methodData.hpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
26#define SHARE_VM_OOPS_METHODDATAOOP_HPP
27
28#include "interpreter/bytecodes.hpp"
29#include "memory/universe.hpp"
30#include "oops/method.hpp"
31#include "oops/oop.hpp"
32#include "runtime/orderAccess.hpp"
33
34class BytecodeStream;
35
36// The MethodData object collects counts and other profile information
37// during zeroth-tier (interpretive) and first-tier execution.
38// The profile is used later by compilation heuristics.  Some heuristics
39// enable use of aggressive (or "heroic") optimizations.  An aggressive
40// optimization often has a down-side, a corner case that it handles
41// poorly, but which is thought to be rare.  The profile provides
42// evidence of this rarity for a given method or even BCI.  It allows
43// the compiler to back out of the optimization at places where it
44// has historically been a poor choice.  Other heuristics try to use
45// specific information gathered about types observed at a given site.
46//
47// All data in the profile is approximate.  It is expected to be accurate
48// on the whole, but the system expects occasional inaccuraces, due to
49// counter overflow, multiprocessor races during data collection, space
50// limitations, missing MDO blocks, etc.  Bad or missing data will degrade
51// optimization quality but will not affect correctness.  Also, each MDO
52// is marked with its birth-date ("creation_mileage") which can be used
53// to assess the quality ("maturity") of its data.
54//
55// Short (<32-bit) counters are designed to overflow to a known "saturated"
56// state.  Also, certain recorded per-BCI events are given one-bit counters
57// which overflow to a saturated state which applied to all counters at
58// that BCI.  In other words, there is a small lattice which approximates
59// the ideal of an infinite-precision counter for each event at each BCI,
60// and the lattice quickly "bottoms out" in a state where all counters
61// are taken to be indefinitely large.
62//
63// The reader will find many data races in profile gathering code, starting
64// with invocation counter incrementation.  None of these races harm correct
65// execution of the compiled code.
66
67// forward decl
68class ProfileData;
69
70// DataLayout
71//
72// Overlay for generic profiling data.
73class DataLayout VALUE_OBJ_CLASS_SPEC {
74private:
75  // Every data layout begins with a header.  This header
76  // contains a tag, which is used to indicate the size/layout
77  // of the data, 4 bits of flags, which can be used in any way,
78  // 4 bits of trap history (none/one reason/many reasons),
79  // and a bci, which is used to tie this piece of data to a
80  // specific bci in the bytecodes.
81  union {
82    intptr_t _bits;
83    struct {
84      u1 _tag;
85      u1 _flags;
86      u2 _bci;
87    } _struct;
88  } _header;
89
90  // The data layout has an arbitrary number of cells, each sized
91  // to accomodate a pointer or an integer.
92  intptr_t _cells[1];
93
94  // Some types of data layouts need a length field.
95  static bool needs_array_len(u1 tag);
96
97public:
98  enum {
99    counter_increment = 1
100  };
101
102  enum {
103    cell_size = sizeof(intptr_t)
104  };
105
106  // Tag values
107  enum {
108    no_tag,
109    bit_data_tag,
110    counter_data_tag,
111    jump_data_tag,
112    receiver_type_data_tag,
113    virtual_call_data_tag,
114    ret_data_tag,
115    branch_data_tag,
116    multi_branch_data_tag,
117    arg_info_data_tag
118  };
119
120  enum {
121    // The _struct._flags word is formatted as [trap_state:4 | flags:4].
122    // The trap state breaks down further as [recompile:1 | reason:3].
123    // This further breakdown is defined in deoptimization.cpp.
124    // See Deoptimization::trap_state_reason for an assert that
125    // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
126    //
127    // The trap_state is collected only if ProfileTraps is true.
128    trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
129    trap_shift = BitsPerByte - trap_bits,
130    trap_mask = right_n_bits(trap_bits),
131    trap_mask_in_place = (trap_mask << trap_shift),
132    flag_limit = trap_shift,
133    flag_mask = right_n_bits(flag_limit),
134    first_flag = 0
135  };
136
137  // Size computation
138  static int header_size_in_bytes() {
139    return cell_size;
140  }
141  static int header_size_in_cells() {
142    return 1;
143  }
144
145  static int compute_size_in_bytes(int cell_count) {
146    return header_size_in_bytes() + cell_count * cell_size;
147  }
148
149  // Initialization
150  void initialize(u1 tag, u2 bci, int cell_count);
151
152  // Accessors
153  u1 tag() {
154    return _header._struct._tag;
155  }
156
157  // Return a few bits of trap state.  Range is [0..trap_mask].
158  // The state tells if traps with zero, one, or many reasons have occurred.
159  // It also tells whether zero or many recompilations have occurred.
160  // The associated trap histogram in the MDO itself tells whether
161  // traps are common or not.  If a BCI shows that a trap X has
162  // occurred, and the MDO shows N occurrences of X, we make the
163  // simplifying assumption that all N occurrences can be blamed
164  // on that BCI.
165  int trap_state() {
166    return ((_header._struct._flags >> trap_shift) & trap_mask);
167  }
168
169  void set_trap_state(int new_state) {
170    assert(ProfileTraps, "used only under +ProfileTraps");
171    uint old_flags = (_header._struct._flags & flag_mask);
172    _header._struct._flags = (new_state << trap_shift) | old_flags;
173  }
174
175  u1 flags() {
176    return _header._struct._flags;
177  }
178
179  u2 bci() {
180    return _header._struct._bci;
181  }
182
183  void set_header(intptr_t value) {
184    _header._bits = value;
185  }
186  void release_set_header(intptr_t value) {
187    OrderAccess::release_store_ptr(&_header._bits, value);
188  }
189  intptr_t header() {
190    return _header._bits;
191  }
192  void set_cell_at(int index, intptr_t value) {
193    _cells[index] = value;
194  }
195  void release_set_cell_at(int index, intptr_t value) {
196    OrderAccess::release_store_ptr(&_cells[index], value);
197  }
198  intptr_t cell_at(int index) {
199    return _cells[index];
200  }
201
202  void set_flag_at(int flag_number) {
203    assert(flag_number < flag_limit, "oob");
204    _header._struct._flags |= (0x1 << flag_number);
205  }
206  bool flag_at(int flag_number) {
207    assert(flag_number < flag_limit, "oob");
208    return (_header._struct._flags & (0x1 << flag_number)) != 0;
209  }
210
211  // Low-level support for code generation.
