block.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_block.cpp.incl"
29
30
31//-----------------------------------------------------------------------------
32void Block_Array::grow( uint i ) {
33  assert(i >= Max(), "must be an overflow");
34  debug_only(_limit = i+1);
35  if( i < _size )  return;
36  if( !_size ) {
37    _size = 1;
38    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
39    _blocks[0] = NULL;
40  }
41  uint old = _size;
42  while( i >= _size ) _size <<= 1;      // Double to fit
43  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
44  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
45}
46
47//=============================================================================
48void Block_List::remove(uint i) {
49  assert(i < _cnt, "index out of bounds");
50  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
51  pop(); // shrink list by one block
52}
53
54void Block_List::insert(uint i, Block *b) {
55  push(b); // grow list by one block
56  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
57  _blocks[i] = b;
58}
59
60#ifndef PRODUCT
61void Block_List::print() {
62  for (uint i=0; i < size(); i++) {
63    tty->print("B%d ", _blocks[i]->_pre_order);
64  }
65  tty->print("size = %d\n", size());
66}
67#endif
68
69//=============================================================================
70
71uint Block::code_alignment() {
72  // Check for Root block
73  if( _pre_order == 0 ) return CodeEntryAlignment;
74  // Check for Start block
75  if( _pre_order == 1 ) return InteriorEntryAlignment;
76  // Check for loop alignment
77  if (has_loop_alignment())  return loop_alignment();
78
79  return 1;                     // no particular alignment
80}
81
82uint Block::compute_loop_alignment() {
83  Node *h = head();
84  if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
85    // Pre- and post-loops have low trip count so do not bother with
86    // NOPs for align loop head.  The constants are hidden from tuning
87    // but only because my "divide by 4" heuristic surely gets nearly
88    // all possible gain (a "do not align at all" heuristic has a
89    // chance of getting a really tiny gain).
90    if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
91                                h->as_CountedLoop()->is_post_loop()) )
92      return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
93    // Loops with low backedge frequency should not be aligned.
94    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
95    if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
96      return 1;             // Loop does not loop, more often than not!
97    }
98    return OptoLoopAlignment; // Otherwise align loop head
99  }
100
101  return 1;                     // no particular alignment
102}
103
104//-----------------------------------------------------------------------------
105// Compute the size of first 'inst_cnt' instructions in this block.
106// Return the number of instructions left to compute if the block has
107// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
108// exceeds OptoLoopAlignment.
109uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
110                                    PhaseRegAlloc* ra) {
111  uint last_inst = _nodes.size();
112  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
113    uint inst_size = _nodes[j]->size(ra);
114    if( inst_size > 0 ) {
115      inst_cnt--;
116      uint sz = sum_size + inst_size;
117      if( sz <= (uint)OptoLoopAlignment ) {
118        // Compute size of instructions which fit into fetch buffer only
119        // since all inst_cnt instructions will not fit even if we align them.
120        sum_size = sz;
121      } else {
122        return 0;
123      }
124    }
125  }
126  return inst_cnt;
127}
128
129//-----------------------------------------------------------------------------
130uint Block::find_node( const Node *n ) const {
131  for( uint i = 0; i < _nodes.size(); i++ ) {
132    if( _nodes[i] == n )
133      return i;
134  }
135  ShouldNotReachHere();
136  return 0;
137}
138
139// Find and remove n from block list
140void Block::find_remove( const Node *n ) {
141  _nodes.remove(find_node(n));
142}
143
144//------------------------------is_Empty---------------------------------------
145// Return empty status of a block.  Empty blocks contain only the head, other
146// ideal nodes, and an optional trailing goto.
147int Block::is_Empty() const {
148
149  // Root or start block is not considered empty
150  if (head()->is_Root() || head()->is_Start()) {
151    return not_empty;
152  }
153
154  int success_result = completely_empty;
155  int end_idx = _nodes.size()-1;
156
157  // Check for ending goto
158  if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
159    success_result = empty_with_goto;
160    end_idx--;
161  }
162
163  // Unreachable blocks are considered empty
164  if (num_preds() <= 1) {
165    return success_result;
166  }
167
168  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
169  // turn directly into code, because only MachNodes have non-trivial
170  // emit() functions.
171  while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
172    end_idx--;
173  }
174
175  // No room for any interesting instructions?
176  if (end_idx == 0) {
177    return success_result;
178  }
179
180  return not_empty;
181}
182
183//------------------------------has_uncommon_code------------------------------
184// Return true if the block's code implies that it is likely to be
185// executed infrequently.  Check to see if the block ends in a Halt or
186// a low probability call.
187bool Block::has_uncommon_code() const {
188  Node* en = end();
189
190  if (en->is_Goto())
191    en = en->in(0);
192  if (en->is_Catch())
193    en = en->in(0);
194  if (en->is_Proj() && en->in(0)->is_MachCall()) {
195    MachCallNode* call = en->in(0)->as_MachCall();
196    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
197      // This is true for slow-path stubs like new_{instance,array},
198      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
199      // The magic number corresponds to the probability of an uncommon_trap,
200      // even though it is a count not a probability.
201      return true;
202    }
203  }
204
205  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
206  return op == Op_Halt;
207}
208
209//------------------------------is_uncommon------------------------------------
210// True if block is low enough frequency or guarded by a test which
211// mostly does not go here.
212bool Block::is_uncommon( Block_Array &bbs ) const {
213  // Initial blocks must never be moved, so are never uncommon.
214  if (head()->is_Root() || head()->is_Start())  return false;
215
216  // Check for way-low freq
217  if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
218
219  // Look for code shape indicating uncommon_trap or slow path
220  if (has_uncommon_code()) return true;
221
222  const float epsilon = 0.05f;
223  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
224  uint uncommon_preds = 0;
225  uint freq_preds = 0;
226  uint uncommon_for_freq_preds = 0;
227
228  for( uint i=1; i<num_preds(); i++ ) {
229    Block* guard = bbs[pred(i)->_idx];
230    // Check to see if this block follows its guard 1 time out of 10000
231    // or less.
232    //
233    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
234    // we intend to be "uncommon", such as slow-path TLE allocation,
235    // predicted call failure, and uncommon trap triggers.
236    //
237    // Use an epsilon value of 5% to allow for variability in frequency
238    // predictions and floating point calculations. The net effect is
239    // that guard_factor is set to 9500.
