methodData.hpp revision 6759:ecdcd96f051a
1/*
2 * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
26#define SHARE_VM_OOPS_METHODDATAOOP_HPP
27
28#include "interpreter/bytecodes.hpp"
29#include "memory/universe.hpp"
30#include "oops/method.hpp"
31#include "oops/oop.hpp"
32#include "runtime/orderAccess.hpp"
33
34class BytecodeStream;
35class KlassSizeStats;
36
37// The MethodData object collects counts and other profile information
38// during zeroth-tier (interpretive) and first-tier execution.
39// The profile is used later by compilation heuristics.  Some heuristics
40// enable use of aggressive (or "heroic") optimizations.  An aggressive
41// optimization often has a down-side, a corner case that it handles
42// poorly, but which is thought to be rare.  The profile provides
43// evidence of this rarity for a given method or even BCI.  It allows
44// the compiler to back out of the optimization at places where it
45// has historically been a poor choice.  Other heuristics try to use
46// specific information gathered about types observed at a given site.
47//
48// All data in the profile is approximate.  It is expected to be accurate
49// on the whole, but the system expects occasional inaccuraces, due to
50// counter overflow, multiprocessor races during data collection, space
51// limitations, missing MDO blocks, etc.  Bad or missing data will degrade
52// optimization quality but will not affect correctness.  Also, each MDO
53// is marked with its birth-date ("creation_mileage") which can be used
54// to assess the quality ("maturity") of its data.
55//
56// Short (<32-bit) counters are designed to overflow to a known "saturated"
57// state.  Also, certain recorded per-BCI events are given one-bit counters
58// which overflow to a saturated state which applied to all counters at
59// that BCI.  In other words, there is a small lattice which approximates
60// the ideal of an infinite-precision counter for each event at each BCI,
61// and the lattice quickly "bottoms out" in a state where all counters
62// are taken to be indefinitely large.
63//
64// The reader will find many data races in profile gathering code, starting
65// with invocation counter incrementation.  None of these races harm correct
66// execution of the compiled code.
67
68// forward decl
69class ProfileData;
70
71// DataLayout
72//
73// Overlay for generic profiling data.
74class DataLayout VALUE_OBJ_CLASS_SPEC {
75  friend class VMStructs;
76
77private:
78  // Every data layout begins with a header.  This header
79  // contains a tag, which is used to indicate the size/layout
80  // of the data, 4 bits of flags, which can be used in any way,
81  // 4 bits of trap history (none/one reason/many reasons),
82  // and a bci, which is used to tie this piece of data to a
83  // specific bci in the bytecodes.
84  union {
85    intptr_t _bits;
86    struct {
87      u1 _tag;
88      u1 _flags;
89      u2 _bci;
90    } _struct;
91  } _header;
92
93  // The data layout has an arbitrary number of cells, each sized
94  // to accomodate a pointer or an integer.
95  intptr_t _cells[1];
96
97  // Some types of data layouts need a length field.
98  static bool needs_array_len(u1 tag);
99
100public:
101  enum {
102    counter_increment = 1
103  };
104
105  enum {
106    cell_size = sizeof(intptr_t)
107  };
108
109  // Tag values
110  enum {
111    no_tag,
112    bit_data_tag,
113    counter_data_tag,
114    jump_data_tag,
115    receiver_type_data_tag,
116    virtual_call_data_tag,
117    ret_data_tag,
118    branch_data_tag,
119    multi_branch_data_tag,
120    arg_info_data_tag,
121    call_type_data_tag,
122    virtual_call_type_data_tag,
123    parameters_type_data_tag,
124    speculative_trap_data_tag
125  };
126
127  enum {
128    // The _struct._flags word is formatted as [trap_state:4 | flags:4].
129    // The trap state breaks down further as [recompile:1 | reason:3].
130    // This further breakdown is defined in deoptimization.cpp.
131    // See Deoptimization::trap_state_reason for an assert that
132    // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
133    //
134    // The trap_state is collected only if ProfileTraps is true.
135    trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
136    trap_shift = BitsPerByte - trap_bits,
137    trap_mask = right_n_bits(trap_bits),
138    trap_mask_in_place = (trap_mask << trap_shift),
139    flag_limit = trap_shift,
140    flag_mask = right_n_bits(flag_limit),
141    first_flag = 0
142  };
143
144  // Size computation
145  static int header_size_in_bytes() {
146    return cell_size;
147  }
148  static int header_size_in_cells() {
149    return 1;
150  }
151
152  static int compute_size_in_bytes(int cell_count) {
153    return header_size_in_bytes() + cell_count * cell_size;
154  }
155
156  // Initialization
157  void initialize(u1 tag, u2 bci, int cell_count);
158
159  // Accessors
160  u1 tag() {
161    return _header._struct._tag;
162  }
163
164  // Return a few bits of trap state.  Range is [0..trap_mask].
165  // The state tells if traps with zero, one, or many reasons have occurred.
166  // It also tells whether zero or many recompilations have occurred.
167  // The associated trap histogram in the MDO itself tells whether
168  // traps are common or not.  If a BCI shows that a trap X has
169  // occurred, and the MDO shows N occurrences of X, we make the
170  // simplifying assumption that all N occurrences can be blamed
171  // on that BCI.
172  int trap_state() const {
173    return ((_header._struct._flags >> trap_shift) & trap_mask);
174  }
175
176  void set_trap_state(int new_state) {
177    assert(ProfileTraps, "used only under +ProfileTraps");
178    uint old_flags = (_header._struct._flags & flag_mask);
179    _header._struct._flags = (new_state << trap_shift) | old_flags;
180  }
181
182  u1 flags() const {
183    return _header._struct._flags;
184  }
185
186  u2 bci() const {
187    return _header._struct._bci;
188  }
189
190  void set_header(intptr_t value) {
191    _header._bits = value;
192  }
193  intptr_t header() {
194    return _header._bits;
195  }
196  void set_cell_at(int index, intptr_t value) {
197    _cells[index] = value;
198  }
199  void release_set_cell_at(int index, intptr_t value) {
200    OrderAccess::release_store_ptr(&_cells[index], value);
201  }
202  intptr_t cell_at(int index) const {
203    return _cells[index];
204  }
205
206  void set_flag_at(int flag_number) {
207    assert(flag_number < flag_limit, "oob");
208    _header._struct._flags |= (0x1 << flag_number);
209  }
210  bool flag_at(int flag_number) const {
211    assert(flag_number < flag_limit, "oob");
212    return (_header._struct._flags & (0x1 << flag_number)) != 0;
213  }
214
215  // Low-level support for code generation.
216  static ByteSize header_offset() {
217    return byte_offset_of(DataLayout, _header);
218  }
219  static ByteSize tag_offset() {
220    return byte_offset_of(DataLayout, _header._struct._tag);
221  }
222  static ByteSize flags_offset() {
223    return byte_offset_of(DataLayout, _header._struct._flags);
224  }
225  static ByteSize bci_offset() {
226    return byte_offset_of(DataLayout, _header._struct._bci);
227  }
228  static ByteSize cell_offset(int index) {
229    return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
230  }
231#ifdef CC_INTERP
232  static int cell_offset_in_bytes(int index) {
233    return (int)offset_of(DataLayout, _cells[index]);
234  }
235#endif // CC_INTERP
236  // Return a value which, when or-ed as a byte into _flags, sets the flag.
237  static int flag_number_to_byte_constant(int flag_number) {
238    assert(0 <= flag_number && flag_number < flag_limit, "oob");
239    DataLayout temp; temp.set_header(0);
240    temp.set_flag_at(flag_number);
241    return temp._header._struct._flags;
242  }
243  // Return a value which, when or-ed as a word into _header, sets the flag.
244  static intptr_t flag_mask_to_header_mask(int byte_constant) {
245    DataLayout temp; temp.set_header(0);
246    temp._header._struct._flags = byte_constant;
247    return temp._header._bits;
248  }
249
250  ProfileData* data_in();
251
252  // GC support
253  void clean_weak_klass_links(BoolObjectClosure* cl);
254
255  // Redefinition support
256  void clean_weak_method_links();
257};
258
259
260// ProfileData class hierarchy
261class ProfileData;
262class   BitData;
263class     CounterData;
264class       ReceiverTypeData;
265class         VirtualCallData;
266class           VirtualCallTypeData;
267class       RetData;
268class       CallTypeData;
269class   JumpData;
270class     BranchData;
271class   ArrayData;
272class     MultiBranchData;
273class     ArgInfoData;
274class     ParametersTypeData;
275class   SpeculativeTrapData;
276
277// ProfileData
278//
279// A ProfileData object is created to refer to a section of profiling
280// data in a structured way.
281class ProfileData : public ResourceObj {
282  friend class TypeEntries;
283  friend class ReturnTypeEntry;
284  friend class TypeStackSlotEntries;
285private:
286  enum {
287    tab_width_one = 16,
288    tab_width_two = 36
289  };
290
291  // This is a pointer to a section of profiling data.
292  DataLayout* _data;
293
294  char* print_data_on_helper(const MethodData* md) const;
295
296protected:
297  DataLayout* data() { return _data; }
298  const DataLayout* data() const { return _data; }
299
300  enum {
301    cell_size = DataLayout::cell_size
302  };
303
304public:
305  // How many cells are in this?
306  virtual int cell_count() const {
307    ShouldNotReachHere();
308    return -1;
309  }
310
311  // Return the size of this data.