212  static ByteSize header_offset() {
213    return byte_offset_of(DataLayout, _header);
214  }
215  static ByteSize tag_offset() {
216    return byte_offset_of(DataLayout, _header._struct._tag);
217  }
218  static ByteSize flags_offset() {
219    return byte_offset_of(DataLayout, _header._struct._flags);
220  }
221  static ByteSize bci_offset() {
222    return byte_offset_of(DataLayout, _header._struct._bci);
223  }
224  static ByteSize cell_offset(int index) {
225    return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
226  }
227  // Return a value which, when or-ed as a byte into _flags, sets the flag.
228  static int flag_number_to_byte_constant(int flag_number) {
229    assert(0 <= flag_number && flag_number < flag_limit, "oob");
230    DataLayout temp; temp.set_header(0);
231    temp.set_flag_at(flag_number);
232    return temp._header._struct._flags;
233  }
234  // Return a value which, when or-ed as a word into _header, sets the flag.
235  static intptr_t flag_mask_to_header_mask(int byte_constant) {
236    DataLayout temp; temp.set_header(0);
237    temp._header._struct._flags = byte_constant;
238    return temp._header._bits;
239  }
240
241  ProfileData* data_in();
242
243  // GC support
244  void clean_weak_klass_links(BoolObjectClosure* cl);
245};
246
247
248// ProfileData class hierarchy
249class ProfileData;
250class   BitData;
251class     CounterData;
252class       ReceiverTypeData;
253class         VirtualCallData;
254class       RetData;
255class   JumpData;
256class     BranchData;
257class   ArrayData;
258class     MultiBranchData;
259class     ArgInfoData;
260
261
262// ProfileData
263//
264// A ProfileData object is created to refer to a section of profiling
265// data in a structured way.
266class ProfileData : public ResourceObj {
267private:
268#ifndef PRODUCT
269  enum {
270    tab_width_one = 16,
271    tab_width_two = 36
272  };
273#endif // !PRODUCT
274
275  // This is a pointer to a section of profiling data.
276  DataLayout* _data;
277
278protected:
279  DataLayout* data() { return _data; }
280
281  enum {
282    cell_size = DataLayout::cell_size
283  };
284
285public:
286  // How many cells are in this?
287  virtual int cell_count() {
288    ShouldNotReachHere();
289    return -1;
290  }
291
292  // Return the size of this data.
293  int size_in_bytes() {
294    return DataLayout::compute_size_in_bytes(cell_count());
295  }
296
297protected:
298  // Low-level accessors for underlying data
299  void set_intptr_at(int index, intptr_t value) {
300    assert(0 <= index && index < cell_count(), "oob");
301    data()->set_cell_at(index, value);
302  }
303  void release_set_intptr_at(int index, intptr_t value) {
304    assert(0 <= index && index < cell_count(), "oob");
305    data()->release_set_cell_at(index, value);
306  }
307  intptr_t intptr_at(int index) {
308    assert(0 <= index && index < cell_count(), "oob");
309    return data()->cell_at(index);
310  }
311  void set_uint_at(int index, uint value) {
312    set_intptr_at(index, (intptr_t) value);
313  }
314  void release_set_uint_at(int index, uint value) {
315    release_set_intptr_at(index, (intptr_t) value);
316  }
317  uint uint_at(int index) {
318    return (uint)intptr_at(index);
319  }
320  void set_int_at(int index, int value) {
321    set_intptr_at(index, (intptr_t) value);
322  }
323  void release_set_int_at(int index, int value) {
324    release_set_intptr_at(index, (intptr_t) value);
325  }
326  int int_at(int index) {
327    return (int)intptr_at(index);
328  }
329  int int_at_unchecked(int index) {
330    return (int)data()->cell_at(index);
331  }
332  void set_oop_at(int index, oop value) {
333    set_intptr_at(index, (intptr_t) value);
334  }
335  oop oop_at(int index) {
336    return (oop)intptr_at(index);
337  }
338
339  void set_flag_at(int flag_number) {
340    data()->set_flag_at(flag_number);
341  }
342  bool flag_at(int flag_number) {
343    return data()->flag_at(flag_number);
344  }
345
346  // two convenient imports for use by subclasses:
347  static ByteSize cell_offset(int index) {
348    return DataLayout::cell_offset(index);
349  }
350  static int flag_number_to_byte_constant(int flag_number) {
351    return DataLayout::flag_number_to_byte_constant(flag_number);
352  }
353
354  ProfileData(DataLayout* data) {
355    _data = data;
356  }
357
358public:
359  // Constructor for invalid ProfileData.
