block-ending Node?  One of Return,
418    // If or Goto? (This check should be done for visited nodes also).
419    if (x == NULL) {                    // Does not end right...
420      Node *g = _goto->clone(); // Force it to end in a Goto
421      g->set_req(0, proj);
422      np->set_req(idx, g);
423      x = proj = g;
424    }
425    if (!visited.test_set(x->_idx)) { // Visit this block once
426      // Skip any control-pinned middle'in stuff
427      Node *p = proj;
428      do {
429        proj = p;                   // Update pointer to last Control
430        p = p->in(0);               // Move control forward
431      } while( !p->is_block_proj() &&
432               !p->is_block_start() );
433      // Make the block begin with one of Region or StartNode.
434      if( !p->is_block_start() ) {
435        RegionNode *r = new (C) RegionNode( 2 );
436        r->init_req(1, p);         // Insert RegionNode in the way
437        proj->set_req(0, r);        // Insert RegionNode in the way
438        p = r;
439      }
440      // 'p' now points to the start of this basic block
441
442      // Put self in array of basic blocks
443      Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
444      _bbs.map(p->_idx,bb);
445      _bbs.map(x->_idx,bb);
446      if( x != p ) {                // Only for root is x == p
447        bb->_nodes.push((Node*)x);
448      }
449      // Now handle predecessors
450      ++sum;                        // Count 1 for self block
451      uint cnt = bb->num_preds();
452      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
453        Node *prevproj = p->in(i);  // Get prior input
454        assert( !prevproj->is_Con(), "dead input not removed" );
455        // Check to see if p->in(i) is a "control-dependent" CFG edge -
456        // i.e., it splits at the source (via an IF or SWITCH) and merges
457        // at the destination (via a many-input Region).
458        // This breaks critical edges.  The RegionNode to start the block
459        // will be added when <p,i> is pulled off the node stack
460        if ( cnt > 2 ) {             // Merging many things?
461          assert( prevproj== bb->pred(i),"");
462          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
463            // Force a block on the control-dependent edge
464            Node *g = _goto->clone();       // Force it to end in a Goto
465            g->set_req(0,prevproj);
466            p->set_req(i,g);
467          }
468        }
469        nstack.push(p, i);  // 'p' is RegionNode or StartNode
470      }
471    } else { // Post-processing visited nodes
472      nstack.pop();                 // remove node from stack
473      // Check if it the fist node pushed on stack at the beginning.
474      if (idx == 0) break;          // end of the build
475      // Find predecessor basic block
476      Block *pb = _bbs[x->_idx];
477      // Insert into nodes array, if not already there
478      if( !_bbs.lookup(proj->_idx) ) {
479        assert( x != proj, "" );
480        // Map basic block of projection
481        _bbs.map(proj->_idx,pb);
482        pb->_nodes.push(proj);
483      }
484      // Insert self as a child of my predecessor block
485      pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
486      assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
487              "too many control users, not a CFG?" );
488    }
489  }
490  // Return number of basic blocks for all children and self
491  return sum;
492}
493
494//------------------------------insert_goto_at---------------------------------
495// Inserts a goto & corresponding basic block between
496// block[block_no] and its succ_no'th successor block
497void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
498  // get block with block_no
499  assert(block_no < _num_blocks, "illegal block number");
500  Block* in  = _blocks[block_no];
501  // get successor block succ_no
502  assert(succ_no < in->_num_succs, "illegal successor number");
503  Block* out = in->_succs[succ_no];
504  // Compute frequency of the new block. Do this before inserting
505  // new block in case succ_prob() needs to infer the probability from
506  // surrounding blocks.
507  float freq = in->_freq * in->succ_prob(succ_no);
508  // get ProjNode corresponding to the succ_no'th successor of the in block
509  ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
510  // create region for basic block
511  RegionNode* region = new (C) RegionNode(2);
512  region->init_req(1, proj);
513  // setup corresponding basic block
514  Block* block = new (_bbs._arena) Block(_bbs._arena, region);
515  _bbs.map(region->_idx, block);
516  C->regalloc()->set_bad(region->_idx);
517  // add a goto node
518  Node* gto = _goto->clone(); // get a new goto node
519  gto->set_req(0, region);
520  // add it to the basic block
521  block->_nodes.push(gto);
522  _bbs.map(gto->_idx, block);
523  C->regalloc()->set_bad(gto->_idx);
524  // hook up successor block
525  block->_succs.map(block->_num_succs++, out);
526  // remap successor's predecessors if necessary
527  for (uint i = 1; i < out->num_preds(); i++) {
528    if (out->pred(i) == proj) out->head()->set_req(i, gto);
529  }
530  // remap predecessor's successor to new block
531  in->_succs.map(succ_no, block);
532  // Set the frequency of the new block
533  block->_freq = freq;
534  // add new basic block to basic block list
535  _blocks.insert(block_no + 1, block);
536  _num_blocks++;
537}
538
539//------------------------------no_flip_branch---------------------------------
540// Does this block end in a multiway branch that cannot have the default case
541// flipped for another case?