312  int size_in_bytes() {
313    return DataLayout::compute_size_in_bytes(cell_count());
314  }
315
316protected:
317  // Low-level accessors for underlying data
318  void set_intptr_at(int index, intptr_t value) {
319    assert(0 <= index && index < cell_count(), "oob");
320    data()->set_cell_at(index, value);
321  }
322  void release_set_intptr_at(int index, intptr_t value) {
323    assert(0 <= index && index < cell_count(), "oob");
324    data()->release_set_cell_at(index, value);
325  }
326  intptr_t intptr_at(int index) const {
327    assert(0 <= index && index < cell_count(), "oob");
328    return data()->cell_at(index);
329  }
330  void set_uint_at(int index, uint value) {
331    set_intptr_at(index, (intptr_t) value);
332  }
333  void release_set_uint_at(int index, uint value) {
334    release_set_intptr_at(index, (intptr_t) value);
335  }
336  uint uint_at(int index) const {
337    return (uint)intptr_at(index);
338  }
339  void set_int_at(int index, int value) {
340    set_intptr_at(index, (intptr_t) value);
341  }
342  void release_set_int_at(int index, int value) {
343    release_set_intptr_at(index, (intptr_t) value);
344  }
345  int int_at(int index) const {
346    return (int)intptr_at(index);
347  }
348  int int_at_unchecked(int index) const {
349    return (int)data()->cell_at(index);
350  }
351  void set_oop_at(int index, oop value) {
352    set_intptr_at(index, cast_from_oop<intptr_t>(value));
353  }
354  oop oop_at(int index) const {
355    return cast_to_oop(intptr_at(index));
356  }
357
358  void set_flag_at(int flag_number) {
359    data()->set_flag_at(flag_number);
360  }
361  bool flag_at(int flag_number) const {
362    return data()->flag_at(flag_number);
363  }
364
365  // two convenient imports for use by subclasses:
366  static ByteSize cell_offset(int index) {
367    return DataLayout::cell_offset(index);
368  }
369  static int flag_number_to_byte_constant(int flag_number) {
370    return DataLayout::flag_number_to_byte_constant(flag_number);
371  }
372
373  ProfileData(DataLayout* data) {
374    _data = data;
375  }
376
377#ifdef CC_INTERP
378  // Static low level accessors for DataLayout with ProfileData's semantics.
379
380  static int cell_offset_in_bytes(int index) {
381    return DataLayout::cell_offset_in_bytes(index);
382  }
383
384  static void increment_uint_at_no_overflow(DataLayout* layout, int index,
385                                            int inc = DataLayout::counter_increment) {
386    uint count = ((uint)layout->cell_at(index)) + inc;
387    if (count == 0) return;
388    layout->set_cell_at(index, (intptr_t) count);
389  }
390
391  static int int_at(DataLayout* layout, int index) {
392    return (int)layout->cell_at(index);
393  }
394
395  static int uint_at(DataLayout* layout, int index) {
396    return (uint)layout->cell_at(index);
397  }
398
399  static oop oop_at(DataLayout* layout, int index) {
400    return cast_to_oop(layout->cell_at(index));
401  }
402
403  static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
404    layout->set_cell_at(index, (intptr_t) value);
405  }
406
407  static void set_flag_at(DataLayout* layout, int flag_number) {
408    layout->set_flag_at(flag_number);
409  }
410#endif // CC_INTERP
411
412public:
413  // Constructor for invalid ProfileData.
414  ProfileData();
415
416  u2 bci() const {
417    return data()->bci();
418  }
419
420  address dp() {
421    return (address)_data;
422  }
423
424  int trap_state() const {
425    return data()->trap_state();
426  }
427  void set_trap_state(int new_state) {
428    data()->set_trap_state(new_state);
429  }
430
431  // Type checking
432  virtual bool is_BitData()         const { return false; }
433  virtual bool is_CounterData()     const { return false; }
434  virtual bool is_JumpData()        const { return false; }
435  virtual bool is_ReceiverTypeData()const { return false; }
436  virtual bool is_VirtualCallData() const { return false; }
437  virtual bool is_RetData()         const { return false; }
438  virtual bool is_BranchData()      const { return false; }
439  virtual bool is_ArrayData()       const { return false; }
440  virtual bool is_MultiBranchData() const { return false; }
441  virtual bool is_ArgInfoData()     const { return false; }
442  virtual bool is_CallTypeData()    const { return false; }
443  virtual bool is_VirtualCallTypeData()const { return false; }
444  virtual bool is_ParametersTypeData() const { return false; }
445  virtual bool is_SpeculativeTrapData()const { return false; }
446
447
448  BitData* as_BitData() const {
449    assert(is_BitData(), "wrong type");
450    return is_BitData()         ? (BitData*)        this : NULL;
451  }
452  CounterData* as_CounterData() const {
453    assert(is_CounterData(), "wrong type");
454    return is_CounterData()     ? (CounterData*)    this : NULL;
455  }
456  JumpData* as_JumpData() const {
457    assert(is_JumpData(), "wrong type");
458    return is_JumpData()        ? (JumpData*)       this : NULL;
459  }
460  ReceiverTypeData* as_ReceiverTypeData() const {
461    assert(is_ReceiverTypeData(), "wrong type");
462    return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
463  }
464  VirtualCallData* as_VirtualCallData() const {
465    assert(is_VirtualCallData(), "wrong type");
466    return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
467  }
468  RetData* as_RetData() const {
469    assert(is_RetData(), "wrong type");
470    return is_RetData()         ? (RetData*)        this : NULL;
471  }
472  BranchData* as_BranchData() const {
473    assert(is_BranchData(), "wrong type");
474    return is_BranchData()      ? (BranchData*)     this : NULL;
475  }
476  ArrayData* as_ArrayData() const {
477    assert(is_ArrayData(), "wrong type");
478    return is_ArrayData()       ? (ArrayData*)      this : NULL;
479  }
480  MultiBranchData* as_MultiBranchData() const {
481    assert(is_MultiBranchData(), "wrong type");
482    return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
483  }
484  ArgInfoData* as_ArgInfoData() const {
485    assert(is_ArgInfoData(), "wrong type");
486    return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
487  }
488  CallTypeData* as_CallTypeData() const {
489    assert(is_CallTypeData(), "wrong type");
490    return is_CallTypeData() ? (CallTypeData*)this : NULL;
491  }
492  VirtualCallTypeData* as_VirtualCallTypeData() const {
493    assert(is_VirtualCallTypeData(), "wrong type");
494    return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
495  }
496  ParametersTypeData* as_ParametersTypeData() const {
497    assert(is_ParametersTypeData(), "wrong type");
498    return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
499  }
500  SpeculativeTrapData* as_SpeculativeTrapData() const {
501    assert(is_SpeculativeTrapData(), "wrong type");
502    return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
503  }
504
505
506  // Subclass specific initialization
507  virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
508
509  // GC support
510  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
511
512  // Redefinition support
513  virtual void clean_weak_method_links() {}
514
515  // CI translation: ProfileData can represent both MethodDataOop data
516  // as well as CIMethodData data. This function is provided for translating
517  // an oop in a ProfileData to the ci equivalent. Generally speaking,
518  // most ProfileData don't require any translation, so we provide the null
519  // translation here, and the required translators are in the ci subclasses.
520  virtual void translate_from(const ProfileData* data) {}
521
522  virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
523    ShouldNotReachHere();
524  }
525
526  void print_data_on(outputStream* st, const MethodData* md) const;
527
528  void print_shared(outputStream* st, const char* name, const char* extra) const;
529  void tab(outputStream* st, bool first = false) const;
530};
531
532// BitData
533//
534// A BitData holds a flag or two in its header.
535class BitData : public ProfileData {
536protected:
537  enum {
538    // null_seen:
539    //  saw a null operand (cast/aastore/instanceof)
540    null_seen_flag              = DataLayout::first_flag + 0
541  };
542  enum { bit_cell_count = 0 };  // no additional data fields needed.
543public:
544  BitData(DataLayout* layout) : ProfileData(layout) {
545  }
546
547  virtual bool is_BitData() const { return true; }
548
549  static int static_cell_count() {
550    return bit_cell_count;
551  }
552
553  virtual int cell_count() const {
554    return static_cell_count();
555  }
556
557  // Accessor
558
559  // The null_seen flag bit is specially known to the interpreter.
560  // Consulting it allows the compiler to avoid setting up null_check traps.
561  bool null_seen()     { return flag_at(null_seen_flag); }
562  void set_null_seen()    { set_flag_at(null_seen_flag); }
563
564
565  // Code generation support
566  static int null_seen_byte_constant() {
567    return flag_number_to_byte_constant(null_seen_flag);
568  }
569
570  static ByteSize bit_data_size() {
571    return cell_offset(bit_cell_count);
572  }
573
574#ifdef CC_INTERP
575  static int bit_data_size_in_bytes() {
576    return cell_offset_in_bytes(bit_cell_count);
577  }
578
579  static void set_null_seen(DataLayout* layout) {
580    set_flag_at(layout, null_seen_flag);
581  }
582
583  static DataLayout* advance(DataLayout* layout) {
584    return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
585  }
586#endif // CC_INTERP
587
588  void print_data_on(outputStream* st, const char* extra = NULL) const;
589};
590
591// CounterData
592//
593// A CounterData corresponds to a simple counter.