240    //
241    // Ignore low-frequency blocks.
242    // The next check is (guard->_freq < 1.e-5 * 9500.).
243    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
244      uncommon_preds++;
245    } else {
246      freq_preds++;
247      if( _freq < guard->_freq * guard_factor ) {
248        uncommon_for_freq_preds++;
249      }
250    }
251  }
252  if( num_preds() > 1 &&
253      // The block is uncommon if all preds are uncommon or
254      (uncommon_preds == (num_preds()-1) ||
255      // it is uncommon for all frequent preds.
256       uncommon_for_freq_preds == freq_preds) ) {
257    return true;
258  }
259  return false;
260}
261
262//------------------------------dump-------------------------------------------
263#ifndef PRODUCT
264void Block::dump_bidx(const Block* orig) const {
265  if (_pre_order) tty->print("B%d",_pre_order);
266  else tty->print("N%d", head()->_idx);
267
268  if (Verbose && orig != this) {
269    // Dump the original block's idx
270    tty->print(" (");
271    orig->dump_bidx(orig);
272    tty->print(")");
273  }
274}
275
276void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
277  if (is_connector()) {
278    for (uint i=1; i<num_preds(); i++) {
279      Block *p = ((*bbs)[pred(i)->_idx]);
280      p->dump_pred(bbs, orig);
281    }
282  } else {
283    dump_bidx(orig);
284    tty->print(" ");
285  }
286}
287
288void Block::dump_head( const Block_Array *bbs ) const {
289  // Print the basic block
290  dump_bidx(this);
291  tty->print(": #\t");
292
293  // Print the incoming CFG edges and the outgoing CFG edges
294  for( uint i=0; i<_num_succs; i++ ) {
295    non_connector_successor(i)->dump_bidx(_succs[i]);
296    tty->print(" ");
297  }
298  tty->print("<- ");
299  if( head()->is_block_start() ) {
300    for (uint i=1; i<num_preds(); i++) {
301      Node *s = pred(i);
302      if (bbs) {
303        Block *p = (*bbs)[s->_idx];
304        p->dump_pred(bbs, p);
305      } else {
306        while (!s->is_block_start())
307          s = s->in(0);
308        tty->print("N%d ", s->_idx );
309      }
310    }
311  } else
312    tty->print("BLOCK HEAD IS JUNK  ");
313
314  // Print loop, if any
315  const Block *bhead = this;    // Head of self-loop
316  Node *bh = bhead->head();
317  if( bbs && bh->is_Loop() && !head()->is_Root() ) {
318    LoopNode *loop = bh->as_Loop();
319    const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
320    while (bx->is_connector()) {
321      bx = (*bbs)[bx->pred(1)->_idx];
322    }
323    tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
324    // Dump any loop-specific bits, especially for CountedLoops.
325    loop->dump_spec(tty);
326  } else if (has_loop_alignment()) {
327    tty->print(" top-of-loop");
328  }
329  tty->print(" Freq: %g",_freq);
330  if( Verbose || WizardMode ) {
331    tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
332    tty->print(" RegPressure: %d",_reg_pressure);
333    tty->print(" IHRP Index: %d",_ihrp_index);
334    tty->print(" FRegPressure: %d",_freg_pressure);
335    tty->print(" FHRP Index: %d",_fhrp_index);
336  }
337  tty->print_cr("");
338}
339
340void Block::dump() const { dump(0); }
341
342void Block::dump( const Block_Array *bbs ) const {
343  dump_head(bbs);
344  uint cnt = _nodes.size();
345  for( uint i=0; i<cnt; i++ )
346    _nodes[i]->dump();
347  tty->print("\n");
348}
349#endif
350
351//=============================================================================
352//------------------------------PhaseCFG---------------------------------------
353PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
354  Phase(CFG),
355  _bbs(a),
356  _root(r)
357#ifndef PRODUCT
358  , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
359#endif
360#ifdef ASSERT
361  , _raw_oops(a)
362#endif
363{
364  ResourceMark rm;
365  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
366  // then Match it into a machine-specific Node.  Then clone the machine
367  // Node on demand.
368  Node *x = new (C, 1) GotoNode(NULL);
369  x->init_req(0, x);
370  _goto = m.match_tree(x);
371  assert(_goto != NULL, "");
372  _goto->set_req(0,_goto);
373
374  // Build the CFG in Reverse Post Order
375  _num_blocks = build_cfg();
376  _broot = _bbs[_root->_idx];
377}
378
379//------------------------------build_cfg--------------------------------------
380// Build a proper looking CFG.  Make every block begin with either a StartNode
381// or a RegionNode.  Make every block end with either a Goto, If or Return.
382// The RootNode both starts and ends it's own block.  Do this with a recursive
383// backwards walk over the control edges.
384uint PhaseCFG::build_cfg() {
385  Arena *a = Thread::current()->resource_area();
386  VectorSet visited(a);
387
388  // Allocate stack with enough space to avoid frequent realloc
389  Node_Stack nstack(a, C->unique() >> 1);
390  nstack.push(_root, 0);
391  uint sum = 0;                 // Counter for blocks
392
393  while (nstack.is_nonempty()) {
394    // node and in's index from stack's top
395    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
396    // only nodes which point to the start of basic block (see below).
397    Node *np = nstack.node();
398    // idx > 0, except for the first node (_root) pushed on stack
399    // at the beginning when idx == 0.
400    // We will use the condition (idx == 0) later to end the build.
401    uint idx = nstack.index();
402    Node *proj = np->in(idx);
403    const Node *x = proj->is_block_proj();
404    // Does the block end with a proper block-ending Node?  One of Return,
405    // If or Goto? (This check should be done for visited nodes also).
406    if (x == NULL) {                    // Does not end right...
407      Node *g = _goto->clone(); // Force it to end in a Goto
408      g->set_req(0, proj);
409      np->set_req(idx, g);
410      x = proj = g;
411    }
412    if (!visited.test_set(x->_idx)) { // Visit this block once
413      // Skip any control-pinned middle'in stuff
414      Node *p = proj;
415      do {
416        proj = p;                   // Update pointer to last Control
417        p = p->in(0);               // Move control forward
418      } while( !p->is_block_proj() &&
419               !p->is_block_start() );
420      // Make the block begin with one of Region or StartNode.
