block.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Optimization - Graph Style
26
27#include "incls/_precompiled.incl"
28#include "incls/_block.cpp.incl"
29
30
31//-----------------------------------------------------------------------------
32void Block_Array::grow( uint i ) {
33  assert(i >= Max(), "must be an overflow");
34  debug_only(_limit = i+1);
35  if( i < _size )  return;
36  if( !_size ) {
37    _size = 1;
38    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
39    _blocks[0] = NULL;
40  }
41  uint old = _size;
42  while( i >= _size ) _size <<= 1;      // Double to fit
43  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
44  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
45}
46
47//=============================================================================
48void Block_List::remove(uint i) {
49  assert(i < _cnt, "index out of bounds");
50  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
51  pop(); // shrink list by one block
52}
53
54void Block_List::insert(uint i, Block *b) {
55  push(b); // grow list by one block
56  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
57  _blocks[i] = b;
58}
59
60
61//=============================================================================
62
63uint Block::code_alignment() {
64  // Check for Root block
65  if( _pre_order == 0 ) return CodeEntryAlignment;
66  // Check for Start block
67  if( _pre_order == 1 ) return InteriorEntryAlignment;
68  // Check for loop alignment
69  Node *h = head();
70  if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
71    // Pre- and post-loops have low trip count so do not bother with
72    // NOPs for align loop head.  The constants are hidden from tuning
73    // but only because my "divide by 4" heuristic surely gets nearly
74    // all possible gain (a "do not align at all" heuristic has a
75    // chance of getting a really tiny gain).
76    if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
77                                h->as_CountedLoop()->is_post_loop()) )
78      return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
79    // Loops with low backedge frequency should not be aligned.
80    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
81    if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
82      return 1;             // Loop does not loop, more often than not!
83    }
84    return OptoLoopAlignment; // Otherwise align loop head
85  }
86  return 1;                     // no particular alignment
87}
88
89//-----------------------------------------------------------------------------
90// Compute the size of first 'inst_cnt' instructions in this block.
91// Return the number of instructions left to compute if the block has
92// less then 'inst_cnt' instructions.
93uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
94                                    PhaseRegAlloc* ra) {
95  uint last_inst = _nodes.size();
96  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
97    uint inst_size = _nodes[j]->size(ra);
98    if( inst_size > 0 ) {
99      inst_cnt--;
100      uint sz = sum_size + inst_size;
101      if( sz <= (uint)OptoLoopAlignment ) {
102        // Compute size of instructions which fit into fetch buffer only
103        // since all inst_cnt instructions will not fit even if we align them.
104        sum_size = sz;
105      } else {
106        return 0;
107      }
108    }
109  }
110  return inst_cnt;
111}
112
113//-----------------------------------------------------------------------------
114uint Block::find_node( const Node *n ) const {
115  for( uint i = 0; i < _nodes.size(); i++ ) {
116    if( _nodes[i] == n )
117      return i;
118  }
119  ShouldNotReachHere();
120  return 0;
121}
122
123// Find and remove n from block list
124void Block::find_remove( const Node *n ) {
125  _nodes.remove(find_node(n));
126}
127
128//------------------------------is_Empty---------------------------------------
129// Return empty status of a block.  Empty blocks contain only the head, other
130// ideal nodes, and an optional trailing goto.
131int Block::is_Empty() const {
132
133  // Root or start block is not considered empty
134  if (head()->is_Root() || head()->is_Start()) {
135    return not_empty;
136  }
137
138  int success_result = completely_empty;
139  int end_idx = _nodes.size()-1;
140
141  // Check for ending goto
142  if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
143    success_result = empty_with_goto;
144    end_idx--;
145  }
146
147  // Unreachable blocks are considered empty
148  if (num_preds() <= 1) {
149    return success_result;
150  }
151
152  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
153  // turn directly into code, because only MachNodes have non-trivial
154  // emit() functions.
155  while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
156    end_idx--;
157  }
158
159  // No room for any interesting instructions?