360  ProfileData();
361
362  u2 bci() {
363    return data()->bci();
364  }
365
366  address dp() {
367    return (address)_data;
368  }
369
370  int trap_state() {
371    return data()->trap_state();
372  }
373  void set_trap_state(int new_state) {
374    data()->set_trap_state(new_state);
375  }
376
377  // Type checking
378  virtual bool is_BitData()         { return false; }
379  virtual bool is_CounterData()     { return false; }
380  virtual bool is_JumpData()        { return false; }
381  virtual bool is_ReceiverTypeData(){ return false; }
382  virtual bool is_VirtualCallData() { return false; }
383  virtual bool is_RetData()         { return false; }
384  virtual bool is_BranchData()      { return false; }
385  virtual bool is_ArrayData()       { return false; }
386  virtual bool is_MultiBranchData() { return false; }
387  virtual bool is_ArgInfoData()     { return false; }
388
389
390  BitData* as_BitData() {
391    assert(is_BitData(), "wrong type");
392    return is_BitData()         ? (BitData*)        this : NULL;
393  }
394  CounterData* as_CounterData() {
395    assert(is_CounterData(), "wrong type");
396    return is_CounterData()     ? (CounterData*)    this : NULL;
397  }
398  JumpData* as_JumpData() {
399    assert(is_JumpData(), "wrong type");
400    return is_JumpData()        ? (JumpData*)       this : NULL;
401  }
402  ReceiverTypeData* as_ReceiverTypeData() {
403    assert(is_ReceiverTypeData(), "wrong type");
404    return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
405  }
406  VirtualCallData* as_VirtualCallData() {
407    assert(is_VirtualCallData(), "wrong type");
408    return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
409  }
410  RetData* as_RetData() {
411    assert(is_RetData(), "wrong type");
412    return is_RetData()         ? (RetData*)        this : NULL;
413  }
414  BranchData* as_BranchData() {
415    assert(is_BranchData(), "wrong type");
416    return is_BranchData()      ? (BranchData*)     this : NULL;
417  }
418  ArrayData* as_ArrayData() {
419    assert(is_ArrayData(), "wrong type");
420    return is_ArrayData()       ? (ArrayData*)      this : NULL;
421  }
422  MultiBranchData* as_MultiBranchData() {
423    assert(is_MultiBranchData(), "wrong type");
424    return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
425  }
426  ArgInfoData* as_ArgInfoData() {
427    assert(is_ArgInfoData(), "wrong type");
428    return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
429  }
430
431
432  // Subclass specific initialization
433  virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
434
435  // GC support
436  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
437
438  // CI translation: ProfileData can represent both MethodDataOop data
439  // as well as CIMethodData data. This function is provided for translating
440  // an oop in a ProfileData to the ci equivalent. Generally speaking,
441  // most ProfileData don't require any translation, so we provide the null
442  // translation here, and the required translators are in the ci subclasses.
443  virtual void translate_from(ProfileData* data) {}
444
445  virtual void print_data_on(outputStream* st) {
446    ShouldNotReachHere();
447  }
448
449#ifndef PRODUCT
450  void print_shared(outputStream* st, const char* name);
451  void tab(outputStream* st);
452#endif
453};
454
455// BitData
456//
457// A BitData holds a flag or two in its header.
458class BitData : public ProfileData {
459protected:
460  enum {
461    // null_seen:
462    //  saw a null operand (cast/aastore/instanceof)
463    null_seen_flag              = DataLayout::first_flag + 0
464  };
465  enum { bit_cell_count = 0 };  // no additional data fields needed.
466public:
467  BitData(DataLayout* layout) : ProfileData(layout) {
468  }
469
470  virtual bool is_BitData() { return true; }
471
472  static int static_cell_count() {
473    return bit_cell_count;
474  }
475
476  virtual int cell_count() {
477    return static_cell_count();
478  }
479
480  // Accessor
481
482  // The null_seen flag bit is specially known to the interpreter.
483  // Consulting it allows the compiler to avoid setting up null_check traps.
484  bool null_seen()     { return flag_at(null_seen_flag); }
485  void set_null_seen()    { set_flag_at(null_seen_flag); }
486
487
488  // Code generation support
489  static int null_seen_byte_constant() {
490    return flag_number_to_byte_constant(null_seen_flag);
491  }
492
493  static ByteSize bit_data_size() {
494    return cell_offset(bit_cell_count);
495  }
496
497#ifndef PRODUCT
498  void print_data_on(outputStream* st);
499#endif
500};
501
502// CounterData
503//
504// A CounterData corresponds to a simple counter.
505class CounterData : public BitData {
506protected:
507  enum {
508    count_off,
509    counter_cell_count
510  };
511public:
512  CounterData(DataLayout* layout) : BitData(layout) {}
513
514  virtual bool is_CounterData() { return true; }
515
516  static int static_cell_count() {
517    return counter_cell_count;
518  }
519
520  virtual int cell_count() {
521    return static_cell_count();
522  }
523
524  // Direct accessor
525  uint count() {
526    return uint_at(count_off);
527  }
528
529  // Code generation support
530  static ByteSize count_offset() {
531    return cell_offset(count_off);
532  }
533  static ByteSize counter_data_size() {
534    return cell_offset(counter_cell_count);
535  }
536
537  void set_count(uint count) {
538    set_uint_at(count_off, count);
539  }
540
541#ifndef PRODUCT
542  void print_data_on(outputStream* st);
543#endif
544};
545
546// JumpData
547//
548// A JumpData is used to access profiling information for a direct
549// branch.  It is a counter, used for counting the number of branches,
550// plus a data displacement, used for realigning the data pointer to
551// the corresponding target bci.
552class JumpData : public ProfileData {
553protected:
554  enum {
555    taken_off_set,
556    displacement_off_set,
557    jump_cell_count
558  };
559
560  void set_displacement(int displacement) {
561    set_int_at(displacement_off_set, displacement);
562  }
563
564public:
565  JumpData(DataLayout* layout) : ProfileData(layout) {
566    assert(layout->tag() == DataLayout::jump_data_tag ||
567      layout->tag() == DataLayout::branch_data_tag, "wrong type");
568  }
569
570  virtual bool is_JumpData() { return true; }
571
572  static int static_cell_count() {
573    return jump_cell_count;
574  }
575
576  virtual int cell_count() {
577    return static_cell_count();
578  }
579
580  // Direct accessor
581  uint taken() {
582    return uint_at(taken_off_set);
583  }
584
585  void set_taken(uint cnt) {
586    set_uint_at(taken_off_set, cnt);
587  }
588
589  // Saturating counter
590  uint inc_taken() {
591    uint cnt = taken() + 1;
592    // Did we wrap? Will compiler screw us??