421      if( !p->is_block_start() ) {
422        RegionNode *r = new (C, 2) RegionNode( 2 );
423        r->init_req(1, p);         // Insert RegionNode in the way
424        proj->set_req(0, r);        // Insert RegionNode in the way
425        p = r;
426      }
427      // 'p' now points to the start of this basic block
428
429      // Put self in array of basic blocks
430      Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
431      _bbs.map(p->_idx,bb);
432      _bbs.map(x->_idx,bb);
433      if( x != p )                  // Only for root is x == p
434        bb->_nodes.push((Node*)x);
435
436      // Now handle predecessors
437      ++sum;                        // Count 1 for self block
438      uint cnt = bb->num_preds();
439      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
440        Node *prevproj = p->in(i);  // Get prior input
441        assert( !prevproj->is_Con(), "dead input not removed" );
442        // Check to see if p->in(i) is a "control-dependent" CFG edge -
443        // i.e., it splits at the source (via an IF or SWITCH) and merges
444        // at the destination (via a many-input Region).
445        // This breaks critical edges.  The RegionNode to start the block
446        // will be added when <p,i> is pulled off the node stack
447        if ( cnt > 2 ) {             // Merging many things?
448          assert( prevproj== bb->pred(i),"");
449          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
450            // Force a block on the control-dependent edge
451            Node *g = _goto->clone();       // Force it to end in a Goto
452            g->set_req(0,prevproj);
453            p->set_req(i,g);
454          }
455        }
456        nstack.push(p, i);  // 'p' is RegionNode or StartNode
457      }
458    } else { // Post-processing visited nodes
459      nstack.pop();                 // remove node from stack
460      // Check if it the fist node pushed on stack at the beginning.
461      if (idx == 0) break;          // end of the build
462      // Find predecessor basic block
463      Block *pb = _bbs[x->_idx];
464      // Insert into nodes array, if not already there
465      if( !_bbs.lookup(proj->_idx) ) {
466        assert( x != proj, "" );
467        // Map basic block of projection
468        _bbs.map(proj->_idx,pb);
469        pb->_nodes.push(proj);
470      }
471      // Insert self as a child of my predecessor block
472      pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
473      assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
474              "too many control users, not a CFG?" );
475    }
476  }
477  // Return number of basic blocks for all children and self
478  return sum;
479}
480
481//------------------------------insert_goto_at---------------------------------
482// Inserts a goto & corresponding basic block between
483// block[block_no] and its succ_no'th successor block
484void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
485  // get block with block_no
486  assert(block_no < _num_blocks, "illegal block number");
487  Block* in  = _blocks[block_no];
488  // get successor block succ_no
489  assert(succ_no < in->_num_succs, "illegal successor number");
490  Block* out = in->_succs[succ_no];
491  // Compute frequency of the new block. Do this before inserting
492  // new block in case succ_prob() needs to infer the probability from
493  // surrounding blocks.
494  float freq = in->_freq * in->succ_prob(succ_no);
495  // get ProjNode corresponding to the succ_no'th successor of the in block
496  ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
497  // create region for basic block
498  RegionNode* region = new (C, 2) RegionNode(2);
499  region->init_req(1, proj);
500  // setup corresponding basic block
501  Block* block = new (_bbs._arena) Block(_bbs._arena, region);
502  _bbs.map(region->_idx, block);
503  C->regalloc()->set_bad(region->_idx);
504  // add a goto node
505  Node* gto = _goto->clone(); // get a new goto node
506  gto->set_req(0, region);
507  // add it to the basic block
508  block->_nodes.push(gto);
509  _bbs.map(gto->_idx, block);
510  C->regalloc()->set_bad(gto->_idx);
511  // hook up successor block
512  block->_succs.map(block->_num_succs++, out);
513  // remap successor's predecessors if necessary
514  for (uint i = 1; i < out->num_preds(); i++) {
515    if (out->pred(i) == proj) out->head()->set_req(i, gto);
516  }
517  // remap predecessor's successor to new block
518  in->_succs.map(succ_no, block);
519  // Set the frequency of the new block
520  block->_freq = freq;
521  // add new basic block to basic block list
522  _blocks.insert(block_no + 1, block);
523  _num_blocks++;
524}
525
526//------------------------------no_flip_branch---------------------------------
527// Does this block end in a multiway branch that cannot have the default case
528// flipped for another case?
529static bool no_flip_branch( Block *b ) {
530  int branch_idx = b->_nodes.size() - b->_num_succs-1;
531  if( branch_idx < 1 ) return false;
532  Node *bra = b->_nodes[branch_idx];
533  if( bra->is_Catch() )
534    return true;
535  if( bra->is_Mach() ) {
536    if( bra->is_MachNullCheck() )
537      return true;
538    int iop = bra->as_Mach()->ideal_Opcode();
539    if( iop == Op_FastLock || iop == Op_FastUnlock )
540      return true;
541  }
542  return false;
543}
544
545//------------------------------convert_NeverBranch_to_Goto--------------------
546// Check for NeverBranch at block end.  This needs to become a GOTO to the
547// true target.  NeverBranch are treated as a conditional branch that always
548// goes the same direction for most of the optimizer and are used to give a
549// fake exit path to infinite loops.  At this late stage they need to turn
550// into Goto's so that when you enter the infinite loop you indeed hang.
551void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
552  // Find true target
553  int end_idx = b->end_idx();
554  int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
555  Block *succ = b->_succs[idx];
556  Node* gto = _goto->clone(); // get a new goto node
557  gto->set_req(0, b->head());
558  Node *bp = b->_nodes[end_idx];
559  b->_nodes.map(end_idx,gto); // Slam over NeverBranch
560  _bbs.map(gto->_idx, b);
561  C->regalloc()->set_bad(gto->_idx);
562  b->_nodes.pop();              // Yank projections
563  b->_nodes.pop();              // Yank projections
564  b->_succs.map(0,succ);        // Map only successor
565  b->_num_succs = 1;
566  // remap successor's predecessors if necessary
567  uint j;
568  for( j = 1; j < succ->num_preds(); j++)
569    if( succ->pred(j)->in(0) == bp )
570      succ->head()->set_req(j, gto);
571  // Kill alternate exit path
572  Block *dead = b->_succs[1-idx];
573  for( j = 1; j < dead->num_preds(); j++)
574    if( dead->pred(j)->in(0) == bp )
575      break;
576  // Scan through block, yanking dead path from
577  // all regions and phis.