594class CounterData : public BitData {
595protected:
596  enum {
597    count_off,
598    counter_cell_count
599  };
600public:
601  CounterData(DataLayout* layout) : BitData(layout) {}
602
603  virtual bool is_CounterData() const { return true; }
604
605  static int static_cell_count() {
606    return counter_cell_count;
607  }
608
609  virtual int cell_count() const {
610    return static_cell_count();
611  }
612
613  // Direct accessor
614  uint count() const {
615    return uint_at(count_off);
616  }
617
618  // Code generation support
619  static ByteSize count_offset() {
620    return cell_offset(count_off);
621  }
622  static ByteSize counter_data_size() {
623    return cell_offset(counter_cell_count);
624  }
625
626  void set_count(uint count) {
627    set_uint_at(count_off, count);
628  }
629
630#ifdef CC_INTERP
631  static int counter_data_size_in_bytes() {
632    return cell_offset_in_bytes(counter_cell_count);
633  }
634
635  static void increment_count_no_overflow(DataLayout* layout) {
636    increment_uint_at_no_overflow(layout, count_off);
637  }
638
639  // Support counter decrementation at checkcast / subtype check failed.
640  static void decrement_count(DataLayout* layout) {
641    increment_uint_at_no_overflow(layout, count_off, -1);
642  }
643
644  static DataLayout* advance(DataLayout* layout) {
645    return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
646  }
647#endif // CC_INTERP
648
649  void print_data_on(outputStream* st, const char* extra = NULL) const;
650};
651
652// JumpData
653//
654// A JumpData is used to access profiling information for a direct
655// branch.  It is a counter, used for counting the number of branches,
656// plus a data displacement, used for realigning the data pointer to
657// the corresponding target bci.
658class JumpData : public ProfileData {
659protected:
660  enum {
661    taken_off_set,
662    displacement_off_set,
663    jump_cell_count
664  };
665
666  void set_displacement(int displacement) {
667    set_int_at(displacement_off_set, displacement);
668  }
669
670public:
671  JumpData(DataLayout* layout) : ProfileData(layout) {
672    assert(layout->tag() == DataLayout::jump_data_tag ||
673      layout->tag() == DataLayout::branch_data_tag, "wrong type");
674  }
675
676  virtual bool is_JumpData() const { return true; }
677
678  static int static_cell_count() {
679    return jump_cell_count;
680  }
681
682  virtual int cell_count() const {
683    return static_cell_count();
684  }
685
686  // Direct accessor
687  uint taken() const {
688    return uint_at(taken_off_set);
689  }
690
691  void set_taken(uint cnt) {
692    set_uint_at(taken_off_set, cnt);
693  }
694
695  // Saturating counter
696  uint inc_taken() {
697    uint cnt = taken() + 1;
698    // Did we wrap? Will compiler screw us??
699    if (cnt == 0) cnt--;
700    set_uint_at(taken_off_set, cnt);
701    return cnt;
702  }
703
704  int displacement() const {
705    return int_at(displacement_off_set);
706  }
707
708  // Code generation support
709  static ByteSize taken_offset() {
710    return cell_offset(taken_off_set);
711  }
712
713  static ByteSize displacement_offset() {
714    return cell_offset(displacement_off_set);
715  }
716
717#ifdef CC_INTERP
718  static void increment_taken_count_no_overflow(DataLayout* layout) {
719    increment_uint_at_no_overflow(layout, taken_off_set);
720  }
721
722  static DataLayout* advance_taken(DataLayout* layout) {
723    return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
724  }
725
726  static uint taken_count(DataLayout* layout) {
727    return (uint) uint_at(layout, taken_off_set);
728  }
729#endif // CC_INTERP
730
731  // Specific initialization.
732  void post_initialize(BytecodeStream* stream, MethodData* mdo);
733
734  void print_data_on(outputStream* st, const char* extra = NULL) const;
735};
736
737// Entries in a ProfileData object to record types: it can either be
738// none (no profile), unknown (conflicting profile data) or a klass if
739// a single one is seen. Whether a null reference was seen is also
740// recorded. No counter is associated with the type and a single type
741// is tracked (unlike VirtualCallData).
742class TypeEntries {
743
744public:
745
746  // A single cell is used to record information for a type:
747  // - the cell is initialized to 0
748  // - when a type is discovered it is stored in the cell
749  // - bit zero of the cell is used to record whether a null reference
750  // was encountered or not
751  // - bit 1 is set to record a conflict in the type information
752
753  enum {
754    null_seen = 1,
755    type_mask = ~null_seen,
756    type_unknown = 2,
757    status_bits = null_seen | type_unknown,
758    type_klass_mask = ~status_bits
759  };
760
761  // what to initialize a cell to
762  static intptr_t type_none() {
763    return 0;
764  }
765
766  // null seen = bit 0 set?
767  static bool was_null_seen(intptr_t v) {
768    return (v & null_seen) != 0;
769  }
770
771  // conflicting type information = bit 1 set?
772  static bool is_type_unknown(intptr_t v) {
773    return (v & type_unknown) != 0;
774  }
775
776  // not type information yet = all bits cleared, ignoring bit 0?
777  static bool is_type_none(intptr_t v) {
778    return (v & type_mask) == 0;
779  }
780
781  // recorded type: cell without bit 0 and 1
782  static intptr_t klass_part(intptr_t v) {
783    intptr_t r = v & type_klass_mask;
784    return r;
785  }
786
787  // type recorded
788  static Klass* valid_klass(intptr_t k) {
789    if (!is_type_none(k) &&
790        !is_type_unknown(k)) {
791      Klass* res = (Klass*)klass_part(k);
792      assert(res != NULL, "invalid");
793      return res;
794    } else {
795      return NULL;
796    }
797  }
798
799  static intptr_t with_status(intptr_t k, intptr_t in) {
800    return k | (in & status_bits);
801  }
802
803  static intptr_t with_status(Klass* k, intptr_t in) {
804    return with_status((intptr_t)k, in);
805  }
806
807  static void print_klass(outputStream* st, intptr_t k);
808
809  // GC support
810  static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
811
812protected:
813  // ProfileData object these entries are part of
814  ProfileData* _pd;
815  // offset within the ProfileData object where the entries start
816  const int _base_off;
817
818  TypeEntries(int base_off)
819    : _base_off(base_off), _pd(NULL) {}
820
821  void set_intptr_at(int index, intptr_t value) {
822    _pd->set_intptr_at(index, value);
823  }
824
825  intptr_t intptr_at(int index) const {
826    return _pd->intptr_at(index);
827  }
828
829public:
830  void set_profile_data(ProfileData* pd) {
831    _pd = pd;
832  }
833};
834
835// Type entries used for arguments passed at a call and parameters on
836// method entry. 2 cells per entry: one for the type encoded as in
837// TypeEntries and one initialized with the stack slot where the
838// profiled object is to be found so that the interpreter can locate
839// it quickly.
840class TypeStackSlotEntries : public TypeEntries {
841
842private:
843  enum {
844    stack_slot_entry,
845    type_entry,
846    per_arg_cell_count
847  };
848
849  // offset of cell for stack slot for entry i within ProfileData object
850  int stack_slot_offset(int i) const {
851    return _base_off + stack_slot_local_offset(i);
852  }
853
854  const int _number_of_entries;
855
856  // offset of cell for type for entry i within ProfileData object
857  int type_offset_in_cells(int i) const {
858    return _base_off + type_local_offset(i);
859  }
860
861public:
862
863  TypeStackSlotEntries(int base_off, int nb_entries)
864    : TypeEntries(base_off), _number_of_entries(nb_entries) {}
865
866  static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
867
868  void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
869
870  int number_of_entries() const { return _number_of_entries; }
871
872  // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
873  static int stack_slot_local_offset(int i) {
874    return i * per_arg_cell_count + stack_slot_entry;
875  }
876
877  // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
878  static int type_local_offset(int i) {
879    return i * per_arg_cell_count + type_entry;
880  }
881
882  // stack slot for entry i
883  uint stack_slot(int i) const {
884    assert(i >= 0 && i < _number_of_entries, "oob");
885    return _pd->uint_at(stack_slot_offset(i));
886  }
887
888  // set stack slot for entry i
889  void set_stack_slot(int i, uint num) {
890    assert(i >= 0 && i < _number_of_entries, "oob");
891    _pd->set_uint_at(stack_slot_offset(i), num);
892  }
893
894  // type for entry i
895  intptr_t type(int i) const {
896    assert(i >= 0 && i < _number_of_entries, "oob");
897    return _pd->intptr_at(type_offset_in_cells(i));
898  }
899
900  // set type for entry i
901  void set_type(int i, intptr_t k) {
902    assert(i >= 0 && i < _number_of_entries, "oob");
903    _pd->set_intptr_at(type_offset_in_cells(i), k);
904  }
905
906  static ByteSize per_arg_size() {
907    return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
908  }
909
910  static int per_arg_count() {
911    return per_arg_cell_count;
912  }
913
914  ByteSize type_offset(int i) const {
915    return DataLayout::cell_offset(type_offset_in_cells(i));
916  }
917
918  // GC support
919  void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
920
921  void print_data_on(outputStream* st) const;
922};
923
924// Type entry used for return from a call. A single cell to record the
925// type.