542static bool no_flip_branch( Block *b ) {
543  int branch_idx = b->_nodes.size() - b->_num_succs-1;
544  if( branch_idx < 1 ) return false;
545  Node *bra = b->_nodes[branch_idx];
546  if( bra->is_Catch() )
547    return true;
548  if( bra->is_Mach() ) {
549    if( bra->is_MachNullCheck() )
550      return true;
551    int iop = bra->as_Mach()->ideal_Opcode();
552    if( iop == Op_FastLock || iop == Op_FastUnlock )
553      return true;
554  }
555  return false;
556}
557
558//------------------------------convert_NeverBranch_to_Goto--------------------
559// Check for NeverBranch at block end.  This needs to become a GOTO to the
560// true target.  NeverBranch are treated as a conditional branch that always
561// goes the same direction for most of the optimizer and are used to give a
562// fake exit path to infinite loops.  At this late stage they need to turn
563// into Goto's so that when you enter the infinite loop you indeed hang.
564void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
565  // Find true target
566  int end_idx = b->end_idx();
567  int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
568  Block *succ = b->_succs[idx];
569  Node* gto = _goto->clone(); // get a new goto node
570  gto->set_req(0, b->head());
571  Node *bp = b->_nodes[end_idx];
572  b->_nodes.map(end_idx,gto); // Slam over NeverBranch
573  _bbs.map(gto->_idx, b);
574  C->regalloc()->set_bad(gto->_idx);
575  b->_nodes.pop();              // Yank projections
576  b->_nodes.pop();              // Yank projections
577  b->_succs.map(0,succ);        // Map only successor
578  b->_num_succs = 1;
579  // remap successor's predecessors if necessary
580  uint j;
581  for( j = 1; j < succ->num_preds(); j++)
582    if( succ->pred(j)->in(0) == bp )
583      succ->head()->set_req(j, gto);
584  // Kill alternate exit path
585  Block *dead = b->_succs[1-idx];
586  for( j = 1; j < dead->num_preds(); j++)
587    if( dead->pred(j)->in(0) == bp )
588      break;
589  // Scan through block, yanking dead path from
590  // all regions and phis.
591  dead->head()->del_req(j);
592  for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
593    dead->_nodes[k]->del_req(j);
594}
595
596//------------------------------move_to_next-----------------------------------
597// Helper function to move block bx to the slot following b_index. Return
598// true if the move is successful, otherwise false
599bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
600  if (bx == NULL) return false;
601
602  // Return false if bx is already scheduled.
603  uint bx_index = bx->_pre_order;
604  if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
605    return false;
606  }
607
608  // Find the current index of block bx on the block list
609  bx_index = b_index + 1;
610  while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
611  assert(_blocks[bx_index] == bx, "block not found");
612
613  // If the previous block conditionally falls into bx, return false,
614  // because moving bx will create an extra jump.
615  for(uint k = 1; k < bx->num_preds(); k++ ) {
616    Block* pred = _bbs[bx->pred(k)->_idx];
617    if (pred == _blocks[bx_index-1]) {
618      if (pred->_num_succs != 1) {
619        return false;
620      }
621    }
622  }
623
624  // Reinsert bx just past block 'b'
625  _blocks.remove(bx_index);
626  _blocks.insert(b_index + 1, bx);
627  return true;
628}
629
630//------------------------------move_to_end------------------------------------
631// Move empty and uncommon blocks to the end.
632void PhaseCFG::move_to_end(Block *b, uint i) {
633  int e = b->is_Empty();
634  if (e != Block::not_empty) {
635    if (e == Block::empty_with_goto) {
636      // Remove the goto, but leave the block.
637      b->_nodes.pop();
638    }
639    // Mark this block as a connector block, which will cause it to be
640    // ignored in certain functions such as non_connector_successor().
641    b->set_connector();
642  }
643  // Move the empty block to the end, and don't recheck.
644  _blocks.remove(i);
645  _blocks.push(b);
646}
647
648//---------------------------set_loop_alignment--------------------------------
649// Set loop alignment for every block
650void PhaseCFG::set_loop_alignment() {
651  uint last = _num_blocks;
652  assert( _blocks[0] == _broot, "" );
653
654  for (uint i = 1; i < last; i++ ) {
655    Block *b = _blocks[i];
656    if (b->head()->is_Loop()) {
657      b->set_loop_alignment(b);
658    }
659  }
660}
661
662//-----------------------------remove_empty------------------------------------
663// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
664// to the end.