578  dead->head()->del_req(j);
579  for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
580    dead->_nodes[k]->del_req(j);
581}
582
583//------------------------------move_to_next-----------------------------------
584// Helper function to move block bx to the slot following b_index. Return
585// true if the move is successful, otherwise false
586bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
587  if (bx == NULL) return false;
588
589  // Return false if bx is already scheduled.
590  uint bx_index = bx->_pre_order;
591  if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
592    return false;
593  }
594
595  // Find the current index of block bx on the block list
596  bx_index = b_index + 1;
597  while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
598  assert(_blocks[bx_index] == bx, "block not found");
599
600  // If the previous block conditionally falls into bx, return false,
601  // because moving bx will create an extra jump.
602  for(uint k = 1; k < bx->num_preds(); k++ ) {
603    Block* pred = _bbs[bx->pred(k)->_idx];
604    if (pred == _blocks[bx_index-1]) {
605      if (pred->_num_succs != 1) {
606        return false;
607      }
608    }
609  }
610
611  // Reinsert bx just past block 'b'
612  _blocks.remove(bx_index);
613  _blocks.insert(b_index + 1, bx);
614  return true;
615}
616
617//------------------------------move_to_end------------------------------------
618// Move empty and uncommon blocks to the end.
619void PhaseCFG::move_to_end(Block *b, uint i) {
620  int e = b->is_Empty();
621  if (e != Block::not_empty) {
622    if (e == Block::empty_with_goto) {
623      // Remove the goto, but leave the block.
624      b->_nodes.pop();
625    }
626    // Mark this block as a connector block, which will cause it to be
627    // ignored in certain functions such as non_connector_successor().
628    b->set_connector();
629  }
630  // Move the empty block to the end, and don't recheck.
631  _blocks.remove(i);
632  _blocks.push(b);
633}
634
635//---------------------------set_loop_alignment--------------------------------
636// Set loop alignment for every block
637void PhaseCFG::set_loop_alignment() {
638  uint last = _num_blocks;
639  assert( _blocks[0] == _broot, "" );
640
641  for (uint i = 1; i < last; i++ ) {
642    Block *b = _blocks[i];
643    if (b->head()->is_Loop()) {
644      b->set_loop_alignment(b);
645    }
646  }
647}
648
649//-----------------------------remove_empty------------------------------------
650// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
651// to the end.
652void PhaseCFG::remove_empty() {
653  // Move uncommon blocks to the end
654  uint last = _num_blocks;
655  assert( _blocks[0] == _broot, "" );
656
657  for (uint i = 1; i < last; i++) {
658    Block *b = _blocks[i];
659    if (b->is_connector()) break;
660
661    // Check for NeverBranch at block end.  This needs to become a GOTO to the
662    // true target.  NeverBranch are treated as a conditional branch that
663    // always goes the same direction for most of the optimizer and are used
664    // to give a fake exit path to infinite loops.  At this late stage they
665    // need to turn into Goto's so that when you enter the infinite loop you
666    // indeed hang.
667    if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
668      convert_NeverBranch_to_Goto(b);
669
670    // Look for uncommon blocks and move to end.
671    if (!C->do_freq_based_layout()) {
672      if( b->is_uncommon(_bbs) ) {
673        move_to_end(b, i);
674        last--;                   // No longer check for being uncommon!
675        if( no_flip_branch(b) ) { // Fall-thru case must follow?
676          b = _blocks[i];         // Find the fall-thru block
677          move_to_end(b, i);
678          last--;
679        }
680        i--;                      // backup block counter post-increment
681      }
682    }
683  }
684
685  // Move empty blocks to the end
686  last = _num_blocks;
687  for (uint i = 1; i < last; i++) {
688    Block *b = _blocks[i];
689    if (b->is_Empty() != Block::not_empty) {
690      move_to_end(b, i);
691      last--;
692      i--;
693    }
694  } // End of for all blocks
695}
696
697//-----------------------------fixup_flow--------------------------------------
698// Fix up the final control flow for basic blocks.
699void PhaseCFG::fixup_flow() {
700  // Fixup final control flow for the blocks.  Remove jump-to-next
701  // block.  If neither arm of a IF follows the conditional branch, we
702  // have to add a second jump after the conditional.  We place the
703  // TRUE branch target in succs[0] for both GOTOs and IFs.
704  for (uint i=0; i < _num_blocks; i++) {
705    Block *b = _blocks[i];
706    b->_pre_order = i;          // turn pre-order into block-index
707
708    // Connector blocks need no further processing.
709    if (b->is_connector()) {
710      assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
711             "All connector blocks should sink to the end");
712      continue;
713    }
714    assert(b->is_Empty() != Block::completely_empty,
715           "Empty blocks should be connectors");
716
717    Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
718    Block *bs0 = b->non_connector_successor(0);
719
720    // Check for multi-way branches where I cannot negate the test to
721    // exchange the true and false targets.
722    if( no_flip_branch( b ) ) {
723      // Find fall through case - if must fall into its target
724      int branch_idx = b->_nodes.size() - b->_num_succs;
725      for (uint j2 = 0; j2 < b->_num_succs; j2++) {
726        const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
727        if (p->_con == 0) {
728          // successor j2 is fall through case
729          if (b->non_connector_successor(j2) != bnext) {
730            // but it is not the next block => insert a goto
731            insert_goto_at(i, j2);
732          }
733          // Put taken branch in slot 0
734          if( j2 == 0 && b->_num_succs == 2) {
735            // Flip targets in succs map
736            Block *tbs0 = b->_succs[0];
737            Block *tbs1 = b->_succs[1];
738            b->_succs.map( 0, tbs1 );
739            b->_succs.map( 1, tbs0 );
740          }
741          break;
742        }
743      }
744      // Remove all CatchProjs
745      for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
746
747    } else if (b->_num_succs == 1) {
748      // Block ends in a Goto?
749      if (bnext == bs0) {
750        // We fall into next block; remove the Goto
751        b->_nodes.pop();
752      }
753
754    } else if( b->_num_succs == 2 ) { // Block ends in a If?