593    if (cnt == 0) cnt--;
594    set_uint_at(taken_off_set, cnt);
595    return cnt;
596  }
597
598  int displacement() {
599    return int_at(displacement_off_set);
600  }
601
602  // Code generation support
603  static ByteSize taken_offset() {
604    return cell_offset(taken_off_set);
605  }
606
607  static ByteSize displacement_offset() {
608    return cell_offset(displacement_off_set);
609  }
610
611  // Specific initialization.
612  void post_initialize(BytecodeStream* stream, MethodData* mdo);
613
614#ifndef PRODUCT
615  void print_data_on(outputStream* st);
616#endif
617};
618
619// ReceiverTypeData
620//
621// A ReceiverTypeData is used to access profiling information about a
622// dynamic type check.  It consists of a counter which counts the total times
623// that the check is reached, and a series of (Klass*, count) pairs
624// which are used to store a type profile for the receiver of the check.
625class ReceiverTypeData : public CounterData {
626protected:
627  enum {
628    receiver0_offset = counter_cell_count,
629    count0_offset,
630    receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
631  };
632
633public:
634  ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
635    assert(layout->tag() == DataLayout::receiver_type_data_tag ||
636           layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
637  }
638
639  virtual bool is_ReceiverTypeData() { return true; }
640
641  static int static_cell_count() {
642    return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
643  }
644
645  virtual int cell_count() {
646    return static_cell_count();
647  }
648
649  // Direct accessors
650  static uint row_limit() {
651    return TypeProfileWidth;
652  }
653  static int receiver_cell_index(uint row) {
654    return receiver0_offset + row * receiver_type_row_cell_count;
655  }
656  static int receiver_count_cell_index(uint row) {
657    return count0_offset + row * receiver_type_row_cell_count;
658  }
659
660  Klass* receiver(uint row) {
661    assert(row < row_limit(), "oob");
662
663    Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
664    assert(recv == NULL || recv->is_klass(), "wrong type");
665    return recv;
666  }
667
668  void set_receiver(uint row, Klass* k) {
669    assert((uint)row < row_limit(), "oob");
670    set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
671  }
672
673  uint receiver_count(uint row) {
674    assert(row < row_limit(), "oob");
675    return uint_at(receiver_count_cell_index(row));
676  }
677
678  void set_receiver_count(uint row, uint count) {
679    assert(row < row_limit(), "oob");
680    set_uint_at(receiver_count_cell_index(row), count);
681  }
682
683  void clear_row(uint row) {
684    assert(row < row_limit(), "oob");
685    // Clear total count - indicator of polymorphic call site.
686    // The site may look like as monomorphic after that but
687    // it allow to have more accurate profiling information because
688    // there was execution phase change since klasses were unloaded.
689    // If the site is still polymorphic then MDO will be updated
690    // to reflect it. But it could be the case that the site becomes
691    // only bimorphic. Then keeping total count not 0 will be wrong.
692    // Even if we use monomorphic (when it is not) for compilation
693    // we will only have trap, deoptimization and recompile again
694    // with updated MDO after executing method in Interpreter.
695    // An additional receiver will be recorded in the cleaned row
696    // during next call execution.
697    //
698    // Note: our profiling logic works with empty rows in any slot.
699    // We do sorting a profiling info (ciCallProfile) for compilation.
700    //
701    set_count(0);
702    set_receiver(row, NULL);
703    set_receiver_count(row, 0);
704  }
705
706  // Code generation support
707  static ByteSize receiver_offset(uint row) {
708    return cell_offset(receiver_cell_index(row));
709  }
710  static ByteSize receiver_count_offset(uint row) {
711    return cell_offset(receiver_count_cell_index(row));
712  }
713  static ByteSize receiver_type_data_size() {
714    return cell_offset(static_cell_count());
715  }
716
717  // GC support
718  virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
719
720#ifndef PRODUCT
721  void print_receiver_data_on(outputStream* st);
722  void print_data_on(outputStream* st);
723#endif
724};
725
726// VirtualCallData
727//
728// A VirtualCallData is used to access profiling information about a
729// virtual call.  For now, it has nothing more than a ReceiverTypeData.
730class VirtualCallData : public ReceiverTypeData {
731public:
732  VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
733    assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
734  }
735
736  virtual bool is_VirtualCallData() { return true; }
737
738  static int static_cell_count() {
739    // At this point we could add more profile state, e.g., for arguments.
740    // But for now it's the same size as the base record type.
741    return ReceiverTypeData::static_cell_count();
742  }
743
744  virtual int cell_count() {
745    return static_cell_count();
746  }
747
748  // Direct accessors
749  static ByteSize virtual_call_data_size() {
750    return cell_offset(static_cell_count());
751  }
752
753#ifndef PRODUCT
754  void print_data_on(outputStream* st);
755#endif
756};
757
758// RetData
759//
760// A RetData is used to access profiling information for a ret bytecode.
761// It is composed of a count of the number of times that the ret has
762// been executed, followed by a series of triples of the form
763// (bci, count, di) which count the number of times that some bci was the
764// target of the ret and cache a corresponding data displacement.
765class RetData : public CounterData {
766protected:
767  enum {
768    bci0_offset = counter_cell_count,
769    count0_offset,
770    displacement0_offset,
771    ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
772  };
773
774  void set_bci(uint row, int bci) {
775    assert((uint)row < row_limit(), "oob");
776    set_int_at(bci0_offset + row * ret_row_cell_count, bci);
777  }
778  void release_set_bci(uint row, int bci) {
779    assert((uint)row < row_limit(), "oob");
780    // 'release' when setting the bci acts as a valid flag for other
781    // threads wrt bci_count and bci_displacement.