665void PhaseCFG::remove_empty() {
666  // Move uncommon blocks to the end
667  uint last = _num_blocks;
668  assert( _blocks[0] == _broot, "" );
669
670  for (uint i = 1; i < last; i++) {
671    Block *b = _blocks[i];
672    if (b->is_connector()) break;
673
674    // Check for NeverBranch at block end.  This needs to become a GOTO to the
675    // true target.  NeverBranch are treated as a conditional branch that
676    // always goes the same direction for most of the optimizer and are used
677    // to give a fake exit path to infinite loops.  At this late stage they
678    // need to turn into Goto's so that when you enter the infinite loop you
679    // indeed hang.
680    if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
681      convert_NeverBranch_to_Goto(b);
682
683    // Look for uncommon blocks and move to end.
684    if (!C->do_freq_based_layout()) {
685      if( b->is_uncommon(_bbs) ) {
686        move_to_end(b, i);
687        last--;                   // No longer check for being uncommon!
688        if( no_flip_branch(b) ) { // Fall-thru case must follow?
689          b = _blocks[i];         // Find the fall-thru block
690          move_to_end(b, i);
691          last--;
692        }
693        i--;                      // backup block counter post-increment
694      }
695    }
696  }
697
698  // Move empty blocks to the end
699  last = _num_blocks;
700  for (uint i = 1; i < last; i++) {
701    Block *b = _blocks[i];
702    if (b->is_Empty() != Block::not_empty) {
703      move_to_end(b, i);
704      last--;
705      i--;
706    }
707  } // End of for all blocks
708}
709
710//-----------------------------fixup_flow--------------------------------------
711// Fix up the final control flow for basic blocks.
712void PhaseCFG::fixup_flow() {
713  // Fixup final control flow for the blocks.  Remove jump-to-next
714  // block.  If neither arm of a IF follows the conditional branch, we
715  // have to add a second jump after the conditional.  We place the
716  // TRUE branch target in succs[0] for both GOTOs and IFs.
717  for (uint i=0; i < _num_blocks; i++) {
718    Block *b = _blocks[i];
719    b->_pre_order = i;          // turn pre-order into block-index
720
721    // Connector blocks need no further processing.
722    if (b->is_connector()) {
723      assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
724             "All connector blocks should sink to the end");
725      continue;
726    }
727    assert(b->is_Empty() != Block::completely_empty,
728           "Empty blocks should be connectors");
729
730    Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
731    Block *bs0 = b->non_connector_successor(0);
732
733    // Check for multi-way branches where I cannot negate the test to
734    // exchange the true and false targets.
735    if( no_flip_branch( b ) ) {
736      // Find fall through case - if must fall into its target
737      int branch_idx = b->_nodes.size() - b->_num_succs;
738      for (uint j2 = 0; j2 < b->_num_succs; j2++) {
739        const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
740        if (p->_con == 0) {
741          // successor j2 is fall through case
742          if (b->non_connector_successor(j2) != bnext) {
743            // but it is not the next block => insert a goto
744            insert_goto_at(i, j2);
745          }
746          // Put taken branch in slot 0
747          if( j2 == 0 && b->_num_succs == 2) {
748            // Flip targets in succs map
749            Block *tbs0 = b->_succs[0];
750            Block *tbs1 = b->_succs[1];
751            b->_succs.map( 0, tbs1 );
752            b->_succs.map( 1, tbs0 );
753          }
754          break;
755        }
756      }
757      // Remove all CatchProjs
758      for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
759
760    } else if (b->_num_succs == 1) {
761      // Block ends in a Goto?
762      if (bnext == bs0) {
763        // We fall into next block; remove the Goto
764        b->_nodes.pop();
765      }
766
767    } else if( b->_num_succs == 2 ) { // Block ends in a If?
768      // Get opcode of 1st projection (matches _succs[0])
769      // Note: Since this basic block has 2 exits, the last 2 nodes must
770      //       be projections (in any order), the 3rd last node must be
771      //       the IfNode (we have excluded other 2-way exits such as
772      //       CatchNodes already).
773      MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
774      ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
775      ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
776
777      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
778      assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
779      assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
780
781      Block *bs1 = b->non_connector_successor(1);
782
783      // Check for neither successor block following the current
784      // block ending in a conditional. If so, move one of the
785      // successors after the current one, provided that the
786      // successor was previously unscheduled, but moveable
787      // (i.e., all paths to it involve a branch).
788      if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
789        // Choose the more common successor based on the probability
790        // of the conditional branch.
791        Block *bx = bs0;
792        Block *by = bs1;
793
794        // _prob is the probability of taking the true path. Make
795        // p the probability of taking successor #1.
796        float p = iff->as_MachIf()->_prob;
797        if( proj0->Opcode() == Op_IfTrue ) {
798          p = 1.0 - p;
799        }
800
801        // Prefer successor #1 if p > 0.5
802        if (p > PROB_FAIR) {
803          bx = bs1;
804          by = bs0;
805        }
806
807        // Attempt the more common successor first
808        if (move_to_next(bx, i)) {
809          bnext = bx;
810        } else if (move_to_next(by, i)) {
811          bnext = by;
812        }
813      }
814
815      // Check for conditional branching the wrong way.  Negate
816      // conditional, if needed, so it falls into the following block
817      // and branches to the not-following block.