755      // Get opcode of 1st projection (matches _succs[0])
756      // Note: Since this basic block has 2 exits, the last 2 nodes must
757      //       be projections (in any order), the 3rd last node must be
758      //       the IfNode (we have excluded other 2-way exits such as
759      //       CatchNodes already).
760      MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
761      ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
762      ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
763
764      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
765      assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
766      assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
767
768      Block *bs1 = b->non_connector_successor(1);
769
770      // Check for neither successor block following the current
771      // block ending in a conditional. If so, move one of the
772      // successors after the current one, provided that the
773      // successor was previously unscheduled, but moveable
774      // (i.e., all paths to it involve a branch).
775      if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
776        // Choose the more common successor based on the probability
777        // of the conditional branch.
778        Block *bx = bs0;
779        Block *by = bs1;
780
781        // _prob is the probability of taking the true path. Make
782        // p the probability of taking successor #1.
783        float p = iff->as_MachIf()->_prob;
784        if( proj0->Opcode() == Op_IfTrue ) {
785          p = 1.0 - p;
786        }
787
788        // Prefer successor #1 if p > 0.5
789        if (p > PROB_FAIR) {
790          bx = bs1;
791          by = bs0;
792        }
793
794        // Attempt the more common successor first
795        if (move_to_next(bx, i)) {
796          bnext = bx;
797        } else if (move_to_next(by, i)) {
798          bnext = by;
799        }
800      }
801
802      // Check for conditional branching the wrong way.  Negate
803      // conditional, if needed, so it falls into the following block
804      // and branches to the not-following block.
805
806      // Check for the next block being in succs[0].  We are going to branch
807      // to succs[0], so we want the fall-thru case as the next block in
808      // succs[1].
809      if (bnext == bs0) {
810        // Fall-thru case in succs[0], so flip targets in succs map
811        Block *tbs0 = b->_succs[0];
812        Block *tbs1 = b->_succs[1];
813        b->_succs.map( 0, tbs1 );
814        b->_succs.map( 1, tbs0 );
815        // Flip projection for each target
816        { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
817
818      } else if( bnext != bs1 ) {
819        // Need a double-branch
820        // The existing conditional branch need not change.
821        // Add a unconditional branch to the false target.
822        // Alas, it must appear in its own block and adding a
823        // block this late in the game is complicated.  Sigh.
824        insert_goto_at(i, 1);
825      }
826
827      // Make sure we TRUE branch to the target
828      if( proj0->Opcode() == Op_IfFalse ) {
829        iff->negate();
830      }
831
832      b->_nodes.pop();          // Remove IfFalse & IfTrue projections
833      b->_nodes.pop();
834
835    } else {
836      // Multi-exit block, e.g. a switch statement
837      // But we don't need to do anything here
838    }
839  } // End of for all blocks
840}
841
842
843//------------------------------dump-------------------------------------------
844#ifndef PRODUCT
845void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
846  const Node *x = end->is_block_proj();
847  assert( x, "not a CFG" );
848
849  // Do not visit this block again
850  if( visited.test_set(x->_idx) ) return;
851
852  // Skip through this block
853  const Node *p = x;
854  do {
855    p = p->in(0);               // Move control forward
856    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
857  } while( !p->is_block_start() );
858
859  // Recursively visit
860  for( uint i=1; i<p->req(); i++ )
861    _dump_cfg(p->in(i),visited);
862
863  // Dump the block
864  _bbs[p->_idx]->dump(&_bbs);
865}
866
867void PhaseCFG::dump( ) const {
868  tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
869  if( _blocks.size() ) {        // Did we do basic-block layout?
870    for( uint i=0; i<_num_blocks; i++ )
871      _blocks[i]->dump(&_bbs);
872  } else {                      // Else do it with a DFS
873    VectorSet visited(_bbs._arena);
874    _dump_cfg(_root,visited);
875  }
876}
877
878void PhaseCFG::dump_headers() {
879  for( uint i = 0; i < _num_blocks; i++ ) {
880    if( _blocks[i] == NULL ) continue;
881    _blocks[i]->dump_head(&_bbs);
882  }
883}
884
885void PhaseCFG::verify( ) const {
886#ifdef ASSERT
887  // Verify sane CFG
888  for( uint i = 0; i < _num_blocks; i++ ) {
889    Block *b = _blocks[i];
890    uint cnt = b->_nodes.size();
891    uint j;
892    for( j = 0; j < cnt; j++ ) {
893      Node *n = b->_nodes[j];
894      assert( _bbs[n->_idx] == b, "" );
895      if( j >= 1 && n->is_Mach() &&
896          n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
897        assert( j == 1 || b->_nodes[j-1]->is_Phi(),
898                "CreateEx must be first instruction in block" );
899      }
900      for( uint k = 0; k < n->req(); k++ ) {
901        Node *def = n->in(k);
902        if( def && def != n ) {
903          assert( _bbs[def->_idx] || def->is_Con(),
904                  "must have block; constants for debug info ok" );
905          // Verify that instructions in the block is in correct order.
906          // Uses must follow their definition if they are at the same block.
907          // Mostly done to check that MachSpillCopy nodes are placed correctly
908          // when CreateEx node is moved in build_ifg_physical().
909          if( _bbs[def->_idx] == b &&
910              !(b->head()->is_Loop() && n->is_Phi()) &&
911              // See (+++) comment in reg_split.cpp
912              !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
913            bool is_loop = false;
914            if (n->is_Phi()) {
915              for( uint l = 1; l < def->req(); l++ ) {
916                if (n == def->in(l)) {
917                  is_loop = true;
918                  break; // Some kind of loop
919                }
920              }
921            }
922            assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
923          }
924          if( def->is_SafePointScalarObject() ) {
925            assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
926            assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
927          }
928        }
929      }
930    }
931
932    j = b->end_idx();
933    Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
934    assert( bp, "last instruction must be a block proj" );
935    assert( bp == b->_nodes[j], "wrong number of successors for this block" );
936    if( bp->is_Catch() ) {
937      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
938      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
939    }
940    else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
941      assert( b->_num_succs == 2, "Conditional branch must have two targets");
942    }
943  }
944#endif
945}
946#endif
947
948//=============================================================================
949//------------------------------UnionFind--------------------------------------
950UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
951  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
952}
953
954void UnionFind::extend( uint from_idx, uint to_idx ) {
955  _nesting.check();
956  if( from_idx >= _max ) {
957    uint size = 16;
958    while( size <= from_idx ) size <<=1;
959    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
960    _max = size;
961  }
962  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
963  _indices[from_idx] = to_idx;
964}
965
966void UnionFind::reset( uint max ) {
967  assert( max <= max_uint, "Must fit within uint" );
968  // Force the Union-Find mapping to be at least this large
969  extend(max,0);
970  // Initialize to be the ID mapping.
