klass.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/javaClasses.hpp"
27#include "classfile/dictionary.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "gc_implementation/shared/markSweep.inline.hpp"
31#include "gc_interface/collectedHeap.inline.hpp"
32#include "memory/metadataFactory.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/oop.inline2.hpp"
38#include "runtime/atomic.hpp"
39#include "utilities/stack.hpp"
40#ifndef SERIALGC
41#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
42#include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
43#include "gc_implementation/parallelScavenge/psScavenge.hpp"
44#endif
45
46void Klass::set_name(Symbol* n) {
47  _name = n;
48  if (_name != NULL) _name->increment_refcount();
49}
50
51bool Klass::is_subclass_of(Klass* k) const {
52  // Run up the super chain and check
53  if (this == k) return true;
54
55  Klass* t = const_cast<Klass*>(this)->super();
56
57  while (t != NULL) {
58    if (t == k) return true;
59    t = Klass::cast(t)->super();
60  }
61  return false;
62}
63
64bool Klass::search_secondary_supers(Klass* k) const {
65  // Put some extra logic here out-of-line, before the search proper.
66  // This cuts down the size of the inline method.
67
68  // This is necessary, since I am never in my own secondary_super list.
69  if (this == k)
70    return true;
71  // Scan the array-of-objects for a match
72  int cnt = secondary_supers()->length();
73  for (int i = 0; i < cnt; i++) {
74    if (secondary_supers()->at(i) == k) {
75      ((Klass*)this)->set_secondary_super_cache(k);
76      return true;
77    }
78  }
79  return false;
80}
81
82// Return self, except for abstract classes with exactly 1
83// implementor.  Then return the 1 concrete implementation.
84Klass *Klass::up_cast_abstract() {
85  Klass *r = this;
86  while( r->is_abstract() ) {   // Receiver is abstract?
87    Klass *s = r->subklass();   // Check for exactly 1 subklass
88    if( !s || s->next_sibling() ) // Oops; wrong count; give up
89      return this;              // Return 'this' as a no-progress flag
90    r = s;                    // Loop till find concrete class
91  }
92  return r;                   // Return the 1 concrete class
93}
94
95// Find LCA in class hierarchy
96Klass *Klass::LCA( Klass *k2 ) {
97  Klass *k1 = this;
98  while( 1 ) {
99    if( k1->is_subtype_of(k2) ) return k2;
100    if( k2->is_subtype_of(k1) ) return k1;
101    k1 = k1->super();
102    k2 = k2->super();
103  }
104}
105
106
107void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
108  ResourceMark rm(THREAD);
109  THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
110            : vmSymbols::java_lang_InstantiationException(), external_name());
111}
112
113
114void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
115  THROW(vmSymbols::java_lang_ArrayStoreException());
116}
117
118
119void Klass::initialize(TRAPS) {
120  ShouldNotReachHere();
121}
122
123bool Klass::compute_is_subtype_of(Klass* k) {
124  assert(k->is_klass(), "argument must be a class");
125  return is_subclass_of(k);
126}
127
128
129Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
130#ifdef ASSERT
131  tty->print_cr("Error: uncached_lookup_method called on a klass oop."
132                " Likely error: reflection method does not correctly"
133                " wrap return value in a mirror object.");
134#endif
135  ShouldNotReachHere();
136  return NULL;
137}
138
139void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
140  return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
141                             Metaspace::ClassType, CHECK_NULL);
142}
143
144Klass::Klass() {
145  Klass* k = this;
146
147  { // Preinitialize supertype information.
148    // A later call to initialize_supers() may update these settings:
149    set_super(NULL);
150    for (juint i = 0; i < Klass::primary_super_limit(); i++) {
151      _primary_supers[i] = NULL;
152    }
153    set_secondary_supers(NULL);
154    _primary_supers[0] = k;
155    set_super_check_offset(in_bytes(primary_supers_offset()));
156  }
157
158  set_java_mirror(NULL);
159  set_modifier_flags(0);
160  set_layout_helper(Klass::_lh_neutral_value);
161  set_name(NULL);
162  AccessFlags af;
163  af.set_flags(0);
164  set_access_flags(af);
165  set_subklass(NULL);
166  set_next_sibling(NULL);
167  set_next_link(NULL);
168  set_alloc_count(0);
169  TRACE_SET_KLASS_TRACE_ID(this, 0);
170
171  set_prototype_header(markOopDesc::prototype());
172  set_biased_lock_revocation_count(0);
173  set_last_biased_lock_bulk_revocation_time(0);
174
175  // The klass doesn't have any references at this point.