160  if (end_idx == 0) {
161    return success_result;
162  }
163
164  return not_empty;
165}
166
167//------------------------------has_uncommon_code------------------------------
168// Return true if the block's code implies that it is not likely to be
169// executed infrequently.  Check to see if the block ends in a Halt or
170// a low probability call.
171bool Block::has_uncommon_code() const {
172  Node* en = end();
173
174  if (en->is_Goto())
175    en = en->in(0);
176  if (en->is_Catch())
177    en = en->in(0);
178  if (en->is_Proj() && en->in(0)->is_MachCall()) {
179    MachCallNode* call = en->in(0)->as_MachCall();
180    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
181      // This is true for slow-path stubs like new_{instance,array},
182      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
183      // The magic number corresponds to the probability of an uncommon_trap,
184      // even though it is a count not a probability.
185      return true;
186    }
187  }
188
189  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
190  return op == Op_Halt;
191}
192
193//------------------------------is_uncommon------------------------------------
194// True if block is low enough frequency or guarded by a test which
195// mostly does not go here.
196bool Block::is_uncommon( Block_Array &bbs ) const {
197  // Initial blocks must never be moved, so are never uncommon.
198  if (head()->is_Root() || head()->is_Start())  return false;
199
200  // Check for way-low freq
201  if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
202
203  // Look for code shape indicating uncommon_trap or slow path
204  if (has_uncommon_code()) return true;
205
206  const float epsilon = 0.05f;
207  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
208  uint uncommon_preds = 0;
209  uint freq_preds = 0;
210  uint uncommon_for_freq_preds = 0;
211
212  for( uint i=1; i<num_preds(); i++ ) {
213    Block* guard = bbs[pred(i)->_idx];
214    // Check to see if this block follows its guard 1 time out of 10000
215    // or less.
216    //
217    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
218    // we intend to be "uncommon", such as slow-path TLE allocation,
219    // predicted call failure, and uncommon trap triggers.
220    //
221    // Use an epsilon value of 5% to allow for variability in frequency
222    // predictions and floating point calculations. The net effect is
223    // that guard_factor is set to 9500.
224    //
225    // Ignore low-frequency blocks.
226    // The next check is (guard->_freq < 1.e-5 * 9500.).
227    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
228      uncommon_preds++;
229    } else {
230      freq_preds++;
231      if( _freq < guard->_freq * guard_factor ) {
232        uncommon_for_freq_preds++;
233      }
234    }
235  }
236  if( num_preds() > 1 &&
237      // The block is uncommon if all preds are uncommon or
238      (uncommon_preds == (num_preds()-1) ||
239      // it is uncommon for all frequent preds.
240       uncommon_for_freq_preds == freq_preds) ) {
241    return true;
242  }
243  return false;
244}
245
246//------------------------------dump-------------------------------------------
247#ifndef PRODUCT
248void Block::dump_bidx(const Block* orig) const {
249  if (_pre_order) tty->print("B%d",_pre_order);
250  else tty->print("N%d", head()->_idx);
251
252  if (Verbose && orig != this) {
253    // Dump the original block's idx
254    tty->print(" (");
255    orig->dump_bidx(orig);
256    tty->print(")");
257  }
258}
259
260void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
261  if (is_connector()) {
262    for (uint i=1; i<num_preds(); i++) {
263      Block *p = ((*bbs)[pred(i)->_idx]);
264      p->dump_pred(bbs, orig);
265    }
266  } else {
267    dump_bidx(orig);
268    tty->print(" ");
269  }
270}
271
272void Block::dump_head( const Block_Array *bbs ) const {
273  // Print the basic block
274  dump_bidx(this);
275  tty->print(": #\t");
276
277  // Print the incoming CFG edges and the outgoing CFG edges
278  for( uint i=0; i<_num_succs; i++ ) {
279    non_connector_successor(i)->dump_bidx(_succs[i]);
280    tty->print(" ");
281  }
282  tty->print("<- ");
283  if( head()->is_block_start() ) {
284    for (uint i=1; i<num_preds(); i++) {
285      Node *s = pred(i);
286      if (bbs) {
287        Block *p = (*bbs)[s->_idx];
288        p->dump_pred(bbs, p);
289      } else {
290        while (!s->is_block_start())
291          s = s->in(0);
292        tty->print("N%d ", s->_idx );
293      }
294    }
295  } else
296    tty->print("BLOCK HEAD IS JUNK  ");
297
298  // Print loop, if any
299  const Block *bhead = this;    // Head of self-loop
300  Node *bh = bhead->head();
301  if( bbs && bh->is_Loop() && !head()->is_Root() ) {
302    LoopNode *loop = bh->as_Loop();
303    const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
304    while (bx->is_connector()) {
305      bx = (*bbs)[bx->pred(1)->_idx];
306    }
307    tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
308    // Dump any loop-specific bits, especially for CountedLoops.