926class ReturnTypeEntry : public TypeEntries {
927
928private:
929  enum {
930    cell_count = 1
931  };
932
933public:
934  ReturnTypeEntry(int base_off)
935    : TypeEntries(base_off) {}
936
937  void post_initialize() {
938    set_type(type_none());
939  }
940
941  intptr_t type() const {
942    return _pd->intptr_at(_base_off);
943  }
944
945  void set_type(intptr_t k) {
946    _pd->set_intptr_at(_base_off, k);
947  }
948
949  static int static_cell_count() {
950    return cell_count;
951  }
952
953  static ByteSize size() {
954    return in_ByteSize(cell_count * DataLayout::cell_size);
955  }
956
957  ByteSize type_offset() {
958    return DataLayout::cell_offset(_base_off);
959  }
960
961  // GC support
962  void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
963
964  void print_data_on(outputStream* st) const;
965};
966
967// Entries to collect type information at a call: contains arguments
968// (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
969// number of cells. Because the number of cells for the return type is
970// smaller than the number of cells for the type of an arguments, the
971// number of cells is used to tell how many arguments are profiled and
972// whether a return value is profiled. See has_arguments() and
973// has_return().
974class TypeEntriesAtCall {
975private:
976  static int stack_slot_local_offset(int i) {
977    return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
978  }
979
980  static int argument_type_local_offset(int i) {
981    return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
982  }
983
984public:
985
986  static int header_cell_count() {
987    return 1;
988  }
989
990  static int cell_count_local_offset() {
991    return 0;
992  }
993
994  static int compute_cell_count(BytecodeStream* stream);
995
996  static void initialize(DataLayout* dl, int base, int cell_count) {
997    int off = base + cell_count_local_offset();
998    dl->set_cell_at(off, cell_count - base - header_cell_count());
999  }
1000
1001  static bool arguments_profiling_enabled();
1002  static bool return_profiling_enabled();
1003
1004  // Code generation support
1005  static ByteSize cell_count_offset() {
1006    return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1007  }
1008
1009  static ByteSize args_data_offset() {
1010    return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1011  }
1012
1013  static ByteSize stack_slot_offset(int i) {
1014    return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1015  }
1016
1017  static ByteSize argument_type_offset(int i) {
1018    return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1019  }
1020
1021  static ByteSize return_only_size() {
1022    return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1023  }
1024
1025};
1026
1027// CallTypeData
1028//
1029// A CallTypeData is used to access profiling information about a non
1030// virtual call for which we collect type information about arguments
1031// and return value.
1032class CallTypeData : public CounterData {
1033private:
1034  // entries for arguments if any
1035  TypeStackSlotEntries _args;
1036  // entry for return type if any
1037  ReturnTypeEntry _ret;
1038
1039  int cell_count_global_offset() const {
1040    return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1041  }
1042
1043  // number of cells not counting the header
1044  int cell_count_no_header() const {
1045    return uint_at(cell_count_global_offset());
1046  }
1047
1048  void check_number_of_arguments(int total) {
1049    assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1050  }
1051
1052public:
1053  CallTypeData(DataLayout* layout) :
1054    CounterData(layout),
1055    _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1056    _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1057  {
1058    assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1059    // Some compilers (VC++) don't want this passed in member initialization list
1060    _args.set_profile_data(this);
1061    _ret.set_profile_data(this);
1062  }
1063
1064  const TypeStackSlotEntries* args() const {
1065    assert(has_arguments(), "no profiling of arguments");
1066    return &_args;
1067  }
1068
1069  const ReturnTypeEntry* ret() const {
1070    assert(has_return(), "no profiling of return value");
1071    return &_ret;
1072  }
1073
1074  virtual bool is_CallTypeData() const { return true; }
1075
1076  static int static_cell_count() {
1077    return -1;
1078  }
1079
1080  static int compute_cell_count(BytecodeStream* stream) {
1081    return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1082  }
1083
1084  static void initialize(DataLayout* dl, int cell_count) {
1085    TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1086  }
1087
1088  virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1089
1090  virtual int cell_count() const {
1091    return CounterData::static_cell_count() +
1092      TypeEntriesAtCall::header_cell_count() +
1093      int_at_unchecked(cell_count_global_offset());
1094  }
1095
1096  int number_of_arguments() const {
1097    return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1098  }
1099
1100  void set_argument_type(int i, Klass* k) {
1101    assert(has_arguments(), "no arguments!");
1102    intptr_t current = _args.type(i);
1103    _args.set_type(i, TypeEntries::with_status(k, current));
1104  }
1105
1106  void set_return_type(Klass* k) {
1107    assert(has_return(), "no return!");
1108    intptr_t current = _ret.type();
1109    _ret.set_type(TypeEntries::with_status(k, current));
1110  }
1111
1112  // An entry for a return value takes less space than an entry for an
1113  // argument so if the number of cells exceeds the number of cells
1114  // needed for an argument, this object contains type information for
1115  // at least one argument.
1116  bool has_arguments() const {
1117    bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1118    assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1119    return res;
1120  }
1121
1122  // An entry for a return value takes less space than an entry for an
1123  // argument, so if the remainder of the number of cells divided by
1124  // the number of cells for an argument is not null, a return value
1125  // is profiled in this object.
1126  bool has_return() const {
1127    bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1128    assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1129    return res;
1130  }
1131
1132  // Code generation support
1133  static ByteSize args_data_offset() {
1134    return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1135  }
1136
1137  ByteSize argument_type_offset(int i) {
1138    return _args.type_offset(i);
1139  }
1140
1141  ByteSize return_type_offset() {
1142    return _ret.type_offset();
1143  }
1144
1145  // GC support
1146  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1147    if (has_arguments()) {
1148      _args.clean_weak_klass_links(is_alive_closure);
1149    }
1150    if (has_return()) {
1151      _ret.clean_weak_klass_links(is_alive_closure);
1152    }
1153  }
1154
1155  virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1156};
1157
1158// ReceiverTypeData
1159//
1160// A ReceiverTypeData is used to access profiling information about a
1161// dynamic type check.  It consists of a counter which counts the total times
1162// that the check is reached, and a series of (Klass*, count) pairs
1163// which are used to store a type profile for the receiver of the check.
1164class ReceiverTypeData : public CounterData {
1165protected:
1166  enum {
1167    receiver0_offset = counter_cell_count,
1168    count0_offset,
1169    receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1170  };
1171
1172public:
1173  ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1174    assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1175           layout->tag() == DataLayout::virtual_call_data_tag ||
1176           layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1177  }
1178
1179  virtual bool is_ReceiverTypeData() const { return true; }
1180
1181  static int static_cell_count() {
1182    return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1183  }
1184
1185  virtual int cell_count() const {
1186    return static_cell_count();
1187  }
1188
1189  // Direct accessors
1190  static uint row_limit() {
1191    return TypeProfileWidth;
1192  }
1193  static int receiver_cell_index(uint row) {
1194    return receiver0_offset + row * receiver_type_row_cell_count;
1195  }
1196  static int receiver_count_cell_index(uint row) {
1197    return count0_offset + row * receiver_type_row_cell_count;
1198  }
1199
1200  Klass* receiver(uint row) const {
1201    assert(row < row_limit(), "oob");
1202
1203    Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1204    assert(recv == NULL || recv->is_klass(), "wrong type");
1205    return recv;
1206  }
1207
1208  void set_receiver(uint row, Klass* k) {
1209    assert((uint)row < row_limit(), "oob");
1210    set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1211  }
1212
1213  uint receiver_count(uint row) const {
1214    assert(row < row_limit(), "oob");
1215    return uint_at(receiver_count_cell_index(row));
1216  }
1217
1218  void set_receiver_count(uint row, uint count) {
1219    assert(row < row_limit(), "oob");
1220    set_uint_at(receiver_count_cell_index(row), count);
1221  }
1222
1223  void clear_row(uint row) {
1224    assert(row < row_limit(), "oob");
1225    // Clear total count - indicator of polymorphic call site.
1226    // The site may look like as monomorphic after that but
1227    // it allow to have more accurate profiling information because
1228    // there was execution phase change since klasses were unloaded.
1229    // If the site is still polymorphic then MDO will be updated
1230    // to reflect it. But it could be the case that the site becomes
1231    // only bimorphic. Then keeping total count not 0 will be wrong.
1232    // Even if we use monomorphic (when it is not) for compilation
1233    // we will only have trap, deoptimization and recompile again
1234    // with updated MDO after executing method in Interpreter.
1235    // An additional receiver will be recorded in the cleaned row
1236    // during next call execution.
1237    //
1238    // Note: our profiling logic works with empty rows in any slot.
1239    // We do sorting a profiling info (ciCallProfile) for compilation.
1240    //
1241    set_count(0);
1242    set_receiver(row, NULL);
1243    set_receiver_count(row, 0);
1244  }
1245
1246  // Code generation support
1247  static ByteSize receiver_offset(uint row) {
1248    return cell_offset(receiver_cell_index(row));
1249  }
1250  static ByteSize receiver_count_offset(uint row) {
1251    return cell_offset(receiver_count_cell_index(row));
1252  }
1253  static ByteSize receiver_type_data_size() {
1254    return cell_offset(static_cell_count());
1255  }
1256
1257  // GC support
1258  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1259
1260#ifdef CC_INTERP
1261  static int receiver_type_data_size_in_bytes() {
1262    return cell_offset_in_bytes(static_cell_count());
1263  }
1264
1265  static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1266    Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1267    return recv;
1268  }
1269
1270  static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1271    const int num_rows = row_limit();
1272    // Receiver already exists?
1273    for (int row = 0; row < num_rows; row++) {
1274      if (receiver_unchecked(layout, row) == rcvr) {
1275        increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1276        return;
1277      }
1278    }
1279    // New receiver, find a free slot.