176  clear_modified_oops();
177  clear_accumulated_modified_oops();
178}
179
180jint Klass::array_layout_helper(BasicType etype) {
181  assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
182  // Note that T_ARRAY is not allowed here.
183  int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
184  int  esize = type2aelembytes(etype);
185  bool isobj = (etype == T_OBJECT);
186  int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
187  int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
188
189  assert(lh < (int)_lh_neutral_value, "must look like an array layout");
190  assert(layout_helper_is_array(lh), "correct kind");
191  assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
192  assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
193  assert(layout_helper_header_size(lh) == hsize, "correct decode");
194  assert(layout_helper_element_type(lh) == etype, "correct decode");
195  assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
196
197  return lh;
198}
199
200bool Klass::can_be_primary_super_slow() const {
201  if (super() == NULL)
202    return true;
203  else if (super()->super_depth() >= primary_super_limit()-1)
204    return false;
205  else
206    return true;
207}
208
209void Klass::initialize_supers(Klass* k, TRAPS) {
210  if (FastSuperclassLimit == 0) {
211    // None of the other machinery matters.
212    set_super(k);
213    return;
214  }
215  if (k == NULL) {
216    set_super(NULL);
217    _primary_supers[0] = this;
218    assert(super_depth() == 0, "Object must already be initialized properly");
219  } else if (k != super() || k == SystemDictionary::Object_klass()) {
220    assert(super() == NULL || super() == SystemDictionary::Object_klass(),
221           "initialize this only once to a non-trivial value");
222    set_super(k);
223    Klass* sup = k;
224    int sup_depth = sup->super_depth();
225    juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
226    if (!can_be_primary_super_slow())
227      my_depth = primary_super_limit();
228    for (juint i = 0; i < my_depth; i++) {
229      _primary_supers[i] = sup->_primary_supers[i];
230    }
231    Klass* *super_check_cell;
232    if (my_depth < primary_super_limit()) {
233      _primary_supers[my_depth] = this;
234      super_check_cell = &_primary_supers[my_depth];
235    } else {
236      // Overflow of the primary_supers array forces me to be secondary.
237      super_check_cell = &_secondary_super_cache;
238    }
239    set_super_check_offset((address)super_check_cell - (address) this);
240
241#ifdef ASSERT
242    {
243      juint j = super_depth();
244      assert(j == my_depth, "computed accessor gets right answer");
245      Klass* t = this;
246      while (!Klass::cast(t)->can_be_primary_super()) {
247        t = Klass::cast(t)->super();
248        j = Klass::cast(t)->super_depth();
249      }
250      for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
251        assert(primary_super_of_depth(j1) == NULL, "super list padding");
252      }
253      while (t != NULL) {
254        assert(primary_super_of_depth(j) == t, "super list initialization");
255        t = Klass::cast(t)->super();
256        --j;
257      }
258      assert(j == (juint)-1, "correct depth count");
259    }
260#endif
261  }
262
263  if (secondary_supers() == NULL) {
264    KlassHandle this_kh (THREAD, this);
265
266    // Now compute the list of secondary supertypes.
267    // Secondaries can occasionally be on the super chain,
268    // if the inline "_primary_supers" array overflows.
269    int extras = 0;
270    Klass* p;
271    for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
272      ++extras;
273    }
274
275    ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
276
277    // Compute the "real" non-extra secondaries.
278    GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
279    if (secondaries == NULL) {
280      // secondary_supers set by compute_secondary_supers
281      return;
282    }
283
284    GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
285
286    for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
287      int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
288
289      // This happens frequently for very deeply nested arrays: the
290      // primary superclass chain overflows into the secondary.  The
291      // secondary list contains the element_klass's secondaries with
292      // an extra array dimension added.  If the element_klass's
293      // secondary list already contains some primary overflows, they
294      // (with the extra level of array-ness) will collide with the
295      // normal primary superclass overflows.