309    loop->dump_spec(tty);
310  }
311  tty->print(" Freq: %g",_freq);
312  if( Verbose || WizardMode ) {
313    tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
314    tty->print(" RegPressure: %d",_reg_pressure);
315    tty->print(" IHRP Index: %d",_ihrp_index);
316    tty->print(" FRegPressure: %d",_freg_pressure);
317    tty->print(" FHRP Index: %d",_fhrp_index);
318  }
319  tty->print_cr("");
320}
321
322void Block::dump() const { dump(0); }
323
324void Block::dump( const Block_Array *bbs ) const {
325  dump_head(bbs);
326  uint cnt = _nodes.size();
327  for( uint i=0; i<cnt; i++ )
328    _nodes[i]->dump();
329  tty->print("\n");
330}
331#endif
332
333//=============================================================================
334//------------------------------PhaseCFG---------------------------------------
335PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
336  Phase(CFG),
337  _bbs(a),
338  _root(r)
339#ifndef PRODUCT
340  , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
341#endif
342{
343  ResourceMark rm;
344  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
345  // then Match it into a machine-specific Node.  Then clone the machine
346  // Node on demand.
347  Node *x = new (C, 1) GotoNode(NULL);
348  x->init_req(0, x);
349  _goto = m.match_tree(x);
350  assert(_goto != NULL, "");
351  _goto->set_req(0,_goto);
352
353  // Build the CFG in Reverse Post Order
354  _num_blocks = build_cfg();
355  _broot = _bbs[_root->_idx];
356}
357
358//------------------------------build_cfg--------------------------------------
359// Build a proper looking CFG.  Make every block begin with either a StartNode
360// or a RegionNode.  Make every block end with either a Goto, If or Return.
361// The RootNode both starts and ends it's own block.  Do this with a recursive
362// backwards walk over the control edges.
363uint PhaseCFG::build_cfg() {
364  Arena *a = Thread::current()->resource_area();
365  VectorSet visited(a);
366
367  // Allocate stack with enough space to avoid frequent realloc
368  Node_Stack nstack(a, C->unique() >> 1);
369  nstack.push(_root, 0);
370  uint sum = 0;                 // Counter for blocks
371
372  while (nstack.is_nonempty()) {
373    // node and in's index from stack's top
374    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
375    // only nodes which point to the start of basic block (see below).
376    Node *np = nstack.node();
377    // idx > 0, except for the first node (_root) pushed on stack
378    // at the beginning when idx == 0.
379    // We will use the condition (idx == 0) later to end the build.
380    uint idx = nstack.index();
381    Node *proj = np->in(idx);
382    const Node *x = proj->is_block_proj();
383    // Does the block end with a proper block-ending Node?  One of Return,
384    // If or Goto? (This check should be done for visited nodes also).
385    if (x == NULL) {                    // Does not end right...
386      Node *g = _goto->clone(); // Force it to end in a Goto
387      g->set_req(0, proj);
388      np->set_req(idx, g);
389      x = proj = g;
390    }
391    if (!visited.test_set(x->_idx)) { // Visit this block once
392      // Skip any control-pinned middle'in stuff
393      Node *p = proj;
394      do {
395        proj = p;                   // Update pointer to last Control
396        p = p->in(0);               // Move control forward
397      } while( !p->is_block_proj() &&
398               !p->is_block_start() );
399      // Make the block begin with one of Region or StartNode.