818
819      // Check for the next block being in succs[0].  We are going to branch
820      // to succs[0], so we want the fall-thru case as the next block in
821      // succs[1].
822      if (bnext == bs0) {
823        // Fall-thru case in succs[0], so flip targets in succs map
824        Block *tbs0 = b->_succs[0];
825        Block *tbs1 = b->_succs[1];
826        b->_succs.map( 0, tbs1 );
827        b->_succs.map( 1, tbs0 );
828        // Flip projection for each target
829        { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
830
831      } else if( bnext != bs1 ) {
832        // Need a double-branch
833        // The existing conditional branch need not change.
834        // Add a unconditional branch to the false target.
835        // Alas, it must appear in its own block and adding a
836        // block this late in the game is complicated.  Sigh.
837        insert_goto_at(i, 1);
838      }
839
840      // Make sure we TRUE branch to the target
841      if( proj0->Opcode() == Op_IfFalse ) {
842        iff->as_MachIf()->negate();
843      }
844
845      b->_nodes.pop();          // Remove IfFalse & IfTrue projections
846      b->_nodes.pop();
847
848    } else {
849      // Multi-exit block, e.g. a switch statement
850      // But we don't need to do anything here
851    }
852  } // End of for all blocks
853}
854
855
856//------------------------------dump-------------------------------------------
857#ifndef PRODUCT
858void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
859  const Node *x = end->is_block_proj();
860  assert( x, "not a CFG" );
861
862  // Do not visit this block again
863  if( visited.test_set(x->_idx) ) return;
864
865  // Skip through this block
866  const Node *p = x;
867  do {
868    p = p->in(0);               // Move control forward
869    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
870  } while( !p->is_block_start() );
871
872  // Recursively visit
873  for( uint i=1; i<p->req(); i++ )
874    _dump_cfg(p->in(i),visited);
875
876  // Dump the block
877  _bbs[p->_idx]->dump(&_bbs);
878}
879
880void PhaseCFG::dump( ) const {
881  tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
882  if( _blocks.size() ) {        // Did we do basic-block layout?
883    for( uint i=0; i<_num_blocks; i++ )
884      _blocks[i]->dump(&_bbs);
885  } else {                      // Else do it with a DFS
886    VectorSet visited(_bbs._arena);
887    _dump_cfg(_root,visited);
888  }
889}
890
891void PhaseCFG::dump_headers() {
892  for( uint i = 0; i < _num_blocks; i++ ) {
893    if( _blocks[i] == NULL ) continue;
894    _blocks[i]->dump_head(&_bbs);
895  }
896}
897
898void PhaseCFG::verify( ) const {
899#ifdef ASSERT
900  // Verify sane CFG
901  for (uint i = 0; i < _num_blocks; i++) {
902    Block *b = _blocks[i];
903    uint cnt = b->_nodes.size();
904    uint j;
905    for (j = 0; j < cnt; j++)  {
906      Node *n = b->_nodes[j];
907      assert( _bbs[n->_idx] == b, "" );
908      if (j >= 1 && n->is_Mach() &&
909          n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
910        assert(j == 1 || b->_nodes[j-1]->is_Phi(),
911               "CreateEx must be first instruction in block");
912      }
913      for (uint k = 0; k < n->req(); k++) {
914        Node *def = n->in(k);
915        if (def && def != n) {
916          assert(_bbs[def->_idx] || def->is_Con(),
917                 "must have block; constants for debug info ok");
918          // Verify that instructions in the block is in correct order.
919          // Uses must follow their definition if they are at the same block.
920          // Mostly done to check that MachSpillCopy nodes are placed correctly
921          // when CreateEx node is moved in build_ifg_physical().
922          if (_bbs[def->_idx] == b &&
923              !(b->head()->is_Loop() && n->is_Phi()) &&
924              // See (+++) comment in reg_split.cpp
925              !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
926            bool is_loop = false;
927            if (n->is_Phi()) {
928              for (uint l = 1; l < def->req(); l++) {
929                if (n == def->in(l)) {
930                  is_loop = true;
931                  break; // Some kind of loop
932                }
933              }
934            }
935            assert(is_loop || b->find_node(def) < j, "uses must follow definitions");
936          }
937        }
938      }
939    }
940
941    j = b->end_idx();
942    Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
943    assert( bp, "last instruction must be a block proj" );
944    assert( bp == b->_nodes[j], "wrong number of successors for this block" );
945    if (bp->is_Catch()) {
946      while (b->_nodes[--j]->is_MachProj()) ;
947      assert(b->_nodes[j]->is_MachCall(), "CatchProj must follow call");
948    } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
949      assert(b->_num_succs == 2, "Conditional branch must have two targets");
950    }
951  }
952#endif
953}
954#endif
955
956//=============================================================================
957//------------------------------UnionFind--------------------------------------
958UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
959  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
960}
961
962void UnionFind::extend( uint from_idx, uint to_idx ) {
963  _nesting.check();
964  if( from_idx >= _max ) {
965    uint size = 16;
966    while( size <= from_idx ) size <<=1;
967    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
968    _max = size;
969  }
970  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
971  _indices[from_idx] = to_idx;
972}
973
974void UnionFind::reset( uint max ) {
975  assert( max <= max_uint, "Must fit within uint" );
976  // Force the Union-Find mapping to be at least this large
977  extend(max,0);
978  // Initialize to be the ID mapping.