296      for( i = 0; i < secondaries->length(); i++ ) {
297        if( secondaries->at(i) == p )
298          break;
299      }
300      if( i < secondaries->length() )
301        continue;               // It's a dup, don't put it in
302      primaries->push(p);
303    }
304    // Combine the two arrays into a metadata object to pack the array.
305    // The primaries are added in the reverse order, then the secondaries.
306    int new_length = primaries->length() + secondaries->length();
307    Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
308                                       class_loader_data(), new_length, CHECK);
309    int fill_p = primaries->length();
310    for (int j = 0; j < fill_p; j++) {
311      s2->at_put(j, primaries->pop());  // add primaries in reverse order.
312    }
313    for( int j = 0; j < secondaries->length(); j++ ) {
314      s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
315    }
316
317  #ifdef ASSERT
318      // We must not copy any NULL placeholders left over from bootstrap.
319    for (int j = 0; j < s2->length(); j++) {
320      assert(s2->at(j) != NULL, "correct bootstrapping order");
321    }
322  #endif
323
324    this_kh->set_secondary_supers(s2);
325  }
326}
327
328GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
329  assert(num_extra_slots == 0, "override for complex klasses");
330  set_secondary_supers(Universe::the_empty_klass_array());
331  return NULL;
332}
333
334
335Klass* Klass::subklass() const {
336  return _subklass == NULL ? NULL : Klass::cast(_subklass);
337}
338
339InstanceKlass* Klass::superklass() const {
340  assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
341  return _super == NULL ? NULL : InstanceKlass::cast(_super);
342}
343
344Klass* Klass::next_sibling() const {
345  return _next_sibling == NULL ? NULL : Klass::cast(_next_sibling);
346}
347
348void Klass::set_subklass(Klass* s) {
349  assert(s != this, "sanity check");
350  _subklass = s;
351}
352
353void Klass::set_next_sibling(Klass* s) {
354  assert(s != this, "sanity check");
355  _next_sibling = s;
356}
357
358void Klass::append_to_sibling_list() {
359  debug_only(if (!SharedSkipVerify) verify();)
360  // add ourselves to superklass' subklass list
361  InstanceKlass* super = superklass();
362  if (super == NULL) return;        // special case: class Object
363  assert(SharedSkipVerify ||
364         (!super->is_interface()    // interfaces cannot be supers
365          && (super->superklass() == NULL || !is_interface())),
366         "an interface can only be a subklass of Object");
367  Klass* prev_first_subklass = super->subklass_oop();
368  if (prev_first_subklass != NULL) {
369    // set our sibling to be the superklass' previous first subklass
370    set_next_sibling(prev_first_subklass);
371  }
372  // make ourselves the superklass' first subklass
373  super->set_subklass(this);
374  debug_only(if (!SharedSkipVerify) verify();)
375}
376
377void Klass::remove_from_sibling_list() {
378  // remove receiver from sibling list
379  InstanceKlass* super = superklass();
380  assert(super != NULL || this == SystemDictionary::Object_klass(), "should have super");
381  if (super == NULL) return;        // special case: class Object
382  if (super->subklass() == this) {
383    // first subklass
384    super->set_subklass(_next_sibling);
385  } else {
386    Klass* sib = super->subklass();
387    while (sib->next_sibling() != this) {
388      sib = sib->next_sibling();
389    };
390    sib->set_next_sibling(_next_sibling);
391  }
392}
393
394bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
395  assert(is_metadata(), "p is not meta-data");
396  assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");
397  // The class is alive iff the class loader is alive.