971  for( uint i=0; i<max; i++ ) map(i,i);
972}
973
974//------------------------------Find_compress----------------------------------
975// Straight out of Tarjan's union-find algorithm
976uint UnionFind::Find_compress( uint idx ) {
977  uint cur  = idx;
978  uint next = lookup(cur);
979  while( next != cur ) {        // Scan chain of equivalences
980    assert( next < cur, "always union smaller" );
981    cur = next;                 // until find a fixed-point
982    next = lookup(cur);
983  }
984  // Core of union-find algorithm: update chain of
985  // equivalences to be equal to the root.
986  while( idx != next ) {
987    uint tmp = lookup(idx);
988    map(idx, next);
989    idx = tmp;
990  }
991  return idx;
992}
993
994//------------------------------Find_const-------------------------------------
995// Like Find above, but no path compress, so bad asymptotic behavior
996uint UnionFind::Find_const( uint idx ) const {
997  if( idx == 0 ) return idx;    // Ignore the zero idx
998  // Off the end?  This can happen during debugging dumps
999  // when data structures have not finished being updated.
1000  if( idx >= _max ) return idx;
1001  uint next = lookup(idx);
1002  while( next != idx ) {        // Scan chain of equivalences
1003    idx = next;                 // until find a fixed-point
1004    next = lookup(idx);
1005  }
1006  return next;
1007}
1008
1009//------------------------------Union------------------------------------------
1010// union 2 sets together.
1011void UnionFind::Union( uint idx1, uint idx2 ) {
1012  uint src = Find(idx1);
1013  uint dst = Find(idx2);
1014  assert( src, "" );
1015  assert( dst, "" );
1016  assert( src < _max, "oob" );
1017  assert( dst < _max, "oob" );
1018  assert( src < dst, "always union smaller" );
1019  map(dst,src);
1020}
1021
1022#ifndef PRODUCT
1023static void edge_dump(GrowableArray<CFGEdge *> *edges) {
1024  tty->print_cr("---- Edges ----");
1025  for (int i = 0; i < edges->length(); i++) {
1026    CFGEdge *e = edges->at(i);
1027    if (e != NULL) {
1028      edges->at(i)->dump();
1029    }
1030  }
1031}
1032
1033static void trace_dump(Trace *traces[], int count) {
1034  tty->print_cr("---- Traces ----");
1035  for (int i = 0; i < count; i++) {
1036    Trace *tr = traces[i];
1037    if (tr != NULL) {
1038      tr->dump();
1039    }
1040  }
1041}
1042
1043void Trace::dump( ) const {
1044  tty->print_cr("Trace (freq %f)", first_block()->_freq);
1045  for (Block *b = first_block(); b != NULL; b = next(b)) {
1046    tty->print("  B%d", b->_pre_order);
1047    if (b->head()->is_Loop()) {
1048      tty->print(" (L%d)", b->compute_loop_alignment());
1049    }
1050    if (b->has_loop_alignment()) {
1051      tty->print(" (T%d)", b->code_alignment());
1052    }
1053  }
1054  tty->cr();
1055}
1056
1057void CFGEdge::dump( ) const {
1058  tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1059             from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1060  switch(state()) {
1061  case connected:
1062    tty->print("connected");
1063    break;
1064  case open:
1065    tty->print("open");
1066    break;
1067  case interior:
1068    tty->print("interior");
1069    break;
1070  }
1071  if (infrequent()) {
1072    tty->print("  infrequent");
1073  }
1074  tty->cr();
1075}
1076#endif
1077
1078//=============================================================================
1079
1080//------------------------------edge_order-------------------------------------
1081// Comparison function for edges
1082static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1083  float freq0 = (*e0)->freq();
1084  float freq1 = (*e1)->freq();
1085  if (freq0 != freq1) {
1086    return freq0 > freq1 ? -1 : 1;
1087  }
1088
1089  int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1090  int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1091
1092  return dist1 - dist0;
1093}
1094
1095//------------------------------trace_frequency_order--------------------------
1096// Comparison function for edges
1097static int trace_frequency_order(const void *p0, const void *p1) {
1098  Trace *tr0 = *(Trace **) p0;
1099  Trace *tr1 = *(Trace **) p1;
1100  Block *b0 = tr0->first_block();
1101  Block *b1 = tr1->first_block();
1102
1103  // The trace of connector blocks goes at the end;
1104  // we only expect one such trace
1105  if (b0->is_connector() != b1->is_connector()) {
1106    return b1->is_connector() ? -1 : 1;
1107  }
1108
1109  // Pull more frequently executed blocks to the beginning
1110  float freq0 = b0->_freq;
1111  float freq1 = b1->_freq;
1112  if (freq0 != freq1) {
1113    return freq0 > freq1 ? -1 : 1;
1114  }
1115
1116  int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1117
1118  return diff;
1119}
1120
1121//------------------------------find_edges-------------------------------------
1122// Find edges of interest, i.e, those which can fall through. Presumes that
1123// edges which don't fall through are of low frequency and can be generally
1124// ignored.  Initialize the list of traces.
1125void PhaseBlockLayout::find_edges()
1126{
1127  // Walk the blocks, creating edges and Traces
1128  uint i;
1129  Trace *tr = NULL;
1130  for (i = 0; i < _cfg._num_blocks; i++) {
1131    Block *b = _cfg._blocks[i];
1132    tr = new Trace(b, next, prev);
1133    traces[tr->id()] = tr;
1134
1135    // All connector blocks should be at the end of the list
1136    if (b->is_connector()) break;
1137
1138    // If this block and the next one have a one-to-one successor
1139    // predecessor relationship, simply append the next block
1140    int nfallthru = b->num_fall_throughs();
1141    while (nfallthru == 1 &&
1142           b->succ_fall_through(0)) {
1143      Block *n = b->_succs[0];
1144
1145      // Skip over single-entry connector blocks, we don't want to
1146      // add them to the trace.