979  for( uint i=0; i<max; i++ ) map(i,i);
980}
981
982//------------------------------Find_compress----------------------------------
983// Straight out of Tarjan's union-find algorithm
984uint UnionFind::Find_compress( uint idx ) {
985  uint cur  = idx;
986  uint next = lookup(cur);
987  while( next != cur ) {        // Scan chain of equivalences
988    assert( next < cur, "always union smaller" );
989    cur = next;                 // until find a fixed-point
990    next = lookup(cur);
991  }
992  // Core of union-find algorithm: update chain of
993  // equivalences to be equal to the root.
994  while( idx != next ) {
995    uint tmp = lookup(idx);
996    map(idx, next);
997    idx = tmp;
998  }
999  return idx;
1000}
1001
1002//------------------------------Find_const-------------------------------------
1003// Like Find above, but no path compress, so bad asymptotic behavior
1004uint UnionFind::Find_const( uint idx ) const {
1005  if( idx == 0 ) return idx;    // Ignore the zero idx
1006  // Off the end?  This can happen during debugging dumps
1007  // when data structures have not finished being updated.
1008  if( idx >= _max ) return idx;
1009  uint next = lookup(idx);
1010  while( next != idx ) {        // Scan chain of equivalences
1011    idx = next;                 // until find a fixed-point
1012    next = lookup(idx);
1013  }
1014  return next;
1015}
1016
1017//------------------------------Union------------------------------------------
1018// union 2 sets together.
1019void UnionFind::Union( uint idx1, uint idx2 ) {
1020  uint src = Find(idx1);
1021  uint dst = Find(idx2);
1022  assert( src, "" );
1023  assert( dst, "" );
1024  assert( src < _max, "oob" );
1025  assert( dst < _max, "oob" );
1026  assert( src < dst, "always union smaller" );
1027  map(dst,src);
1028}
1029
1030#ifndef PRODUCT
1031static void edge_dump(GrowableArray<CFGEdge *> *edges) {
1032  tty->print_cr("---- Edges ----");
1033  for (int i = 0; i < edges->length(); i++) {
1034    CFGEdge *e = edges->at(i);
1035    if (e != NULL) {
1036      edges->at(i)->dump();
1037    }
1038  }
1039}
1040
1041static void trace_dump(Trace *traces[], int count) {
1042  tty->print_cr("---- Traces ----");
1043  for (int i = 0; i < count; i++) {
1044    Trace *tr = traces[i];
1045    if (tr != NULL) {
1046      tr->dump();
1047    }
1048  }
1049}
1050
1051void Trace::dump( ) const {
1052  tty->print_cr("Trace (freq %f)", first_block()->_freq);
1053  for (Block *b = first_block(); b != NULL; b = next(b)) {
1054    tty->print("  B%d", b->_pre_order);
1055    if (b->head()->is_Loop()) {
1056      tty->print(" (L%d)", b->compute_loop_alignment());
1057    }
1058    if (b->has_loop_alignment()) {
1059      tty->print(" (T%d)", b->code_alignment());
1060    }
1061  }
1062  tty->cr();
1063}
1064
1065void CFGEdge::dump( ) const {
1066  tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1067             from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1068  switch(state()) {
1069  case connected:
1070    tty->print("connected");
1071    break;
1072  case open:
1073    tty->print("open");
1074    break;
1075  case interior:
1076    tty->print("interior");
1077    break;
1078  }
1079  if (infrequent()) {
1080    tty->print("  infrequent");
1081  }
1082  tty->cr();
1083}
1084#endif
1085
1086//=============================================================================
1087
1088//------------------------------edge_order-------------------------------------
1089// Comparison function for edges
1090static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1091  float freq0 = (*e0)->freq();
1092  float freq1 = (*e1)->freq();
1093  if (freq0 != freq1) {
1094    return freq0 > freq1 ? -1 : 1;
1095  }
1096
1097  int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1098  int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1099
1100  return dist1 - dist0;
1101}
1102
1103//------------------------------trace_frequency_order--------------------------
1104// Comparison function for edges
1105extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1106  Trace *tr0 = *(Trace **) p0;
1107  Trace *tr1 = *(Trace **) p1;
1108  Block *b0 = tr0->first_block();
1109  Block *b1 = tr1->first_block();
1110
1111  // The trace of connector blocks goes at the end;
1112  // we only expect one such trace
1113  if (b0->is_connector() != b1->is_connector()) {
1114    return b1->is_connector() ? -1 : 1;
1115  }
1116
1117  // Pull more frequently executed blocks to the beginning
1118  float freq0 = b0->_freq;
1119  float freq1 = b1->_freq;
1120  if (freq0 != freq1) {
1121    return freq0 > freq1 ? -1 : 1;
1122  }
1123
1124  int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1125
1126  return diff;
1127}
1128
1129//------------------------------find_edges-------------------------------------
1130// Find edges of interest, i.e, those which can fall through. Presumes that
1131// edges which don't fall through are of low frequency and can be generally
1132// ignored.  Initialize the list of traces.