782    release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
783  }
784  void set_bci_count(uint row, uint count) {
785    assert((uint)row < row_limit(), "oob");
786    set_uint_at(count0_offset + row * ret_row_cell_count, count);
787  }
788  void set_bci_displacement(uint row, int disp) {
789    set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
790  }
791
792public:
793  RetData(DataLayout* layout) : CounterData(layout) {
794    assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
795  }
796
797  virtual bool is_RetData() { return true; }
798
799  enum {
800    no_bci = -1 // value of bci when bci1/2 are not in use.
801  };
802
803  static int static_cell_count() {
804    return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
805  }
806
807  virtual int cell_count() {
808    return static_cell_count();
809  }
810
811  static uint row_limit() {
812    return BciProfileWidth;
813  }
814  static int bci_cell_index(uint row) {
815    return bci0_offset + row * ret_row_cell_count;
816  }
817  static int bci_count_cell_index(uint row) {
818    return count0_offset + row * ret_row_cell_count;
819  }
820  static int bci_displacement_cell_index(uint row) {
821    return displacement0_offset + row * ret_row_cell_count;
822  }
823
824  // Direct accessors
825  int bci(uint row) {
826    return int_at(bci_cell_index(row));
827  }
828  uint bci_count(uint row) {
829    return uint_at(bci_count_cell_index(row));
830  }
831  int bci_displacement(uint row) {
832    return int_at(bci_displacement_cell_index(row));
833  }
834
835  // Interpreter Runtime support
836  address fixup_ret(int return_bci, MethodData* mdo);
837
838  // Code generation support
839  static ByteSize bci_offset(uint row) {
840    return cell_offset(bci_cell_index(row));
841  }
842  static ByteSize bci_count_offset(uint row) {
843    return cell_offset(bci_count_cell_index(row));
844  }
845  static ByteSize bci_displacement_offset(uint row) {
846    return cell_offset(bci_displacement_cell_index(row));
847  }
848
849  // Specific initialization.
850  void post_initialize(BytecodeStream* stream, MethodData* mdo);
851
852#ifndef PRODUCT
853  void print_data_on(outputStream* st);
854#endif
855};
856
857// BranchData
858//
859// A BranchData is used to access profiling data for a two-way branch.
860// It consists of taken and not_taken counts as well as a data displacement
861// for the taken case.
862class BranchData : public JumpData {
863protected:
864  enum {
865    not_taken_off_set = jump_cell_count,
866    branch_cell_count
867  };
868
869  void set_displacement(int displacement) {
870    set_int_at(displacement_off_set, displacement);
871  }
872
873public:
874  BranchData(DataLayout* layout) : JumpData(layout) {
875    assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
876  }
877
878  virtual bool is_BranchData() { return true; }
879
880  static int static_cell_count() {
881    return branch_cell_count;
882  }
883
884  virtual int cell_count() {
885    return static_cell_count();
886  }
887
888  // Direct accessor
889  uint not_taken() {
890    return uint_at(not_taken_off_set);
891  }
892
893  void set_not_taken(uint cnt) {
894    set_uint_at(not_taken_off_set, cnt);
895  }
896
897  uint inc_not_taken() {
898    uint cnt = not_taken() + 1;
899    // Did we wrap? Will compiler screw us??
900    if (cnt == 0) cnt--;
901    set_uint_at(not_taken_off_set, cnt);
902    return cnt;
903  }
904
905  // Code generation support
906  static ByteSize not_taken_offset() {
907    return cell_offset(not_taken_off_set);
908  }
909  static ByteSize branch_data_size() {
910    return cell_offset(branch_cell_count);
911  }
912
913  // Specific initialization.
914  void post_initialize(BytecodeStream* stream, MethodData* mdo);
915
916#ifndef PRODUCT
917  void print_data_on(outputStream* st);
918#endif
919};
920
921// ArrayData
922//
923// A ArrayData is a base class for accessing profiling data which does
924// not have a statically known size.  It consists of an array length
925// and an array start.
926class ArrayData : public ProfileData {
927protected:
928  friend class DataLayout;
929
930  enum {
931    array_len_off_set,
932    array_start_off_set
933  };
934
935  uint array_uint_at(int index) {
936    int aindex = index + array_start_off_set;
937    return uint_at(aindex);
938  }
939  int array_int_at(int index) {
940    int aindex = index + array_start_off_set;
941    return int_at(aindex);
942  }
943  oop array_oop_at(int index) {
944    int aindex = index + array_start_off_set;
945    return oop_at(aindex);
946  }
947  void array_set_int_at(int index, int value) {
948    int aindex = index + array_start_off_set;
949    set_int_at(aindex, value);
950  }
951
952  // Code generation support for subclasses.
953  static ByteSize array_element_offset(int index) {
954    return cell_offset(array_start_off_set + index);
955  }
956
957public:
958  ArrayData(DataLayout* layout) : ProfileData(layout) {}
959
960  virtual bool is_ArrayData() { return true; }
961
962  static int static_cell_count() {
963    return -1;
964  }
965
966  int array_len() {
967    return int_at_unchecked(array_len_off_set);
968  }
969
970  virtual int cell_count() {
971    return array_len() + 1;
972  }
973
974  // Code generation support
975  static ByteSize array_len_offset() {
976    return cell_offset(array_len_off_set);
977  }
978  static ByteSize array_start_offset() {
979    return cell_offset(array_start_off_set);
980  }
981};
982
983// MultiBranchData
984//
985// A MultiBranchData is used to access profiling information for
986// a multi-way branch (*switch bytecodes).  It consists of a series
987// of (count, displacement) pairs, which count the number of times each
988// case was taken and specify the data displacment for each branch target.