1147      while (n->is_connector() && n->num_preds() == 1) {
1148        n = n->_succs[0];
1149      }
1150
1151      // We see a merge point, so stop search for the next block
1152      if (n->num_preds() != 1) break;
1153
1154      i++;
1155      assert(n = _cfg._blocks[i], "expecting next block");
1156      tr->append(n);
1157      uf->map(n->_pre_order, tr->id());
1158      traces[n->_pre_order] = NULL;
1159      nfallthru = b->num_fall_throughs();
1160      b = n;
1161    }
1162
1163    if (nfallthru > 0) {
1164      // Create a CFGEdge for each outgoing
1165      // edge that could be a fall-through.
1166      for (uint j = 0; j < b->_num_succs; j++ ) {
1167        if (b->succ_fall_through(j)) {
1168          Block *target = b->non_connector_successor(j);
1169          float freq = b->_freq * b->succ_prob(j);
1170          int from_pct = (int) ((100 * freq) / b->_freq);
1171          int to_pct = (int) ((100 * freq) / target->_freq);
1172          edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1173        }
1174      }
1175    }
1176  }
1177
1178  // Group connector blocks into one trace
1179  for (i++; i < _cfg._num_blocks; i++) {
1180    Block *b = _cfg._blocks[i];
1181    assert(b->is_connector(), "connector blocks at the end");
1182    tr->append(b);
1183    uf->map(b->_pre_order, tr->id());
1184    traces[b->_pre_order] = NULL;
1185  }
1186}
1187
1188//------------------------------union_traces----------------------------------
1189// Union two traces together in uf, and null out the trace in the list
1190void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1191{
1192  uint old_id = old_trace->id();
1193  uint updated_id = updated_trace->id();
1194
1195  uint lo_id = updated_id;
1196  uint hi_id = old_id;
1197
1198  // If from is greater than to, swap values to meet
1199  // UnionFind guarantee.
1200  if (updated_id > old_id) {
1201    lo_id = old_id;
1202    hi_id = updated_id;
1203
1204    // Fix up the trace ids
1205    traces[lo_id] = traces[updated_id];
1206    updated_trace->set_id(lo_id);
1207  }
1208
1209  // Union the lower with the higher and remove the pointer
1210  // to the higher.
1211  uf->Union(lo_id, hi_id);
1212  traces[hi_id] = NULL;
1213}
1214
1215//------------------------------grow_traces-------------------------------------
1216// Append traces together via the most frequently executed edges
1217void PhaseBlockLayout::grow_traces()
1218{
1219  // Order the edges, and drive the growth of Traces via the most
1220  // frequently executed edges.
1221  edges->sort(edge_order);
1222  for (int i = 0; i < edges->length(); i++) {
1223    CFGEdge *e = edges->at(i);
1224
1225    if (e->state() != CFGEdge::open) continue;
1226
1227    Block *src_block = e->from();
1228    Block *targ_block = e->to();
1229
1230    // Don't grow traces along backedges?
1231    if (!BlockLayoutRotateLoops) {
1232      if (targ_block->_rpo <= src_block->_rpo) {
1233        targ_block->set_loop_alignment(targ_block);
1234        continue;
1235      }
1236    }
1237
1238    Trace *src_trace = trace(src_block);
1239    Trace *targ_trace = trace(targ_block);
1240
1241    // If the edge in question can join two traces at their ends,
1242    // append one trace to the other.
1243   if (src_trace->last_block() == src_block) {
1244      if (src_trace == targ_trace) {
1245        e->set_state(CFGEdge::interior);
1246        if (targ_trace->backedge(e)) {
1247          // Reset i to catch any newly eligible edge
1248          // (Or we could remember the first "open" edge, and reset there)
1249          i = 0;
1250        }
1251      } else if (targ_trace->first_block() == targ_block) {
1252        e->set_state(CFGEdge::connected);
1253        src_trace->append(targ_trace);
1254        union_traces(src_trace, targ_trace);
1255      }
1256    }
1257  }
1258}
1259
1260//------------------------------merge_traces-----------------------------------
1261// Embed one trace into another, if the fork or join points are sufficiently
1262// balanced.
1263void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1264{
1265  // Walk the edge list a another time, looking at unprocessed edges.
1266  // Fold in diamonds
1267  for (int i = 0; i < edges->length(); i++) {
1268    CFGEdge *e = edges->at(i);
1269
1270    if (e->state() != CFGEdge::open) continue;
1271    if (fall_thru_only) {
1272      if (e->infrequent()) continue;
1273    }
1274
1275    Block *src_block = e->from();
1276    Trace *src_trace = trace(src_block);
1277    bool src_at_tail = src_trace->last_block() == src_block;
1278
1279    Block *targ_block  = e->to();
1280    Trace *targ_trace  = trace(targ_block);
1281    bool targ_at_start = targ_trace->first_block() == targ_block;
1282
1283    if (src_trace == targ_trace) {
1284      // This may be a loop, but we can't do much about it.
1285      e->set_state(CFGEdge::interior);
1286      continue;
1287    }
1288
1289    if (fall_thru_only) {
1290      // If the edge links the middle of two traces, we can't do anything.
1291      // Mark the edge and continue.
1292      if (!src_at_tail & !targ_at_start) {
1293        continue;
1294      }
1295
1296      // Don't grow traces along backedges?
1297      if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1298          continue;
1299      }
1300
1301      // If both ends of the edge are available, why didn't we handle it earlier?
1302      assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1303
1304      if (targ_at_start) {
1305        // Insert the "targ" trace in the "src" trace if the insertion point
1306        // is a two way branch.
1307        // Better profitability check possible, but may not be worth it.
1308        // Someday, see if the this "fork" has an associated "join";
1309        // then make a policy on merging this trace at the fork or join.
1310        // For example, other things being equal, it may be better to place this
1311        // trace at the join point if the "src" trace ends in a two-way, but
1312        // the insertion point is one-way.
1313        assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1314        e->set_state(CFGEdge::connected);
1315        src_trace->insert_after(src_block, targ_trace);
1316        union_traces(src_trace, targ_trace);
1317      } else if (src_at_tail) {
1318        if (src_trace != trace(_cfg._broot)) {
1319          e->set_state(CFGEdge::connected);
1320          targ_trace->insert_before(targ_block, src_trace);
1321          union_traces(targ_trace, src_trace);
1322        }
1323      }
1324    } else if (e->state() == CFGEdge::open) {
1325      // Append traces, even without a fall-thru connection.