1280    for (int row = 0; row < num_rows; row++) {
1281      if (receiver_unchecked(layout, row) == NULL) {
1282        set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1283        increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1284        return;
1285      }
1286    }
1287    // Receiver did not match any saved receiver and there is no empty row for it.
1288    // Increment total counter to indicate polymorphic case.
1289    increment_count_no_overflow(layout);
1290  }
1291
1292  static DataLayout* advance(DataLayout* layout) {
1293    return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1294  }
1295#endif // CC_INTERP
1296
1297  void print_receiver_data_on(outputStream* st) const;
1298  void print_data_on(outputStream* st, const char* extra = NULL) const;
1299};
1300
1301// VirtualCallData
1302//
1303// A VirtualCallData is used to access profiling information about a
1304// virtual call.  For now, it has nothing more than a ReceiverTypeData.
1305class VirtualCallData : public ReceiverTypeData {
1306public:
1307  VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1308    assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1309           layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1310  }
1311
1312  virtual bool is_VirtualCallData() const { return true; }
1313
1314  static int static_cell_count() {
1315    // At this point we could add more profile state, e.g., for arguments.
1316    // But for now it's the same size as the base record type.
1317    return ReceiverTypeData::static_cell_count();
1318  }
1319
1320  virtual int cell_count() const {
1321    return static_cell_count();
1322  }
1323
1324  // Direct accessors
1325  static ByteSize virtual_call_data_size() {
1326    return cell_offset(static_cell_count());
1327  }
1328
1329#ifdef CC_INTERP
1330  static int virtual_call_data_size_in_bytes() {
1331    return cell_offset_in_bytes(static_cell_count());
1332  }
1333
1334  static DataLayout* advance(DataLayout* layout) {
1335    return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1336  }
1337#endif // CC_INTERP
1338
1339  void print_data_on(outputStream* st, const char* extra = NULL) const;
1340};
1341
1342// VirtualCallTypeData
1343//
1344// A VirtualCallTypeData is used to access profiling information about
1345// a virtual call for which we collect type information about
1346// arguments and return value.
1347class VirtualCallTypeData : public VirtualCallData {
1348private:
1349  // entries for arguments if any
1350  TypeStackSlotEntries _args;
1351  // entry for return type if any
1352  ReturnTypeEntry _ret;
1353
1354  int cell_count_global_offset() const {
1355    return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1356  }
1357
1358  // number of cells not counting the header
1359  int cell_count_no_header() const {
1360    return uint_at(cell_count_global_offset());
1361  }
1362
1363  void check_number_of_arguments(int total) {
1364    assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1365  }
1366
1367public:
1368  VirtualCallTypeData(DataLayout* layout) :
1369    VirtualCallData(layout),
1370    _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1371    _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1372  {
1373    assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1374    // Some compilers (VC++) don't want this passed in member initialization list
1375    _args.set_profile_data(this);
1376    _ret.set_profile_data(this);
1377  }
1378
1379  const TypeStackSlotEntries* args() const {
1380    assert(has_arguments(), "no profiling of arguments");
1381    return &_args;
1382  }
1383
1384  const ReturnTypeEntry* ret() const {
1385    assert(has_return(), "no profiling of return value");
1386    return &_ret;
1387  }
1388
1389  virtual bool is_VirtualCallTypeData() const { return true; }
1390
1391  static int static_cell_count() {
1392    return -1;
1393  }
1394
1395  static int compute_cell_count(BytecodeStream* stream) {
1396    return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1397  }
1398
1399  static void initialize(DataLayout* dl, int cell_count) {
1400    TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1401  }
1402
1403  virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1404
1405  virtual int cell_count() const {
1406    return VirtualCallData::static_cell_count() +
1407      TypeEntriesAtCall::header_cell_count() +
1408      int_at_unchecked(cell_count_global_offset());
1409  }
1410
1411  int number_of_arguments() const {
1412    return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1413  }
1414
1415  void set_argument_type(int i, Klass* k) {
1416    assert(has_arguments(), "no arguments!");
1417    intptr_t current = _args.type(i);
1418    _args.set_type(i, TypeEntries::with_status(k, current));
1419  }
1420
1421  void set_return_type(Klass* k) {
1422    assert(has_return(), "no return!");
1423    intptr_t current = _ret.type();
1424    _ret.set_type(TypeEntries::with_status(k, current));
1425  }
1426
1427  // An entry for a return value takes less space than an entry for an
1428  // argument, so if the remainder of the number of cells divided by
1429  // the number of cells for an argument is not null, a return value
1430  // is profiled in this object.
1431  bool has_return() const {
1432    bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1433    assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1434    return res;
1435  }
1436
1437  // An entry for a return value takes less space than an entry for an
1438  // argument so if the number of cells exceeds the number of cells
1439  // needed for an argument, this object contains type information for
1440  // at least one argument.
1441  bool has_arguments() const {
1442    bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1443    assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1444    return res;
1445  }
1446
1447  // Code generation support
1448  static ByteSize args_data_offset() {
1449    return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1450  }
1451
1452  ByteSize argument_type_offset(int i) {
1453    return _args.type_offset(i);
1454  }
1455
1456  ByteSize return_type_offset() {
1457    return _ret.type_offset();
1458  }
1459
1460  // GC support
1461  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1462    ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1463    if (has_arguments()) {
1464      _args.clean_weak_klass_links(is_alive_closure);
1465    }
1466    if (has_return()) {
1467      _ret.clean_weak_klass_links(is_alive_closure);
1468    }
1469  }
1470
1471  virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1472};
1473
1474// RetData
1475//
1476// A RetData is used to access profiling information for a ret bytecode.
1477// It is composed of a count of the number of times that the ret has
1478// been executed, followed by a series of triples of the form
1479// (bci, count, di) which count the number of times that some bci was the
1480// target of the ret and cache a corresponding data displacement.
1481class RetData : public CounterData {
1482protected:
1483  enum {
1484    bci0_offset = counter_cell_count,
1485    count0_offset,
1486    displacement0_offset,
1487    ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1488  };
1489
1490  void set_bci(uint row, int bci) {
1491    assert((uint)row < row_limit(), "oob");
1492    set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1493  }
1494  void release_set_bci(uint row, int bci) {
1495    assert((uint)row < row_limit(), "oob");
1496    // 'release' when setting the bci acts as a valid flag for other
1497    // threads wrt bci_count and bci_displacement.
1498    release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1499  }
1500  void set_bci_count(uint row, uint count) {
1501    assert((uint)row < row_limit(), "oob");
1502    set_uint_at(count0_offset + row * ret_row_cell_count, count);
1503  }
1504  void set_bci_displacement(uint row, int disp) {
1505    set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1506  }
1507
1508public:
1509  RetData(DataLayout* layout) : CounterData(layout) {
1510    assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1511  }
1512
1513  virtual bool is_RetData() const { return true; }
1514
1515  enum {
1516    no_bci = -1 // value of bci when bci1/2 are not in use.
1517  };
1518
1519  static int static_cell_count() {
1520    return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1521  }
1522
1523  virtual int cell_count() const {
1524    return static_cell_count();
1525  }
1526
1527  static uint row_limit() {
1528    return BciProfileWidth;
1529  }
1530  static int bci_cell_index(uint row) {
1531    return bci0_offset + row * ret_row_cell_count;
1532  }
1533  static int bci_count_cell_index(uint row) {
1534    return count0_offset + row * ret_row_cell_count;
1535  }
1536  static int bci_displacement_cell_index(uint row) {
1537    return displacement0_offset + row * ret_row_cell_count;
1538  }
1539
1540  // Direct accessors
1541  int bci(uint row) const {
1542    return int_at(bci_cell_index(row));
1543  }
1544  uint bci_count(uint row) const {
1545    return uint_at(bci_count_cell_index(row));
1546  }
1547  int bci_displacement(uint row) const {
1548    return int_at(bci_displacement_cell_index(row));
1549  }
1550
1551  // Interpreter Runtime support
1552  address fixup_ret(int return_bci, MethodData* mdo);
1553
1554  // Code generation support
1555  static ByteSize bci_offset(uint row) {
1556    return cell_offset(bci_cell_index(row));
1557  }
1558  static ByteSize bci_count_offset(uint row) {
1559    return cell_offset(bci_count_cell_index(row));
1560  }
1561  static ByteSize bci_displacement_offset(uint row) {
1562    return cell_offset(bci_displacement_cell_index(row));
1563  }
1564
1565#ifdef CC_INTERP
1566  static DataLayout* advance(MethodData *md, int bci);
1567#endif // CC_INTERP
1568
1569  // Specific initialization.
1570  void post_initialize(BytecodeStream* stream, MethodData* mdo);
1571
1572  void print_data_on(outputStream* st, const char* extra = NULL) const;
1573};
1574
1575// BranchData
1576//
1577// A BranchData is used to access profiling data for a two-way branch.
1578// It consists of taken and not_taken counts as well as a data displacement
1579// for the taken case.
1580class BranchData : public JumpData {
1581protected:
1582  enum {
1583    not_taken_off_set = jump_cell_count,
1584    branch_cell_count
1585  };
1586
1587  void set_displacement(int displacement) {
1588    set_int_at(displacement_off_set, displacement);
1589  }
1590
1591public:
1592  BranchData(DataLayout* layout) : JumpData(layout) {
1593    assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1594  }
1595
1596  virtual bool is_BranchData() const { return true; }
1597
1598  static int static_cell_count() {
1599    return branch_cell_count;
1600  }
1601
1602  virtual int cell_count() const {
1603    return static_cell_count();
1604  }
1605
1606  // Direct accessor
1607  uint not_taken() const {
1608    return uint_at(not_taken_off_set);
1609  }
1610
1611  void set_not_taken(uint cnt) {
1612    set_uint_at(not_taken_off_set, cnt);
1613  }
1614
1615  uint inc_not_taken() {
1616    uint cnt = not_taken() + 1;
1617    // Did we wrap? Will compiler screw us??