400      if( !p->is_block_start() ) {
401        RegionNode *r = new (C, 2) RegionNode( 2 );
402        r->init_req(1, p);         // Insert RegionNode in the way
403        proj->set_req(0, r);        // Insert RegionNode in the way
404        p = r;
405      }
406      // 'p' now points to the start of this basic block
407
408      // Put self in array of basic blocks
409      Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
410      _bbs.map(p->_idx,bb);
411      _bbs.map(x->_idx,bb);
412      if( x != p )                  // Only for root is x == p
413        bb->_nodes.push((Node*)x);
414
415      // Now handle predecessors
416      ++sum;                        // Count 1 for self block
417      uint cnt = bb->num_preds();
418      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
419        Node *prevproj = p->in(i);  // Get prior input
420        assert( !prevproj->is_Con(), "dead input not removed" );
421        // Check to see if p->in(i) is a "control-dependent" CFG edge -
422        // i.e., it splits at the source (via an IF or SWITCH) and merges
423        // at the destination (via a many-input Region).
424        // This breaks critical edges.  The RegionNode to start the block
425        // will be added when <p,i> is pulled off the node stack
426        if ( cnt > 2 ) {             // Merging many things?
427          assert( prevproj== bb->pred(i),"");
428          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
429            // Force a block on the control-dependent edge
430            Node *g = _goto->clone();       // Force it to end in a Goto
431            g->set_req(0,prevproj);
432            p->set_req(i,g);
433          }
434        }
435        nstack.push(p, i);  // 'p' is RegionNode or StartNode
436      }
437    } else { // Post-processing visited nodes
438      nstack.pop();                 // remove node from stack
439      // Check if it the fist node pushed on stack at the beginning.
440      if (idx == 0) break;          // end of the build
441      // Find predecessor basic block
442      Block *pb = _bbs[x->_idx];
443      // Insert into nodes array, if not already there
444      if( !_bbs.lookup(proj->_idx) ) {
445        assert( x != proj, "" );
446        // Map basic block of projection
447        _bbs.map(proj->_idx,pb);
448        pb->_nodes.push(proj);
449      }
450      // Insert self as a child of my predecessor block
451      pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
452      assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
453              "too many control users, not a CFG?" );
454    }
455  }
456  // Return number of basic blocks for all children and self
457  return sum;
458}
459
460//------------------------------insert_goto_at---------------------------------
461// Inserts a goto & corresponding basic block between
462// block[block_no] and its succ_no'th successor block
463void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
464  // get block with block_no
465  assert(block_no < _num_blocks, "illegal block number");
466  Block* in  = _blocks[block_no];
467  // get successor block succ_no
468  assert(succ_no < in->_num_succs, "illegal successor number");
469  Block* out = in->_succs[succ_no];
470  // get ProjNode corresponding to the succ_no'th successor of the in block
471  ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
472  // create region for basic block
473  RegionNode* region = new (C, 2) RegionNode(2);
474  region->init_req(1, proj);
475  // setup corresponding basic block
476  Block* block = new (_bbs._arena) Block(_bbs._arena, region);
477  _bbs.map(region->_idx, block);
478  C->regalloc()->set_bad(region->_idx);
479  // add a goto node
480  Node* gto = _goto->clone(); // get a new goto node
481  gto->set_req(0, region);
482  // add it to the basic block
483  block->_nodes.push(gto);
484  _bbs.map(gto->_idx, block);
485  C->regalloc()->set_bad(gto->_idx);
486  // hook up successor block
487  block->_succs.map(block->_num_succs++, out);
488  // remap successor's predecessors if necessary
489  for (uint i = 1; i < out->num_preds(); i++) {
490    if (out->pred(i) == proj) out->head()->set_req(i, gto);
491  }
492  // remap predecessor's successor to new block
493  in->_succs.map(succ_no, block);
494  // add new basic block to basic block list
495  _blocks.insert(block_no + 1, block);
496  _num_blocks++;
497}
498
499//------------------------------no_flip_branch---------------------------------
500// Does this block end in a multiway branch that cannot have the default case
501// flipped for another case?