1133void PhaseBlockLayout::find_edges()
1134{
1135  // Walk the blocks, creating edges and Traces
1136  uint i;
1137  Trace *tr = NULL;
1138  for (i = 0; i < _cfg._num_blocks; i++) {
1139    Block *b = _cfg._blocks[i];
1140    tr = new Trace(b, next, prev);
1141    traces[tr->id()] = tr;
1142
1143    // All connector blocks should be at the end of the list
1144    if (b->is_connector()) break;
1145
1146    // If this block and the next one have a one-to-one successor
1147    // predecessor relationship, simply append the next block
1148    int nfallthru = b->num_fall_throughs();
1149    while (nfallthru == 1 &&
1150           b->succ_fall_through(0)) {
1151      Block *n = b->_succs[0];
1152
1153      // Skip over single-entry connector blocks, we don't want to
1154      // add them to the trace.
1155      while (n->is_connector() && n->num_preds() == 1) {
1156        n = n->_succs[0];
1157      }
1158
1159      // We see a merge point, so stop search for the next block
1160      if (n->num_preds() != 1) break;
1161
1162      i++;
1163      assert(n = _cfg._blocks[i], "expecting next block");
1164      tr->append(n);
1165      uf->map(n->_pre_order, tr->id());
1166      traces[n->_pre_order] = NULL;
1167      nfallthru = b->num_fall_throughs();
1168      b = n;
1169    }
1170
1171    if (nfallthru > 0) {
1172      // Create a CFGEdge for each outgoing
1173      // edge that could be a fall-through.
1174      for (uint j = 0; j < b->_num_succs; j++ ) {
1175        if (b->succ_fall_through(j)) {
1176          Block *target = b->non_connector_successor(j);
1177          float freq = b->_freq * b->succ_prob(j);
1178          int from_pct = (int) ((100 * freq) / b->_freq);
1179          int to_pct = (int) ((100 * freq) / target->_freq);
1180          edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1181        }
1182      }
1183    }
1184  }
1185
1186  // Group connector blocks into one trace
1187  for (i++; i < _cfg._num_blocks; i++) {
1188    Block *b = _cfg._blocks[i];
1189    assert(b->is_connector(), "connector blocks at the end");
1190    tr->append(b);
1191    uf->map(b->_pre_order, tr->id());
1192    traces[b->_pre_order] = NULL;
1193  }
1194}
1195
1196//------------------------------union_traces----------------------------------
1197// Union two traces together in uf, and null out the trace in the list
1198void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1199{
1200  uint old_id = old_trace->id();
1201  uint updated_id = updated_trace->id();
1202
1203  uint lo_id = updated_id;
1204  uint hi_id = old_id;
1205
1206  // If from is greater than to, swap values to meet
1207  // UnionFind guarantee.
1208  if (updated_id > old_id) {
1209    lo_id = old_id;
1210    hi_id = updated_id;
1211
1212    // Fix up the trace ids
1213    traces[lo_id] = traces[updated_id];
1214    updated_trace->set_id(lo_id);
1215  }
1216
1217  // Union the lower with the higher and remove the pointer
1218  // to the higher.
1219  uf->Union(lo_id, hi_id);
1220  traces[hi_id] = NULL;
1221}
1222
1223//------------------------------grow_traces-------------------------------------
1224// Append traces together via the most frequently executed edges
1225void PhaseBlockLayout::grow_traces()
1226{
1227  // Order the edges, and drive the growth of Traces via the most
1228  // frequently executed edges.
1229  edges->sort(edge_order);
1230  for (int i = 0; i < edges->length(); i++) {
1231    CFGEdge *e = edges->at(i);
1232
1233    if (e->state() != CFGEdge::open) continue;
1234
1235    Block *src_block = e->from();
1236    Block *targ_block = e->to();
1237
1238    // Don't grow traces along backedges?