989class MultiBranchData : public ArrayData {
990protected:
991  enum {
992    default_count_off_set,
993    default_disaplacement_off_set,
994    case_array_start
995  };
996  enum {
997    relative_count_off_set,
998    relative_displacement_off_set,
999    per_case_cell_count
1000  };
1001
1002  void set_default_displacement(int displacement) {
1003    array_set_int_at(default_disaplacement_off_set, displacement);
1004  }
1005  void set_displacement_at(int index, int displacement) {
1006    array_set_int_at(case_array_start +
1007                     index * per_case_cell_count +
1008                     relative_displacement_off_set,
1009                     displacement);
1010  }
1011
1012public:
1013  MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1014    assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1015  }
1016
1017  virtual bool is_MultiBranchData() { return true; }
1018
1019  static int compute_cell_count(BytecodeStream* stream);
1020
1021  int number_of_cases() {
1022    int alen = array_len() - 2; // get rid of default case here.
1023    assert(alen % per_case_cell_count == 0, "must be even");
1024    return (alen / per_case_cell_count);
1025  }
1026
1027  uint default_count() {
1028    return array_uint_at(default_count_off_set);
1029  }
1030  int default_displacement() {
1031    return array_int_at(default_disaplacement_off_set);
1032  }
1033
1034  uint count_at(int index) {
1035    return array_uint_at(case_array_start +
1036                         index * per_case_cell_count +
1037                         relative_count_off_set);
1038  }
1039  int displacement_at(int index) {
1040    return array_int_at(case_array_start +
1041                        index * per_case_cell_count +
1042                        relative_displacement_off_set);
1043  }
1044
1045  // Code generation support
1046  static ByteSize default_count_offset() {
1047    return array_element_offset(default_count_off_set);
1048  }
1049  static ByteSize default_displacement_offset() {
1050    return array_element_offset(default_disaplacement_off_set);
1051  }
1052  static ByteSize case_count_offset(int index) {
1053    return case_array_offset() +
1054           (per_case_size() * index) +
1055           relative_count_offset();
1056  }
1057  static ByteSize case_array_offset() {
1058    return array_element_offset(case_array_start);
1059  }
1060  static ByteSize per_case_size() {
1061    return in_ByteSize(per_case_cell_count) * cell_size;
1062  }
1063  static ByteSize relative_count_offset() {
1064    return in_ByteSize(relative_count_off_set) * cell_size;
1065  }
1066  static ByteSize relative_displacement_offset() {
1067    return in_ByteSize(relative_displacement_off_set) * cell_size;
1068  }
1069
1070  // Specific initialization.
1071  void post_initialize(BytecodeStream* stream, MethodData* mdo);
1072
1073#ifndef PRODUCT
1074  void print_data_on(outputStream* st);
1075#endif
1076};
1077
1078class ArgInfoData : public ArrayData {
1079
1080public:
1081  ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1082    assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1083  }
1084
1085  virtual bool is_ArgInfoData() { return true; }
1086
1087
1088  int number_of_args() {
1089    return array_len();
1090  }
1091
1092  uint arg_modified(int arg) {
1093    return array_uint_at(arg);
1094  }
1095
1096  void set_arg_modified(int arg, uint val) {
1097    array_set_int_at(arg, val);
1098  }
1099
1100#ifndef PRODUCT
1101  void print_data_on(outputStream* st);
1102#endif
1103};
1104
1105// MethodData*
1106//
1107// A MethodData* holds information which has been collected about
1108// a method.  Its layout looks like this:
1109//
1110// -----------------------------
1111// | header                    |
1112// | klass                     |
1113// -----------------------------
1114// | method                    |
1115// | size of the MethodData* |
1116// -----------------------------
1117// | Data entries...           |
1118// |   (variable size)         |
1119// |                           |
1120// .                           .
1121// .                           .
1122// .                           .
1123// |                           |
1124// -----------------------------
1125//
1126// The data entry area is a heterogeneous array of DataLayouts. Each
1127// DataLayout in the array corresponds to a specific bytecode in the
1128// method.  The entries in the array are sorted by the corresponding
1129// bytecode.  Access to the data is via resource-allocated ProfileData,
1130// which point to the underlying blocks of DataLayout structures.
1131//
1132// During interpretation, if profiling in enabled, the interpreter
1133// maintains a method data pointer (mdp), which points at the entry
1134// in the array corresponding to the current bci.  In the course of
1135// intepretation, when a bytecode is encountered that has profile data
1136// associated with it, the entry pointed to by mdp is updated, then the
1137// mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1138// is NULL to begin with, the interpreter assumes that the current method
1139// is not (yet) being profiled.
1140//
1141// In MethodData* parlance, "dp" is a "data pointer", the actual address
1142// of a DataLayout element.  A "di" is a "data index", the offset in bytes
1143// from the base of the data entry array.  A "displacement" is the byte offset
1144// in certain ProfileData objects that indicate the amount the mdp must be
1145// adjusted in the event of a change in control flow.
1146//
1147
1148class MethodData : public Metadata {
1149  friend class VMStructs;
1150private:
1151  friend class ProfileData;
1152
1153  // Back pointer to the Method*
1154  Method* _method;
1155
1156  // Size of this oop in bytes
1157  int _size;
1158
1159  // Cached hint for bci_to_dp and bci_to_data
1160  int _hint_di;
1161
1162  MethodData(methodHandle method, int size, TRAPS);
1163public:
1164  static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
1165  MethodData() {}; // For ciMethodData
1166
1167  bool is_methodData() const volatile { return true; }
1168
1169  // Whole-method sticky bits and flags
1170  enum {
1171    _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
1172    _trap_hist_mask     = max_jubyte,
1173    _extra_data_count   = 4     // extra DataLayout headers, for trap history
1174  }; // Public flag values
1175private:
1176  uint _nof_decompiles;             // count of all nmethod removals
1177  uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
1178  uint _nof_overflow_traps;         // trap count, excluding _trap_hist
1179  union {
1180    intptr_t _align;
1181    u1 _array[_trap_hist_limit];
1182  } _trap_hist;
1183
1184  // Support for interprocedural escape analysis, from Thomas Kotzmann.