502static bool no_flip_branch( Block *b ) {
503  int branch_idx = b->_nodes.size() - b->_num_succs-1;
504  if( branch_idx < 1 ) return false;
505  Node *bra = b->_nodes[branch_idx];
506  if( bra->is_Catch() ) return true;
507  if( bra->is_Mach() ) {
508    if( bra->is_MachNullCheck() ) return true;
509    int iop = bra->as_Mach()->ideal_Opcode();
510    if( iop == Op_FastLock || iop == Op_FastUnlock )
511      return true;
512  }
513  return false;
514}
515
516//------------------------------convert_NeverBranch_to_Goto--------------------
517// Check for NeverBranch at block end.  This needs to become a GOTO to the
518// true target.  NeverBranch are treated as a conditional branch that always
519// goes the same direction for most of the optimizer and are used to give a
520// fake exit path to infinite loops.  At this late stage they need to turn
521// into Goto's so that when you enter the infinite loop you indeed hang.
522void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
523  // Find true target
524  int end_idx = b->end_idx();
525  int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
526  Block *succ = b->_succs[idx];
527  Node* gto = _goto->clone(); // get a new goto node
528  gto->set_req(0, b->head());
529  Node *bp = b->_nodes[end_idx];
530  b->_nodes.map(end_idx,gto); // Slam over NeverBranch
531  _bbs.map(gto->_idx, b);
532  C->regalloc()->set_bad(gto->_idx);
533  b->_nodes.pop();              // Yank projections
534  b->_nodes.pop();              // Yank projections
535  b->_succs.map(0,succ);        // Map only successor
536  b->_num_succs = 1;
537  // remap successor's predecessors if necessary
538  uint j;
539  for( j = 1; j < succ->num_preds(); j++)
540    if( succ->pred(j)->in(0) == bp )
541      succ->head()->set_req(j, gto);
542  // Kill alternate exit path
543  Block *dead = b->_succs[1-idx];
544  for( j = 1; j < dead->num_preds(); j++)
545    if( dead->pred(j)->in(0) == bp )
546      break;
547  // Scan through block, yanking dead path from
548  // all regions and phis.
549  dead->head()->del_req(j);
550  for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
551    dead->_nodes[k]->del_req(j);
552}
553
554//------------------------------MoveToNext-------------------------------------
555// Helper function to move block bx to the slot following b_index. Return
556// true if the move is successful, otherwise false
557bool PhaseCFG::MoveToNext(Block* bx, uint b_index) {
558  if (bx == NULL) return false;
559
560  // Return false if bx is already scheduled.
561  uint bx_index = bx->_pre_order;
562  if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
563    return false;
564  }
565
566  // Find the current index of block bx on the block list
567  bx_index = b_index + 1;
568  while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
569  assert(_blocks[bx_index] == bx, "block not found");
570
571  // If the previous block conditionally falls into bx, return false,
572  // because moving bx will create an extra jump.
573  for(uint k = 1; k < bx->num_preds(); k++ ) {
574    Block* pred = _bbs[bx->pred(k)->_idx];
575    if (pred == _blocks[bx_index-1]) {
576      if (pred->_num_succs != 1) {
577        return false;
578      }
579    }
580  }
581
582  // Reinsert bx just past block 'b'
583  _blocks.remove(bx_index);
584  _blocks.insert(b_index + 1, bx);
585  return true;
586}
587
588//------------------------------MoveToEnd--------------------------------------
589// Move empty and uncommon blocks to the end.
590void PhaseCFG::MoveToEnd(Block *b, uint i) {
591  int e = b->is_Empty();
592  if (e != Block::not_empty) {
593    if (e == Block::empty_with_goto) {
594      // Remove the goto, but leave the block.