1239    if (!BlockLayoutRotateLoops) {
1240      if (targ_block->_rpo <= src_block->_rpo) {
1241        targ_block->set_loop_alignment(targ_block);
1242        continue;
1243      }
1244    }
1245
1246    Trace *src_trace = trace(src_block);
1247    Trace *targ_trace = trace(targ_block);
1248
1249    // If the edge in question can join two traces at their ends,
1250    // append one trace to the other.
1251   if (src_trace->last_block() == src_block) {
1252      if (src_trace == targ_trace) {
1253        e->set_state(CFGEdge::interior);
1254        if (targ_trace->backedge(e)) {
1255          // Reset i to catch any newly eligible edge
1256          // (Or we could remember the first "open" edge, and reset there)
1257          i = 0;
1258        }
1259      } else if (targ_trace->first_block() == targ_block) {
1260        e->set_state(CFGEdge::connected);
1261        src_trace->append(targ_trace);
1262        union_traces(src_trace, targ_trace);
1263      }
1264    }
1265  }
1266}
1267
1268//------------------------------merge_traces-----------------------------------
1269// Embed one trace into another, if the fork or join points are sufficiently
1270// balanced.
1271void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1272{
1273  // Walk the edge list a another time, looking at unprocessed edges.
1274  // Fold in diamonds
1275  for (int i = 0; i < edges->length(); i++) {
1276    CFGEdge *e = edges->at(i);
1277
1278    if (e->state() != CFGEdge::open) continue;
1279    if (fall_thru_only) {
1280      if (e->infrequent()) continue;
1281    }
1282
1283    Block *src_block = e->from();
1284    Trace *src_trace = trace(src_block);
1285    bool src_at_tail = src_trace->last_block() == src_block;
1286
1287    Block *targ_block  = e->to();
1288    Trace *targ_trace  = trace(targ_block);
1289    bool targ_at_start = targ_trace->first_block() == targ_block;
1290
1291    if (src_trace == targ_trace) {
1292      // This may be a loop, but we can't do much about it.
1293      e->set_state(CFGEdge::interior);
1294      continue;
1295    }
1296
1297    if (fall_thru_only) {
1298      // If the edge links the middle of two traces, we can't do anything.
1299      // Mark the edge and continue.
1300      if (!src_at_tail & !targ_at_start) {
1301        continue;
1302      }
1303
1304      // Don't grow traces along backedges?
1305      if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1306          continue;
1307      }
1308
1309      // If both ends of the edge are available, why didn't we handle it earlier?
1310      assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1311
1312      if (targ_at_start) {
1313        // Insert the "targ" trace in the "src" trace if the insertion point
1314        // is a two way branch.
1315        // Better profitability check possible, but may not be worth it.
1316        // Someday, see if the this "fork" has an associated "join";
1317        // then make a policy on merging this trace at the fork or join.
1318        // For example, other things being equal, it may be better to place this
1319        // trace at the join point if the "src" trace ends in a two-way, but
1320        // the insertion point is one-way.
1321        assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1322        e->set_state(CFGEdge::connected);
1323        src_trace->insert_after(src_block, targ_trace);
1324        union_traces(src_trace, targ_trace);
1325      } else if (src_at_tail) {
1326        if (src_trace != trace(_cfg._broot)) {
1327          e->set_state(CFGEdge::connected);
1328          targ_trace->insert_before(targ_block, src_trace);
1329          union_traces(targ_trace, src_trace);
1330        }
1331      }
1332    } else if (e->state() == CFGEdge::open) {
1333      // Append traces, even without a fall-thru connection.
1334      // But leave root entry at the beginning of the block list.
1335      if (targ_trace != trace(_cfg._broot)) {
1336        e->set_state(CFGEdge::connected);
1337        src_trace->append(targ_trace);
1338        union_traces(src_trace, targ_trace);
1339      }
1340    }
1341  }
1342}
1343
1344//----------------------------reorder_traces-----------------------------------
1345// Order the sequence of the traces in some desirable way, and fixup the
1346// jumps at the end of each block.
1347void PhaseBlockLayout::reorder_traces(int count)
1348{
1349  ResourceArea *area = Thread::current()->resource_area();
1350  Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1351  Block_List worklist;
1352  int new_count = 0;
1353
1354  // Compact the traces.
1355  for (int i = 0; i < count; i++) {
1356    Trace *tr = traces[i];
1357    if (tr != NULL) {
1358      new_traces[new_count++] = tr;
1359    }
1360  }
1361
1362  // The entry block should be first on the new trace list.