1185  intx              _eflags;          // flags on escape information
1186  intx              _arg_local;       // bit set of non-escaping arguments
1187  intx              _arg_stack;       // bit set of stack-allocatable arguments
1188  intx              _arg_returned;    // bit set of returned arguments
1189
1190  int _creation_mileage;              // method mileage at MDO creation
1191
1192  // How many invocations has this MDO seen?
1193  // These counters are used to determine the exact age of MDO.
1194  // We need those because in tiered a method can be concurrently
1195  // executed at different levels.
1196  InvocationCounter _invocation_counter;
1197  // Same for backedges.
1198  InvocationCounter _backedge_counter;
1199  // Counter values at the time profiling started.
1200  int               _invocation_counter_start;
1201  int               _backedge_counter_start;
1202  // Number of loops and blocks is computed when compiling the first
1203  // time with C1. It is used to determine if method is trivial.
1204  short             _num_loops;
1205  short             _num_blocks;
1206  // Highest compile level this method has ever seen.
1207  u1                _highest_comp_level;
1208  // Same for OSR level
1209  u1                _highest_osr_comp_level;
1210  // Does this method contain anything worth profiling?
1211  bool              _would_profile;
1212
1213  // Size of _data array in bytes.  (Excludes header and extra_data fields.)
1214  int _data_size;
1215
1216  // Beginning of the data entries
1217  intptr_t _data[1];
1218
1219  // Helper for size computation
1220  static int compute_data_size(BytecodeStream* stream);
1221  static int bytecode_cell_count(Bytecodes::Code code);
1222  enum { no_profile_data = -1, variable_cell_count = -2 };
1223
1224  // Helper for initialization
1225  DataLayout* data_layout_at(int data_index) const {
1226    assert(data_index % sizeof(intptr_t) == 0, "unaligned");
1227    return (DataLayout*) (((address)_data) + data_index);
1228  }
1229
1230  // Initialize an individual data segment.  Returns the size of
1231  // the segment in bytes.
1232  int initialize_data(BytecodeStream* stream, int data_index);
1233
1234  // Helper for data_at
1235  DataLayout* limit_data_position() const {
1236    return (DataLayout*)((address)data_base() + _data_size);
1237  }
1238  bool out_of_bounds(int data_index) const {
1239    return data_index >= data_size();
1240  }
1241
1242  // Give each of the data entries a chance to perform specific
1243  // data initialization.
1244  void post_initialize(BytecodeStream* stream);
1245
1246  // hint accessors
1247  int      hint_di() const  { return _hint_di; }
1248  void set_hint_di(int di)  {
1249    assert(!out_of_bounds(di), "hint_di out of bounds");
1250    _hint_di = di;
1251  }
1252  ProfileData* data_before(int bci) {
1253    // avoid SEGV on this edge case
1254    if (data_size() == 0)
1255      return NULL;
1256    int hint = hint_di();
1257    if (data_layout_at(hint)->bci() <= bci)
1258      return data_at(hint);
1259    return first_data();
1260  }
1261
1262  // What is the index of the first data entry?
1263  int first_di() const { return 0; }
1264
1265  // Find or create an extra ProfileData:
1266  ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
1267
1268  // return the argument info cell
1269  ArgInfoData *arg_info();
1270
1271public:
1272  static int header_size() {
1273    return sizeof(MethodData)/wordSize;
1274  }
1275
1276  // Compute the size of a MethodData* before it is created.
1277  static int compute_allocation_size_in_bytes(methodHandle method);
1278  static int compute_allocation_size_in_words(methodHandle method);
1279  static int compute_extra_data_count(int data_size, int empty_bc_count);
1280
1281  // Determine if a given bytecode can have profile information.
1282  static bool bytecode_has_profile(Bytecodes::Code code) {
1283    return bytecode_cell_count(code) != no_profile_data;
1284  }
1285
1286  // Perform initialization of a new MethodData*
1287  void initialize(methodHandle method);
1288
1289  // My size
1290  int size_in_bytes() const { return _size; }
1291  int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
1292
1293  int      creation_mileage() const  { return _creation_mileage; }
1294  void set_creation_mileage(int x)   { _creation_mileage = x; }
1295
1296  int invocation_count() {
1297    if (invocation_counter()->carry()) {
1298      return InvocationCounter::count_limit;
1299    }
1300    return invocation_counter()->count();
1301  }
1302  int backedge_count() {
1303    if (backedge_counter()->carry()) {
1304      return InvocationCounter::count_limit;
1305    }
1306    return backedge_counter()->count();
1307  }
1308
1309  int invocation_count_start() {
1310    if (invocation_counter()->carry()) {
1311      return 0;
1312    }
1313    return _invocation_counter_start;
1314  }
1315
1316  int backedge_count_start() {
1317    if (backedge_counter()->carry()) {
1318      return 0;
1319    }
1320    return _backedge_counter_start;
1321  }
1322
1323  int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
1324  int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
1325
1326  void reset_start_counters() {
1327    _invocation_counter_start = invocation_count();
1328    _backedge_counter_start = backedge_count();
1329  }
1330
1331  InvocationCounter* invocation_counter()     { return &_invocation_counter; }
1332  InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
1333
1334  void set_would_profile(bool p)              { _would_profile = p;    }
1335  bool would_profile() const                  { return _would_profile; }
1336
1337  int highest_comp_level()                    { return _highest_comp_level;      }
1338  void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
1339  int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
1340  void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
1341
1342  int num_loops() const                       { return _num_loops;  }
1343  void set_num_loops(int n)                   { _num_loops = n;     }
1344  int num_blocks() const                      { return _num_blocks; }
1345  void set_num_blocks(int n)                  { _num_blocks = n;    }
1346
1347  bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
1348  static int mileage_of(Method* m);
1349
1350  // Support for interprocedural escape analysis, from Thomas Kotzmann.