595      b->_nodes.pop();
596    }
597    // Mark this block as a connector block, which will cause it to be
598    // ignored in certain functions such as non_connector_successor().
599    b->set_connector();
600  }
601  // Move the empty block to the end, and don't recheck.
602  _blocks.remove(i);
603  _blocks.push(b);
604}
605
606//------------------------------RemoveEmpty------------------------------------
607// Remove empty basic blocks and useless branches.
608void PhaseCFG::RemoveEmpty() {
609  // Move uncommon blocks to the end
610  uint last = _num_blocks;
611  uint i;
612  assert( _blocks[0] == _broot, "" );
613  for( i = 1; i < last; i++ ) {
614    Block *b = _blocks[i];
615
616    // Check for NeverBranch at block end.  This needs to become a GOTO to the
617    // true target.  NeverBranch are treated as a conditional branch that
618    // always goes the same direction for most of the optimizer and are used
619    // to give a fake exit path to infinite loops.  At this late stage they
620    // need to turn into Goto's so that when you enter the infinite loop you
621    // indeed hang.
622    if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
623      convert_NeverBranch_to_Goto(b);
624
625    // Look for uncommon blocks and move to end.
626    if( b->is_uncommon(_bbs) ) {
627      MoveToEnd(b, i);
628      last--;                   // No longer check for being uncommon!
629      if( no_flip_branch(b) ) { // Fall-thru case must follow?
630        b = _blocks[i];         // Find the fall-thru block
631        MoveToEnd(b, i);
632        last--;
633      }
634      i--;                      // backup block counter post-increment
635    }
636  }
637
638  // Remove empty blocks
639  uint j1;
640  last = _num_blocks;
641  for( i=0; i < last; i++ ) {
642    Block *b = _blocks[i];
643    if (i > 0) {
644      if (b->is_Empty() != Block::not_empty) {
645        MoveToEnd(b, i);
646        last--;
647        i--;
648      }
649    }
650  } // End of for all blocks
651
652  // Fixup final control flow for the blocks.  Remove jump-to-next
653  // block.  If neither arm of a IF follows the conditional branch, we
654  // have to add a second jump after the conditional.  We place the
655  // TRUE branch target in succs[0] for both GOTOs and IFs.
656  for( i=0; i < _num_blocks; i++ ) {
657    Block *b = _blocks[i];
658    b->_pre_order = i;          // turn pre-order into block-index
659
660    // Connector blocks need no further processing.
661    if (b->is_connector()) {
662      assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
663             "All connector blocks should sink to the end");
664      continue;
665    }
666    assert(b->is_Empty() != Block::completely_empty,
667           "Empty blocks should be connectors");
668
669    Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
670    Block *bs0 = b->non_connector_successor(0);
671
672    // Check for multi-way branches where I cannot negate the test to
673    // exchange the true and false targets.
674    if( no_flip_branch( b ) ) {
675      // Find fall through case - if must fall into its target
676      int branch_idx = b->_nodes.size() - b->_num_succs;
677      for (uint j2 = 0; j2 < b->_num_succs; j2++) {
678        const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
679        if (p->_con == 0) {
680          // successor j2 is fall through case
681          if (b->non_connector_successor(j2) != bnext) {
682            // but it is not the next block => insert a goto
683            insert_goto_at(i, j2);
684          }
685          // Put taken branch in slot 0
686          if( j2 == 0 && b->_num_succs == 2) {
687            // Flip targets in succs map
688            Block *tbs0 = b->_succs[0];
689            Block *tbs1 = b->_succs[1];
690            b->_succs.map( 0, tbs1 );
691            b->_succs.map( 1, tbs0 );
692          }
693          break;
694        }
695      }
696      // Remove all CatchProjs
697      for (j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
698
699    } else if (b->_num_succs == 1) {
700      // Block ends in a Goto?
701      if (bnext == bs0) {
702        // We fall into next block; remove the Goto
703        b->_nodes.pop();
704      }
705
706    } else if( b->_num_succs == 2 ) { // Block ends in a If?