1363  Trace *tr = trace(_cfg._broot);
1364  assert(tr == new_traces[0], "entry trace misplaced");
1365
1366  // Sort the new trace list by frequency
1367  qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1368
1369  // Patch up the successor blocks
1370  _cfg._blocks.reset();
1371  _cfg._num_blocks = 0;
1372  for (int i = 0; i < new_count; i++) {
1373    Trace *tr = new_traces[i];
1374    if (tr != NULL) {
1375      tr->fixup_blocks(_cfg);
1376    }
1377  }
1378}
1379
1380//------------------------------PhaseBlockLayout-------------------------------
1381// Order basic blocks based on frequency
1382PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1383  Phase(BlockLayout),
1384  _cfg(cfg)
1385{
1386  ResourceMark rm;
1387  ResourceArea *area = Thread::current()->resource_area();
1388
1389  // List of traces
1390  int size = _cfg._num_blocks + 1;
1391  traces = NEW_ARENA_ARRAY(area, Trace *, size);
1392  memset(traces, 0, size*sizeof(Trace*));
1393  next = NEW_ARENA_ARRAY(area, Block *, size);
1394  memset(next,   0, size*sizeof(Block *));
1395  prev = NEW_ARENA_ARRAY(area, Block *, size);
1396  memset(prev  , 0, size*sizeof(Block *));
1397
1398  // List of edges
1399  edges = new GrowableArray<CFGEdge*>;
1400
1401  // Mapping block index --> block_trace
1402  uf = new UnionFind(size);
1403  uf->reset(size);
1404
1405  // Find edges and create traces.
1406  find_edges();
1407
1408  // Grow traces at their ends via most frequent edges.
1409  grow_traces();
1410
1411  // Merge one trace into another, but only at fall-through points.
1412  // This may make diamonds and other related shapes in a trace.
1413  merge_traces(true);
1414
1415  // Run merge again, allowing two traces to be catenated, even if
1416  // one does not fall through into the other. This appends loosely
1417  // related traces to be near each other.
1418  merge_traces(false);
1419
1420  // Re-order all the remaining traces by frequency
1421  reorder_traces(size);
1422
1423  assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1424}
1425
1426
1427//------------------------------backedge---------------------------------------
1428// Edge e completes a loop in a trace. If the target block is head of the
1429// loop, rotate the loop block so that the loop ends in a conditional branch.
1430bool Trace::backedge(CFGEdge *e) {
1431  bool loop_rotated = false;
1432  Block *src_block  = e->from();
1433  Block *targ_block    = e->to();
1434
1435  assert(last_block() == src_block, "loop discovery at back branch");
1436  if (first_block() == targ_block) {
1437    if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1438      // Find the last block in the trace that has a conditional
1439      // branch.
1440      Block *b;
1441      for (b = last_block(); b != NULL; b = prev(b)) {
1442        if (b->num_fall_throughs() == 2) {
1443          break;
1444        }
1445      }
1446
1447      if (b != last_block() && b != NULL) {
1448        loop_rotated = true;
1449
1450        // Rotate the loop by doing two-part linked-list surgery.
1451        append(first_block());
1452        break_loop_after(b);
1453      }
1454    }
1455
1456    // Backbranch to the top of a trace
1457    // Scroll forward through the trace from the targ_block. If we find
1458    // a loop head before another loop top, use the the loop head alignment.
1459    for (Block *b = targ_block; b != NULL; b = next(b)) {
1460      if (b->has_loop_alignment()) {
1461        break;
1462      }
1463      if (b->head()->is_Loop()) {
1464        targ_block = b;
1465        break;
1466      }
1467    }
1468
1469    first_block()->set_loop_alignment(targ_block);
1470
1471  } else {
1472    // Backbranch into the middle of a trace
1473    targ_block->set_loop_alignment(targ_block);
1474  }
1475
1476  return loop_rotated;
1477}
1478
1479//------------------------------fixup_blocks-----------------------------------
1480// push blocks onto the CFG list
1481// ensure that blocks have the correct two-way branch sense
1482void Trace::fixup_blocks(PhaseCFG &cfg) {
1483  Block *last = last_block();
1484  for (Block *b = first_block(); b != NULL; b = next(b)) {
1485    cfg._blocks.push(b);
1486    cfg._num_blocks++;
1487    if (!b->is_connector()) {
1488      int nfallthru = b->num_fall_throughs();
1489      if (b != last) {
1490        if (nfallthru == 2) {
1491          // Ensure that the sense of the branch is correct
1492          Block *bnext = next(b);
1493          Block *bs0 = b->non_connector_successor(0);
1494
1495          MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1496          ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1497          ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1498
1499          if (bnext == bs0) {
1500            // Fall-thru case in succs[0], should be in succs[1]
1501
1502            // Flip targets in _succs map
1503            Block *tbs0 = b->_succs[0];
1504            Block *tbs1 = b->_succs[1];
1505            b->_succs.map( 0, tbs1 );
1506            b->_succs.map( 1, tbs0 );
1507
1508            // Flip projections to match targets
1509            b->_nodes.map(b->_nodes.size()-2, proj1);
1510            b->_nodes.map(b->_nodes.size()-1, proj0);
1511          }
1512        }
1513      }
1514    }
1515  }
1516}
1517