1351  enum EscapeFlag {
1352    estimated    = 1 << 0,
1353    return_local = 1 << 1,
1354    return_allocated = 1 << 2,
1355    allocated_escapes = 1 << 3,
1356    unknown_modified = 1 << 4
1357  };
1358
1359  intx eflags()                                  { return _eflags; }
1360  intx arg_local()                               { return _arg_local; }
1361  intx arg_stack()                               { return _arg_stack; }
1362  intx arg_returned()                            { return _arg_returned; }
1363  uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
1364                                                   assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1365                                                   return aid->arg_modified(a); }
1366
1367  void set_eflags(intx v)                        { _eflags = v; }
1368  void set_arg_local(intx v)                     { _arg_local = v; }
1369  void set_arg_stack(intx v)                     { _arg_stack = v; }
1370  void set_arg_returned(intx v)                  { _arg_returned = v; }
1371  void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
1372                                                   assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
1373
1374                                                   aid->set_arg_modified(a, v); }
1375
1376  void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
1377
1378  // Location and size of data area
1379  address data_base() const {
1380    return (address) _data;
1381  }
1382  int data_size() const {
1383    return _data_size;
1384  }
1385
1386  // Accessors
1387  Method* method() const { return _method; }
1388
1389  // Get the data at an arbitrary (sort of) data index.
1390  ProfileData* data_at(int data_index) const;
1391
1392  // Walk through the data in order.
1393  ProfileData* first_data() const { return data_at(first_di()); }
1394  ProfileData* next_data(ProfileData* current) const;
1395  bool is_valid(ProfileData* current) const { return current != NULL; }
1396
1397  // Convert a dp (data pointer) to a di (data index).
1398  int dp_to_di(address dp) const {
1399    return dp - ((address)_data);
1400  }
1401
1402  address di_to_dp(int di) {
1403    return (address)data_layout_at(di);
1404  }
1405
1406  // bci to di/dp conversion.
1407  address bci_to_dp(int bci);
1408  int bci_to_di(int bci) {
1409    return dp_to_di(bci_to_dp(bci));
1410  }
1411
1412  // Get the data at an arbitrary bci, or NULL if there is none.
1413  ProfileData* bci_to_data(int bci);
1414
1415  // Same, but try to create an extra_data record if one is needed:
1416  ProfileData* allocate_bci_to_data(int bci) {
1417    ProfileData* data = bci_to_data(bci);
1418    return (data != NULL) ? data : bci_to_extra_data(bci, true);
1419  }
1420
1421  // Add a handful of extra data records, for trap tracking.
1422  DataLayout* extra_data_base() const { return limit_data_position(); }
1423  DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
1424  int extra_data_size() const { return (address)extra_data_limit()
1425                               - (address)extra_data_base(); }
1426  static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
1427
1428  // Return (uint)-1 for overflow.
1429  uint trap_count(int reason) const {
1430    assert((uint)reason < _trap_hist_limit, "oob");
1431    return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
1432  }
1433  // For loops:
1434  static uint trap_reason_limit() { return _trap_hist_limit; }
1435  static uint trap_count_limit()  { return _trap_hist_mask; }
1436  uint inc_trap_count(int reason) {
1437    // Count another trap, anywhere in this method.
1438    assert(reason >= 0, "must be single trap");
1439    if ((uint)reason < _trap_hist_limit) {
1440      uint cnt1 = 1 + _trap_hist._array[reason];
1441      if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
1442        _trap_hist._array[reason] = cnt1;
1443        return cnt1;
1444      } else {
1445        return _trap_hist_mask + (++_nof_overflow_traps);
1446      }
1447    } else {
1448      // Could not represent the count in the histogram.
1449      return (++_nof_overflow_traps);
1450    }
1451  }
1452
1453  uint overflow_trap_count() const {
1454    return _nof_overflow_traps;
1455  }
1456  uint overflow_recompile_count() const {
1457    return _nof_overflow_recompiles;
1458  }
1459  void inc_overflow_recompile_count() {
1460    _nof_overflow_recompiles += 1;
1461  }
1462  uint decompile_count() const {
1463    return _nof_decompiles;
1464  }
1465  void inc_decompile_count() {
1466    _nof_decompiles += 1;
1467    if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
1468      method()->set_not_compilable(CompLevel_full_optimization);
1469    }
1470  }
1471
1472  // Support for code generation
1473  static ByteSize data_offset() {
1474    return byte_offset_of(MethodData, _data[0]);
1475  }
1476
1477  static ByteSize invocation_counter_offset() {
1478    return byte_offset_of(MethodData, _invocation_counter);
1479  }
1480  static ByteSize backedge_counter_offset() {
1481    return byte_offset_of(MethodData, _backedge_counter);
1482  }
1483
1484  // Deallocation support - no pointer fields to deallocate
1485  void deallocate_contents(ClassLoaderData* loader_data) {}
1486
1487  // GC support
1488  void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
1489
1490  // Printing
1491#ifndef PRODUCT
1492  void print_on      (outputStream* st) const;
1493#endif
1494  void print_value_on(outputStream* st) const;
1495
1496#ifndef PRODUCT
1497  // printing support for method data
1498  void print_data_on(outputStream* st) const;
1499#endif
1500
1501  const char* internal_name() const { return "{method data}"; }
1502
1503  // verification
1504  void verify_on(outputStream* st);
1505  void verify_data_on(outputStream* st);
1506};
1507
1508#endif // SHARE_VM_OOPS_METHODDATAOOP_HPP
1509