707      // Get opcode of 1st projection (matches _succs[0])
708      // Note: Since this basic block has 2 exits, the last 2 nodes must
709      //       be projections (in any order), the 3rd last node must be
710      //       the IfNode (we have excluded other 2-way exits such as
711      //       CatchNodes already).
712      MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
713      ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
714      ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
715
716      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
717      assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
718      assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
719
720      Block *bs1 = b->non_connector_successor(1);
721
722      // Check for neither successor block following the current
723      // block ending in a conditional. If so, move one of the
724      // successors after the current one, provided that the
725      // successor was previously unscheduled, but moveable
726      // (i.e., all paths to it involve a branch).
727      if( bnext != bs0 && bnext != bs1 ) {
728
729        // Choose the more common successor based on the probability
730        // of the conditional branch.
731        Block *bx = bs0;
732        Block *by = bs1;
733
734        // _prob is the probability of taking the true path. Make
735        // p the probability of taking successor #1.
736        float p = iff->as_MachIf()->_prob;
737        if( proj0->Opcode() == Op_IfTrue ) {
738          p = 1.0 - p;
739        }
740
741        // Prefer successor #1 if p > 0.5
742        if (p > PROB_FAIR) {
743          bx = bs1;
744          by = bs0;
745        }
746
747        // Attempt the more common successor first
748        if (MoveToNext(bx, i)) {
749          bnext = bx;
750        } else if (MoveToNext(by, i)) {
751          bnext = by;
752        }
753      }
754
755      // Check for conditional branching the wrong way.  Negate
756      // conditional, if needed, so it falls into the following block
757      // and branches to the not-following block.
758
759      // Check for the next block being in succs[0].  We are going to branch
760      // to succs[0], so we want the fall-thru case as the next block in
761      // succs[1].
762      if (bnext == bs0) {
763        // Fall-thru case in succs[0], so flip targets in succs map
764        Block *tbs0 = b->_succs[0];
765        Block *tbs1 = b->_succs[1];
766        b->_succs.map( 0, tbs1 );
767        b->_succs.map( 1, tbs0 );
768        // Flip projection for each target
769        { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
770
771      } else if( bnext == bs1 ) { // Fall-thru is already in succs[1]
772
773      } else {                  // Else need a double-branch
774
775        // The existing conditional branch need not change.
776        // Add a unconditional branch to the false target.
777        // Alas, it must appear in its own block and adding a
778        // block this late in the game is complicated.  Sigh.
779        insert_goto_at(i, 1);
780      }
781
782      // Make sure we TRUE branch to the target
783      if( proj0->Opcode() == Op_IfFalse )
784        iff->negate();
785
786      b->_nodes.pop();          // Remove IfFalse & IfTrue projections
787      b->_nodes.pop();
788
789    } else {
790      // Multi-exit block, e.g. a switch statement
791      // But we don't need to do anything here
792    }
793
794  } // End of for all blocks
795
796}
797
798
799//------------------------------dump-------------------------------------------
800#ifndef PRODUCT
801void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
802  const Node *x = end->is_block_proj();
803  assert( x, "not a CFG" );
804
805  // Do not visit this block again
806  if( visited.test_set(x->_idx) ) return;
807
808  // Skip through this block
809  const Node *p = x;
810  do {
811    p = p->in(0);               // Move control forward
812    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
813  } while( !p->is_block_start() );
814
815  // Recursively visit
816  for( uint i=1; i<p->req(); i++ )
817    _dump_cfg(p->in(i),visited);
818
819  // Dump the block
820  _bbs[p->_idx]->dump(&_bbs);
821}
822
823void PhaseCFG::dump( ) const {
824  tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
825  if( _blocks.size() ) {        // Did we do basic-block layout?