1618    if (cnt == 0) cnt--;
1619    set_uint_at(not_taken_off_set, cnt);
1620    return cnt;
1621  }
1622
1623  // Code generation support
1624  static ByteSize not_taken_offset() {
1625    return cell_offset(not_taken_off_set);
1626  }
1627  static ByteSize branch_data_size() {
1628    return cell_offset(branch_cell_count);
1629  }
1630
1631#ifdef CC_INTERP
1632  static int branch_data_size_in_bytes() {
1633    return cell_offset_in_bytes(branch_cell_count);
1634  }
1635
1636  static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1637    increment_uint_at_no_overflow(layout, not_taken_off_set);
1638  }
1639
1640  static DataLayout* advance_not_taken(DataLayout* layout) {
1641    return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1642  }
1643#endif // CC_INTERP
1644
1645  // Specific initialization.
1646  void post_initialize(BytecodeStream* stream, MethodData* mdo);
1647
1648  void print_data_on(outputStream* st, const char* extra = NULL) const;
1649};
1650
1651// ArrayData
1652//
1653// A ArrayData is a base class for accessing profiling data which does
1654// not have a statically known size.  It consists of an array length
1655// and an array start.
1656class ArrayData : public ProfileData {
1657protected:
1658  friend class DataLayout;
1659
1660  enum {
1661    array_len_off_set,
1662    array_start_off_set
1663  };
1664
1665  uint array_uint_at(int index) const {
1666    int aindex = index + array_start_off_set;
1667    return uint_at(aindex);
1668  }
1669  int array_int_at(int index) const {
1670    int aindex = index + array_start_off_set;
1671    return int_at(aindex);
1672  }
1673  oop array_oop_at(int index) const {
1674    int aindex = index + array_start_off_set;
1675    return oop_at(aindex);
1676  }
1677  void array_set_int_at(int index, int value) {
1678    int aindex = index + array_start_off_set;
1679    set_int_at(aindex, value);
1680  }
1681
1682#ifdef CC_INTERP
1683  // Static low level accessors for DataLayout with ArrayData's semantics.
1684
1685  static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1686    int aindex = index + array_start_off_set;
1687    increment_uint_at_no_overflow(layout, aindex);
1688  }
1689
1690  static int array_int_at(DataLayout* layout, int index) {
1691    int aindex = index + array_start_off_set;
1692    return int_at(layout, aindex);
1693  }
1694#endif // CC_INTERP
1695
1696  // Code generation support for subclasses.
1697  static ByteSize array_element_offset(int index) {
1698    return cell_offset(array_start_off_set + index);
1699  }
1700
1701public:
1702  ArrayData(DataLayout* layout) : ProfileData(layout) {}
1703
1704  virtual bool is_ArrayData() const { return true; }
1705
1706  static int static_cell_count() {
1707    return -1;
1708  }
1709
1710  int array_len() const {
1711    return int_at_unchecked(array_len_off_set);
1712  }
1713
1714  virtual int cell_count() const {
1715    return array_len() + 1;
1716  }
1717
1718  // Code generation support
1719  static ByteSize array_len_offset() {
1720    return cell_offset(array_len_off_set);
1721  }
1722  static ByteSize array_start_offset() {
1723    return cell_offset(array_start_off_set);
1724  }
1725};
1726
1727// MultiBranchData
1728//
1729// A MultiBranchData is used to access profiling information for
1730// a multi-way branch (*switch bytecodes).  It consists of a series
1731// of (count, displacement) pairs, which count the number of times each
1732// case was taken and specify the data displacment for each branch target.
1733class MultiBranchData : public ArrayData {
1734protected:
1735  enum {
1736    default_count_off_set,
1737    default_disaplacement_off_set,
1738    case_array_start
1739  };
1740  enum {
1741    relative_count_off_set,
1742    relative_displacement_off_set,
1743    per_case_cell_count
1744  };
1745
1746  void set_default_displacement(int displacement) {
1747    array_set_int_at(default_disaplacement_off_set, displacement);
1748  }
1749  void set_displacement_at(int index, int displacement) {
1750    array_set_int_at(case_array_start +
1751                     index * per_case_cell_count +
1752                     relative_displacement_off_set,
1753                     displacement);
1754  }
1755
1756public:
1757  MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1758    assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1759  }
1760
1761  virtual bool is_MultiBranchData() const { return true; }
1762
1763  static int compute_cell_count(BytecodeStream* stream);
1764
1765  int number_of_cases() const {
1766    int alen = array_len() - 2; // get rid of default case here.
1767    assert(alen % per_case_cell_count == 0, "must be even");
1768    return (alen / per_case_cell_count);
1769  }
1770
1771  uint default_count() const {
1772    return array_uint_at(default_count_off_set);
1773  }
1774  int default_displacement() const {
1775    return array_int_at(default_disaplacement_off_set);
1776  }
1777
1778  uint count_at(int index) const {
1779    return array_uint_at(case_array_start +
1780                         index * per_case_cell_count +
1781                         relative_count_off_set);
1782  }
1783  int displacement_at(int index) const {
1784    return array_int_at(case_array_start +
1785                        index * per_case_cell_count +
1786                        relative_displacement_off_set);
1787  }
1788
1789  // Code generation support
1790  static ByteSize default_count_offset() {
1791    return array_element_offset(default_count_off_set);
1792  }
1793  static ByteSize default_displacement_offset() {
1794    return array_element_offset(default_disaplacement_off_set);
1795  }
1796  static ByteSize case_count_offset(int index) {
1797    return case_array_offset() +
1798           (per_case_size() * index) +
1799           relative_count_offset();
1800  }
1801  static ByteSize case_array_offset() {
1802    return array_element_offset(case_array_start);
1803  }
1804  static ByteSize per_case_size() {
1805    return in_ByteSize(per_case_cell_count) * cell_size;
1806  }
1807  static ByteSize relative_count_offset() {
1808    return in_ByteSize(relative_count_off_set) * cell_size;
1809  }
1810  static ByteSize relative_displacement_offset() {
1811    return in_ByteSize(relative_displacement_off_set) * cell_size;
1812  }
1813
1814#ifdef CC_INTERP
1815  static void increment_count_no_overflow(DataLayout* layout, int index) {
1816    if (index == -1) {
1817      increment_array_uint_at_no_overflow(layout, default_count_off_set);
1818    } else {
1819      increment_array_uint_at_no_overflow(layout, case_array_start +
1820                                                  index * per_case_cell_count +
1821                                                  relative_count_off_set);
1822    }
1823  }
1824
1825  static DataLayout* advance(DataLayout* layout, int index) {
1826    if (index == -1) {
1827      return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1828    } else {
1829      return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1830                                                                              index * per_case_cell_count +
1831                                                                              relative_displacement_off_set));
1832    }
1833  }
1834#endif // CC_INTERP
1835
1836  // Specific initialization.
1837  void post_initialize(BytecodeStream* stream, MethodData* mdo);
1838
1839  void print_data_on(outputStream* st, const char* extra = NULL) const;
1840};
1841
1842class ArgInfoData : public ArrayData {
1843
1844public:
1845  ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1846    assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1847  }
1848
1849  virtual bool is_ArgInfoData() const { return true; }
1850
1851
1852  int number_of_args() const {
1853    return array_len();
1854  }
1855
1856  uint arg_modified(int arg) const {
1857    return array_uint_at(arg);
1858  }
1859
1860  void set_arg_modified(int arg, uint val) {
1861    array_set_int_at(arg, val);
1862  }
1863
1864  void print_data_on(outputStream* st, const char* extra = NULL) const;
1865};
1866
1867// ParametersTypeData
1868//
1869// A ParametersTypeData is used to access profiling information about
1870// types of parameters to a method
1871class ParametersTypeData : public ArrayData {
1872
1873private:
1874  TypeStackSlotEntries _parameters;
1875
1876  static int stack_slot_local_offset(int i) {
1877    assert_profiling_enabled();
1878    return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1879  }
1880
1881  static int type_local_offset(int i) {
1882    assert_profiling_enabled();
1883    return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1884  }
1885
1886  static bool profiling_enabled();
1887  static void assert_profiling_enabled() {
1888    assert(profiling_enabled(), "method parameters profiling should be on");
1889  }
1890
1891public:
1892  ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1893    assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1894    // Some compilers (VC++) don't want this passed in member initialization list
1895    _parameters.set_profile_data(this);
1896  }
1897
1898  static int compute_cell_count(Method* m);
1899
1900  virtual bool is_ParametersTypeData() const { return true; }
1901
1902  virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1903
1904  int number_of_parameters() const {
1905    return array_len() / TypeStackSlotEntries::per_arg_count();
1906  }
1907
1908  const TypeStackSlotEntries* parameters() const { return &_parameters; }
1909
1910  uint stack_slot(int i) const {
1911    return _parameters.stack_slot(i);
1912  }
1913
1914  void set_type(int i, Klass* k) {
1915    intptr_t current = _parameters.type(i);
1916    _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1917  }
1918
1919  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1920    _parameters.clean_weak_klass_links(is_alive_closure);
1921  }
1922
1923  virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1924
1925  static ByteSize stack_slot_offset(int i) {
1926    return cell_offset(stack_slot_local_offset(i));
1927  }
1928
1929  static ByteSize type_offset(int i) {
1930    return cell_offset(type_local_offset(i));
1931  }
1932};
1933
1934// SpeculativeTrapData
1935//
1936// A SpeculativeTrapData is used to record traps due to type
1937// speculation. It records the root of the compilation: that type
1938// speculation is wrong in the context of one compilation (for
1939// method1) doesn't mean it's wrong in the context of another one (for
1940// method2). Type speculation could have more/different data in the
1941// context of the compilation of method2 and it's worthwhile to try an
1942// optimization that failed for compilation of method1 in the context
1943// of compilation of method2.