1326      // But leave root entry at the beginning of the block list.
1327      if (targ_trace != trace(_cfg._broot)) {
1328        e->set_state(CFGEdge::connected);
1329        src_trace->append(targ_trace);
1330        union_traces(src_trace, targ_trace);
1331      }
1332    }
1333  }
1334}
1335
1336//----------------------------reorder_traces-----------------------------------
1337// Order the sequence of the traces in some desirable way, and fixup the
1338// jumps at the end of each block.
1339void PhaseBlockLayout::reorder_traces(int count)
1340{
1341  ResourceArea *area = Thread::current()->resource_area();
1342  Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1343  Block_List worklist;
1344  int new_count = 0;
1345
1346  // Compact the traces.
1347  for (int i = 0; i < count; i++) {
1348    Trace *tr = traces[i];
1349    if (tr != NULL) {
1350      new_traces[new_count++] = tr;
1351    }
1352  }
1353
1354  // The entry block should be first on the new trace list.
1355  Trace *tr = trace(_cfg._broot);
1356  assert(tr == new_traces[0], "entry trace misplaced");
1357
1358  // Sort the new trace list by frequency
1359  qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1360
1361  // Patch up the successor blocks
1362  _cfg._blocks.reset();
1363  _cfg._num_blocks = 0;
1364  for (int i = 0; i < new_count; i++) {
1365    Trace *tr = new_traces[i];
1366    if (tr != NULL) {
1367      tr->fixup_blocks(_cfg);
1368    }
1369  }
1370}
1371
1372//------------------------------PhaseBlockLayout-------------------------------
1373// Order basic blocks based on frequency
1374PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1375  Phase(BlockLayout),
1376  _cfg(cfg)
1377{
1378  ResourceMark rm;
1379  ResourceArea *area = Thread::current()->resource_area();
1380
1381  // List of traces
1382  int size = _cfg._num_blocks + 1;
1383  traces = NEW_ARENA_ARRAY(area, Trace *, size);
1384  memset(traces, 0, size*sizeof(Trace*));
1385  next = NEW_ARENA_ARRAY(area, Block *, size);
1386  memset(next,   0, size*sizeof(Block *));
1387  prev = NEW_ARENA_ARRAY(area, Block *, size);
1388  memset(prev  , 0, size*sizeof(Block *));
1389
1390  // List of edges
1391  edges = new GrowableArray<CFGEdge*>;
1392
1393  // Mapping block index --> block_trace
1394  uf = new UnionFind(size);
1395  uf->reset(size);
1396
1397  // Find edges and create traces.
1398  find_edges();
1399
1400  // Grow traces at their ends via most frequent edges.
1401  grow_traces();
1402
1403  // Merge one trace into another, but only at fall-through points.
1404  // This may make diamonds and other related shapes in a trace.
1405  merge_traces(true);
1406
1407  // Run merge again, allowing two traces to be catenated, even if
1408  // one does not fall through into the other. This appends loosely
1409  // related traces to be near each other.
1410  merge_traces(false);
1411
1412  // Re-order all the remaining traces by frequency
1413  reorder_traces(size);
1414
1415  assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1416}
1417
1418
1419//------------------------------backedge---------------------------------------
1420// Edge e completes a loop in a trace. If the target block is head of the
1421// loop, rotate the loop block so that the loop ends in a conditional branch.
1422bool Trace::backedge(CFGEdge *e) {
1423  bool loop_rotated = false;
1424  Block *src_block  = e->from();
1425  Block *targ_block    = e->to();
1426
1427  assert(last_block() == src_block, "loop discovery at back branch");
1428  if (first_block() == targ_block) {
1429    if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1430      // Find the last block in the trace that has a conditional
1431      // branch.
1432      Block *b;
1433      for (b = last_block(); b != NULL; b = prev(b)) {
1434        if (b->num_fall_throughs() == 2) {
1435          break;
1436        }
1437      }
1438
1439      if (b != last_block() && b != NULL) {
1440        loop_rotated = true;
1441
1442        // Rotate the loop by doing two-part linked-list surgery.
1443        append(first_block());
1444        break_loop_after(b);
1445      }
1446    }
1447
1448    // Backbranch to the top of a trace
1449    // Scroll forward through the trace from the targ_block. If we find
1450    // a loop head before another loop top, use the the loop head alignment.
1451    for (Block *b = targ_block; b != NULL; b = next(b)) {
1452      if (b->has_loop_alignment()) {
1453        break;
1454      }
1455      if (b->head()->is_Loop()) {
1456        targ_block = b;
1457        break;
1458      }
1459    }
1460
1461    first_block()->set_loop_alignment(targ_block);
1462
1463  } else {
1464    // Backbranch into the middle of a trace
1465    targ_block->set_loop_alignment(targ_block);
1466  }
1467
1468  return loop_rotated;
1469}
1470
1471//------------------------------fixup_blocks-----------------------------------
1472// push blocks onto the CFG list
1473// ensure that blocks have the correct two-way branch sense
1474void Trace::fixup_blocks(PhaseCFG &cfg) {
1475  Block *last = last_block();
1476  for (Block *b = first_block(); b != NULL; b = next(b)) {
1477    cfg._blocks.push(b);
1478    cfg._num_blocks++;
1479    if (!b->is_connector()) {
1480      int nfallthru = b->num_fall_throughs();
1481      if (b != last) {
1482        if (nfallthru == 2) {
1483          // Ensure that the sense of the branch is correct
1484          Block *bnext = next(b);
1485          Block *bs0 = b->non_connector_successor(0);
1486
1487          MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1488          ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1489          ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1490
1491          if (bnext == bs0) {
1492            // Fall-thru case in succs[0], should be in succs[1]
1493
1494            // Flip targets in _succs map
1495            Block *tbs0 = b->_succs[0];
1496            Block *tbs1 = b->_succs[1];
1497            b->_succs.map( 0, tbs1 );
1498            b->_succs.map( 1, tbs0 );
1499
1500            // Flip projections to match targets
1501            b->_nodes.map(b->_nodes.size()-2, proj1);
1502            b->_nodes.map(b->_nodes.size()-1, proj0);
1503          }
1504        }
1505      }
1506    }
1507  }
1508}
1509