826    for( uint i=0; i<_num_blocks; i++ )
827      _blocks[i]->dump(&_bbs);
828  } else {                      // Else do it with a DFS
829    VectorSet visited(_bbs._arena);
830    _dump_cfg(_root,visited);
831  }
832}
833
834void PhaseCFG::dump_headers() {
835  for( uint i = 0; i < _num_blocks; i++ ) {
836    if( _blocks[i] == NULL ) continue;
837    _blocks[i]->dump_head(&_bbs);
838  }
839}
840
841void PhaseCFG::verify( ) const {
842  // Verify sane CFG
843  for( uint i = 0; i < _num_blocks; i++ ) {
844    Block *b = _blocks[i];
845    uint cnt = b->_nodes.size();
846    uint j;
847    for( j = 0; j < cnt; j++ ) {
848      Node *n = b->_nodes[j];
849      assert( _bbs[n->_idx] == b, "" );
850      if( j >= 1 && n->is_Mach() &&
851          n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
852        assert( j == 1 || b->_nodes[j-1]->is_Phi(),
853                "CreateEx must be first instruction in block" );
854      }
855      for( uint k = 0; k < n->req(); k++ ) {
856        Node *use = n->in(k);
857        if( use && use != n ) {
858          assert( _bbs[use->_idx] || use->is_Con(),
859                  "must have block; constants for debug info ok" );
860        }
861      }
862    }
863
864    j = b->end_idx();
865    Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
866    assert( bp, "last instruction must be a block proj" );
867    assert( bp == b->_nodes[j], "wrong number of successors for this block" );
868    if( bp->is_Catch() ) {
869      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
870      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
871    }
872    else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
873      assert( b->_num_succs == 2, "Conditional branch must have two targets");
874    }
875  }
876}
877#endif
878
879//=============================================================================
880//------------------------------UnionFind--------------------------------------
881UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
882  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
883}
884
885void UnionFind::extend( uint from_idx, uint to_idx ) {
886  _nesting.check();
887  if( from_idx >= _max ) {
888    uint size = 16;
889    while( size <= from_idx ) size <<=1;
890    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
891    _max = size;
892  }
893  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
894  _indices[from_idx] = to_idx;
895}
896
897void UnionFind::reset( uint max ) {
898  assert( max <= max_uint, "Must fit within uint" );
899  // Force the Union-Find mapping to be at least this large
900  extend(max,0);
901  // Initialize to be the ID mapping.
902  for( uint i=0; i<_max; i++ ) map(i,i);
903}
904
905//------------------------------Find_compress----------------------------------
906// Straight out of Tarjan's union-find algorithm
907uint UnionFind::Find_compress( uint idx ) {
908  uint cur  = idx;
909  uint next = lookup(cur);
910  while( next != cur ) {        // Scan chain of equivalences
911    assert( next < cur, "always union smaller" );
912    cur = next;                 // until find a fixed-point
913    next = lookup(cur);
914  }
915  // Core of union-find algorithm: update chain of
916  // equivalences to be equal to the root.
917  while( idx != next ) {
918    uint tmp = lookup(idx);
919    map(idx, next);
920    idx = tmp;
921  }
922  return idx;
923}
924
925//------------------------------Find_const-------------------------------------
926// Like Find above, but no path compress, so bad asymptotic behavior
927uint UnionFind::Find_const( uint idx ) const {
928  if( idx == 0 ) return idx;    // Ignore the zero idx
929  // Off the end?  This can happen during debugging dumps
930  // when data structures have not finished being updated.
931  if( idx >= _max ) return idx;
932  uint next = lookup(idx);
933  while( next != idx ) {        // Scan chain of equivalences
934    assert( next < idx, "always union smaller" );
935    idx = next;                 // until find a fixed-point
936    next = lookup(idx);
937  }
938  return next;
939}
940
941//------------------------------Union------------------------------------------
942// union 2 sets together.
943void UnionFind::Union( uint idx1, uint idx2 ) {
944  uint src = Find(idx1);
945  uint dst = Find(idx2);
946  assert( src, "" );
947  assert( dst, "" );
948  assert( src < _max, "oob" );
949  assert( dst < _max, "oob" );
950  assert( src < dst, "always union smaller" );
951  map(dst,src);
952}
953