1944// Space for SpeculativeTrapData entries is allocated from the extra
1945// data space in the MDO. If we run out of space, the trap data for
1946// the ProfileData at that bci is updated.
1947class SpeculativeTrapData : public ProfileData {
1948protected:
1949  enum {
1950    speculative_trap_method,
1951    speculative_trap_cell_count
1952  };
1953public:
1954  SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1955    assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1956  }
1957
1958  virtual bool is_SpeculativeTrapData() const { return true; }
1959
1960  static int static_cell_count() {
1961    return speculative_trap_cell_count;
1962  }
1963
1964  virtual int cell_count() const {
1965    return static_cell_count();
1966  }
1967
1968  // Direct accessor
1969  Method* method() const {
1970    return (Method*)intptr_at(speculative_trap_method);
1971  }
1972
1973  void set_method(Method* m) {
1974    set_intptr_at(speculative_trap_method, (intptr_t)m);
1975  }
1976
1977  static ByteSize method_offset() {
1978    return cell_offset(speculative_trap_method);
1979  }
1980
1981  virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1982};
1983
1984// MethodData*
1985//
1986// A MethodData* holds information which has been collected about
1987// a method.  Its layout looks like this:
1988//
1989// -----------------------------
1990// | header                    |
1991// | klass                     |
1992// -----------------------------
1993// | method                    |
1994// | size of the MethodData* |
1995// -----------------------------
1996// | Data entries...           |
1997// |   (variable size)         |
1998// |                           |
1999// .                           .
2000// .                           .
2001// .                           .
2002// |                           |
2003// -----------------------------
2004//
2005// The data entry area is a heterogeneous array of DataLayouts. Each
2006// DataLayout in the array corresponds to a specific bytecode in the
2007// method.  The entries in the array are sorted by the corresponding
2008// bytecode.  Access to the data is via resource-allocated ProfileData,
2009// which point to the underlying blocks of DataLayout structures.
2010//
2011// During interpretation, if profiling in enabled, the interpreter
2012// maintains a method data pointer (mdp), which points at the entry
2013// in the array corresponding to the current bci.  In the course of
2014// intepretation, when a bytecode is encountered that has profile data
2015// associated with it, the entry pointed to by mdp is updated, then the
2016// mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2017// is NULL to begin with, the interpreter assumes that the current method
2018// is not (yet) being profiled.
2019//
2020// In MethodData* parlance, "dp" is a "data pointer", the actual address
2021// of a DataLayout element.  A "di" is a "data index", the offset in bytes
2022// from the base of the data entry array.  A "displacement" is the byte offset
2023// in certain ProfileData objects that indicate the amount the mdp must be
2024// adjusted in the event of a change in control flow.
2025//
2026
2027CC_INTERP_ONLY(class BytecodeInterpreter;)
2028class CleanExtraDataClosure;
2029
2030class MethodData : public Metadata {
2031  friend class VMStructs;
2032  CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2033private:
2034  friend class ProfileData;
2035
2036  // Back pointer to the Method*
2037  Method* _method;
2038
2039  // Size of this oop in bytes
2040  int _size;
2041
2042  // Cached hint for bci_to_dp and bci_to_data
2043  int _hint_di;
2044
2045  Mutex _extra_data_lock;
2046
2047  MethodData(methodHandle method, int size, TRAPS);
2048public:
2049  static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2050  MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2051
2052  bool is_methodData() const volatile { return true; }
2053
2054  // Whole-method sticky bits and flags
2055  enum {
2056    _trap_hist_limit    = 21,   // decoupled from Deoptimization::Reason_LIMIT
2057    _trap_hist_mask     = max_jubyte,
2058    _extra_data_count   = 4     // extra DataLayout headers, for trap history
2059  }; // Public flag values
2060private:
2061  uint _nof_decompiles;             // count of all nmethod removals
2062  uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2063  uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2064  union {
2065    intptr_t _align;
2066    u1 _array[_trap_hist_limit];
2067  } _trap_hist;
2068
2069  // Support for interprocedural escape analysis, from Thomas Kotzmann.
2070  intx              _eflags;          // flags on escape information
2071  intx              _arg_local;       // bit set of non-escaping arguments
2072  intx              _arg_stack;       // bit set of stack-allocatable arguments
2073  intx              _arg_returned;    // bit set of returned arguments
2074
2075  int _creation_mileage;              // method mileage at MDO creation
2076
2077  // How many invocations has this MDO seen?
2078  // These counters are used to determine the exact age of MDO.
2079  // We need those because in tiered a method can be concurrently
2080  // executed at different levels.
2081  InvocationCounter _invocation_counter;
2082  // Same for backedges.
2083  InvocationCounter _backedge_counter;
2084  // Counter values at the time profiling started.
2085  int               _invocation_counter_start;
2086  int               _backedge_counter_start;
2087  uint              _tenure_traps;
2088
2089#if INCLUDE_RTM_OPT
2090  // State of RTM code generation during compilation of the method
2091  int               _rtm_state;
2092#endif
2093
2094  // Number of loops and blocks is computed when compiling the first
2095  // time with C1. It is used to determine if method is trivial.
2096  short             _num_loops;
2097  short             _num_blocks;
2098  // Highest compile level this method has ever seen.
2099  u1                _highest_comp_level;
2100  // Same for OSR level
2101  u1                _highest_osr_comp_level;
2102  // Does this method contain anything worth profiling?
2103  bool              _would_profile;
2104
2105  // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2106  int _data_size;
2107
2108  // data index for the area dedicated to parameters. -1 if no
2109  // parameter profiling.
2110  int _parameters_type_data_di;
2111
2112  // Beginning of the data entries
2113  intptr_t _data[1];
2114
2115  // Helper for size computation
2116  static int compute_data_size(BytecodeStream* stream);
2117  static int bytecode_cell_count(Bytecodes::Code code);
2118  static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2119  enum { no_profile_data = -1, variable_cell_count = -2 };
2120
2121  // Helper for initialization
2122  DataLayout* data_layout_at(int data_index) const {
2123    assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2124    return (DataLayout*) (((address)_data) + data_index);
2125  }
2126
2127  // Initialize an individual data segment.  Returns the size of
2128  // the segment in bytes.
2129  int initialize_data(BytecodeStream* stream, int data_index);
2130
2131  // Helper for data_at
2132  DataLayout* limit_data_position() const {
2133    return (DataLayout*)((address)data_base() + _data_size);
2134  }
2135  bool out_of_bounds(int data_index) const {
2136    return data_index >= data_size();
2137  }
2138
2139  // Give each of the data entries a chance to perform specific
2140  // data initialization.
2141  void post_initialize(BytecodeStream* stream);
2142
2143  // hint accessors
2144  int      hint_di() const  { return _hint_di; }
2145  void set_hint_di(int di)  {
2146    assert(!out_of_bounds(di), "hint_di out of bounds");
2147    _hint_di = di;
2148  }
2149  ProfileData* data_before(int bci) {
2150    // avoid SEGV on this edge case
2151    if (data_size() == 0)
2152      return NULL;
2153    int hint = hint_di();
2154    if (data_layout_at(hint)->bci() <= bci)
2155      return data_at(hint);
2156    return first_data();
2157  }
2158
2159  // What is the index of the first data entry?
2160  int first_di() const { return 0; }
2161
2162  ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2163  // Find or create an extra ProfileData:
2164  ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2165
2166  // return the argument info cell
2167  ArgInfoData *arg_info();
2168
2169  enum {
2170    no_type_profile = 0,
2171    type_profile_jsr292 = 1,
2172    type_profile_all = 2
2173  };
2174
2175  static bool profile_jsr292(methodHandle m, int bci);
2176  static int profile_arguments_flag();
2177  static bool profile_all_arguments();
2178  static bool profile_arguments_for_invoke(methodHandle m, int bci);
2179  static int profile_return_flag();
2180  static bool profile_all_return();
2181  static bool profile_return_for_invoke(methodHandle m, int bci);
2182  static int profile_parameters_flag();
2183  static bool profile_parameters_jsr292_only();
2184  static bool profile_all_parameters();
2185
2186  void clean_extra_data(CleanExtraDataClosure* cl);
2187  void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2188  void verify_extra_data_clean(CleanExtraDataClosure* cl);
2189
2190public:
2191  static int header_size() {
2192    return sizeof(MethodData)/wordSize;
2193  }
2194
2195  // Compute the size of a MethodData* before it is created.
2196  static int compute_allocation_size_in_bytes(methodHandle method);
2197  static int compute_allocation_size_in_words(methodHandle method);
2198  static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2199
2200  // Determine if a given bytecode can have profile information.
2201  static bool bytecode_has_profile(Bytecodes::Code code) {
2202    return bytecode_cell_count(code) != no_profile_data;
2203  }
2204
2205  // reset into original state
2206  void init();
2207
2208  // My size
2209  int size_in_bytes() const { return _size; }
2210  int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2211#if INCLUDE_SERVICES
2212  void collect_statistics(KlassSizeStats *sz) const;
2213#endif
2214
2215  int      creation_mileage() const  { return _creation_mileage; }
2216  void set_creation_mileage(int x)   { _creation_mileage = x; }
2217
2218  int invocation_count() {
2219    if (invocation_counter()->carry()) {
2220      return InvocationCounter::count_limit;
2221    }
2222    return invocation_counter()->count();
2223  }
2224  int backedge_count() {
2225    if (backedge_counter()->carry()) {
2226      return InvocationCounter::count_limit;
2227    }
2228    return backedge_counter()->count();
2229  }
2230
2231  int invocation_count_start() {
2232    if (invocation_counter()->carry()) {
2233      return 0;
2234    }
2235    return _invocation_counter_start;
2236  }
2237
2238  int backedge_count_start() {
2239    if (backedge_counter()->carry()) {
2240      return 0;
2241    }
2242    return _backedge_counter_start;
2243  }
2244
2245  int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2246  int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2247
2248  void reset_start_counters() {
2249    _invocation_counter_start = invocation_count();
2250    _backedge_counter_start = backedge_count();
2251  }
2252
2253  InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2254  InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2255
2256#if INCLUDE_RTM_OPT
2257  int rtm_state() const {
2258    return _rtm_state;
2259  }
2260  void set_rtm_state(RTMState rstate) {
2261    _rtm_state = (int)rstate;
2262  }
2263  void atomic_set_rtm_state(RTMState rstate) {
2264    Atomic::store((int)rstate, &_rtm_state);
2265  }
2266
2267  static int rtm_state_offset_in_bytes() {
2268    return offset_of(MethodData, _rtm_state);
2269  }
2270#endif
2271
2272  void set_would_profile(bool p)              { _would_profile = p;    }
2273  bool would_profile() const                  { return _would_profile; }
2274
2275  int highest_comp_level() const              { return _highest_comp_level;      }
2276  void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
2277  int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
2278  void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
2279
2280  int num_loops() const                       { return _num_loops;  }
2281  void set_num_loops(int n)                   { _num_loops = n;     }
2282  int num_blocks() const                      { return _num_blocks; }
2283  void set_num_blocks(int n)                  { _num_blocks = n;    }
2284
2285  bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2286  static int mileage_of(Method* m);
2287
2288  // Support for interprocedural escape analysis, from Thomas Kotzmann.
2289  enum EscapeFlag {
2290    estimated    = 1 << 0,
2291    return_local = 1 << 1,
2292    return_allocated = 1 << 2,
2293    allocated_escapes = 1 << 3,
2294    unknown_modified = 1 << 4
2295  };
2296
2297  intx eflags()                                  { return _eflags; }
2298  intx arg_local()                               { return _arg_local; }
2299  intx arg_stack()                               { return _arg_stack; }
2300  intx arg_returned()                            { return _arg_returned; }
2301  uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2302                                                   assert(aid != NULL, "arg_info must be not null");
2303                                                   assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2304                                                   return aid->arg_modified(a); }
2305
2306  void set_eflags(intx v)                        { _eflags = v; }
2307  void set_arg_local(intx v)                     { _arg_local = v; }
2308  void set_arg_stack(intx v)                     { _arg_stack = v; }
2309  void set_arg_returned(intx v)                  { _arg_returned = v; }
2310  void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2311                                                   assert(aid != NULL, "arg_info must be not null");
2312                                                   assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2313                                                   aid->set_arg_modified(a, v); }
2314
2315  void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2316
2317  // Location and size of data area
2318  address data_base() const {
2319    return (address) _data;
2320  }
2321  int data_size() const {
2322    return _data_size;
2323  }
2324
2325  // Accessors
2326  Method* method() const { return _method; }
2327
2328  // Get the data at an arbitrary (sort of) data index.
2329  ProfileData* data_at(int data_index) const;
2330
2331  // Walk through the data in order.
2332  ProfileData* first_data() const { return data_at(first_di()); }
2333  ProfileData* next_data(ProfileData* current) const;
2334  bool is_valid(ProfileData* current) const { return current != NULL; }
2335
2336  // Convert a dp (data pointer) to a di (data index).
2337  int dp_to_di(address dp) const {
2338    return dp - ((address)_data);
2339  }
2340
2341  // bci to di/dp conversion.
2342  address bci_to_dp(int bci);
2343  int bci_to_di(int bci) {
2344    return dp_to_di(bci_to_dp(bci));
2345  }
2346
2347  // Get the data at an arbitrary bci, or NULL if there is none.
2348  ProfileData* bci_to_data(int bci);
2349
2350  // Same, but try to create an extra_data record if one is needed:
2351  ProfileData* allocate_bci_to_data(int bci, Method* m) {
2352    ProfileData* data = NULL;
2353    // If m not NULL, try to allocate a SpeculativeTrapData entry
2354    if (m == NULL) {
2355      data = bci_to_data(bci);
2356    }
2357    if (data != NULL) {
2358      return data;
2359    }
2360    data = bci_to_extra_data(bci, m, true);
2361    if (data != NULL) {
2362      return data;
2363    }
2364    // If SpeculativeTrapData allocation fails try to allocate a
2365    // regular entry
2366    data = bci_to_data(bci);
2367    if (data != NULL) {
2368      return data;
2369    }
2370    return bci_to_extra_data(bci, NULL, true);
2371  }
2372
2373  // Add a handful of extra data records, for trap tracking.
2374  DataLayout* extra_data_base() const { return limit_data_position(); }
2375  DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2376  int extra_data_size() const { return (address)extra_data_limit()
2377                               - (address)extra_data_base(); }
2378  static DataLayout* next_extra(DataLayout* dp);
2379
2380  // Return (uint)-1 for overflow.
2381  uint trap_count(int reason) const {
2382    assert((uint)reason < _trap_hist_limit, "oob");
2383    return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2384  }
2385  // For loops:
2386  static uint trap_reason_limit() { return _trap_hist_limit; }
2387  static uint trap_count_limit()  { return _trap_hist_mask; }
2388  uint inc_trap_count(int reason) {
2389    // Count another trap, anywhere in this method.
2390    assert(reason >= 0, "must be single trap");
2391    if ((uint)reason < _trap_hist_limit) {
2392      uint cnt1 = 1 + _trap_hist._array[reason];
2393      if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2394        _trap_hist._array[reason] = cnt1;
2395        return cnt1;
2396      } else {
2397        return _trap_hist_mask + (++_nof_overflow_traps);
2398      }
2399    } else {
2400      // Could not represent the count in the histogram.
2401      return (++_nof_overflow_traps);
2402    }
2403  }
2404
2405  uint overflow_trap_count() const {
2406    return _nof_overflow_traps;
2407  }
2408  uint overflow_recompile_count() const {
2409    return _nof_overflow_recompiles;
2410  }
2411  void inc_overflow_recompile_count() {
2412    _nof_overflow_recompiles += 1;
2413  }
2414  uint decompile_count() const {
2415    return _nof_decompiles;
2416  }
2417  void inc_decompile_count() {
2418    _nof_decompiles += 1;
2419    if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2420      method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2421    }
2422  }
2423  uint tenure_traps() const {
2424    return _tenure_traps;
2425  }
2426  void inc_tenure_traps() {
2427    _tenure_traps += 1;
2428  }
2429
2430  // Return pointer to area dedicated to parameters in MDO
2431  ParametersTypeData* parameters_type_data() const {
2432    return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2433  }
2434
2435  int parameters_type_data_di() const {
2436    assert(_parameters_type_data_di != -1, "no args type data");
2437    return _parameters_type_data_di;
2438  }
2439
2440  // Support for code generation
2441  static ByteSize data_offset() {
2442    return byte_offset_of(MethodData, _data[0]);
2443  }
2444
2445  static ByteSize invocation_counter_offset() {
2446    return byte_offset_of(MethodData, _invocation_counter);
2447  }
2448  static ByteSize backedge_counter_offset() {
2449    return byte_offset_of(MethodData, _backedge_counter);
2450  }
2451
2452  static ByteSize parameters_type_data_di_offset() {
2453    return byte_offset_of(MethodData, _parameters_type_data_di);
2454  }
2455
2456  // Deallocation support - no pointer fields to deallocate
2457  void deallocate_contents(ClassLoaderData* loader_data) {}
2458
2459  // GC support
2460  void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2461
2462  // Printing
2463  void print_on      (outputStream* st) const;
2464  void print_value_on(outputStream* st) const;
2465
2466  // printing support for method data
2467  void print_data_on(outputStream* st) const;
2468
2469  const char* internal_name() const { return "{method data}"; }
2470
2471  // verification
2472  void verify_on(outputStream* st);
2473  void verify_data_on(outputStream* st);
2474
2475  static bool profile_parameters_for_method(methodHandle m);
2476  static bool profile_arguments();
2477  static bool profile_arguments_jsr292_only();
2478  static bool profile_return();
2479  static bool profile_parameters();
2480  static bool profile_return_jsr292_only();
2481
2482  void clean_method_data(BoolObjectClosure* is_alive);
2483
2484  void clean_weak_method_links();
2485};
2486
2487#endif // SHARE_VM_OOPS_METHODDATAOOP_HPP
2488