398  oop loader = class_loader();
399  return (loader == NULL) || is_alive->do_object_b(loader);
400}
401
402void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
403  if (!ClassUnloading) {
404    return;
405  }
406
407  Klass* root = SystemDictionary::Object_klass();
408  Stack<Klass*, mtGC> stack;
409
410  stack.push(root);
411  while (!stack.is_empty()) {
412    Klass* current = stack.pop();
413
414    assert(current->is_loader_alive(is_alive), "just checking, this should be live");
415
416    // Find and set the first alive subklass
417    Klass* sub = current->subklass_oop();
418    while (sub != NULL && !sub->is_loader_alive(is_alive)) {
419#ifndef PRODUCT
420        if (TraceClassUnloading && WizardMode) {
421          ResourceMark rm;
422        tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
423        }
424#endif
425      sub = sub->next_sibling_oop();
426    }
427    current->set_subklass(sub);
428    if (sub != NULL) {
429      stack.push(sub);
430    }
431
432    // Find and set the first alive sibling
433    Klass* sibling = current->next_sibling_oop();
434    while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
435          if (TraceClassUnloading && WizardMode) {
436            ResourceMark rm;
437        tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
438          }
439      sibling = sibling->next_sibling_oop();
440      }
441    current->set_next_sibling(sibling);
442    if (sibling != NULL) {
443      stack.push(sibling);
444}
445
446    // Clean the implementors list and method data.
447    if (current->oop_is_instance()) {
448      InstanceKlass* ik = InstanceKlass::cast(current);
449      ik->clean_implementors_list(is_alive);
450      ik->clean_method_data(is_alive);
451    }
452  }
453}
454
455void Klass::klass_update_barrier_set(oop v) {
456  record_modified_oops();
457}
458
459void Klass::klass_update_barrier_set_pre(void* p, oop v) {
460  // This barrier used by G1, where it's used remember the old oop values,
461  // so that we don't forget any objects that were live at the snapshot at
462  // the beginning. This function is only used when we write oops into
463  // Klasses. Since the Klasses are used as roots in G1, we don't have to
464  // do anything here.
465}
466
467void Klass::klass_oop_store(oop* p, oop v) {
468  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
469  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
470
471  // do the store
472  if (always_do_update_barrier) {
473    klass_oop_store((volatile oop*)p, v);
474  } else {
475    klass_update_barrier_set_pre((void*)p, v);
476    *p = v;
477    klass_update_barrier_set(v);
478  }
479}
480
481void Klass::klass_oop_store(volatile oop* p, oop v) {
482  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
483  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");
484
485  klass_update_barrier_set_pre((void*)p, v);
486  OrderAccess::release_store_ptr(p, v);
487  klass_update_barrier_set(v);
488}
489
490void Klass::oops_do(OopClosure* cl) {
491  cl->do_oop(&_java_mirror);
492}
493
494void Klass::remove_unshareable_info() {
495  set_subklass(NULL);
496  set_next_sibling(NULL);
497  // Clear the java mirror
498  set_java_mirror(NULL);
499  set_next_link(NULL);
500
501  // Null out class_loader_data because we don't share that yet.
502  set_class_loader_data(NULL);
503}
504
505void Klass::restore_unshareable_info(TRAPS) {
506  ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
507  // Restore class_loader_data to the null class loader data
508  set_class_loader_data(loader_data);
509
510  // Add to null class loader list first before creating the mirror
511  // (same order as class file parsing)
512  loader_data->add_class(this);
513
514  // Recreate the class mirror
515  java_lang_Class::create_mirror(this, CHECK);
516}
517
518Klass* Klass::array_klass_or_null(int rank) {
519  EXCEPTION_MARK;
520  // No exception can be thrown by array_klass_impl when called with or_null == true.
521  // (In anycase, the execption mark will fail if it do so)
522  return array_klass_impl(true, rank, THREAD);
523}
524
525
526Klass* Klass::array_klass_or_null() {
527  EXCEPTION_MARK;
528  // No exception can be thrown by array_klass_impl when called with or_null == true.
529  // (In anycase, the execption mark will fail if it do so)
530  return array_klass_impl(true, THREAD);
531}
532
533
534Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
535  fatal("array_klass should be dispatched to InstanceKlass, objArrayKlass or typeArrayKlass");
536  return NULL;
537}
538
539
540Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
541  fatal("array_klass should be dispatched to InstanceKlass, objArrayKlass or typeArrayKlass");
542  return NULL;
543}
544
545
546void Klass::with_array_klasses_do(void f(Klass* k)) {
547  f(this);
548}
549
550
551oop Klass::class_loader() const { return class_loader_data()->class_loader(); }
552
553const char* Klass::external_name() const {
554  if (oop_is_instance()) {
555    InstanceKlass* ik = (InstanceKlass*) this;
556    if (ik->is_anonymous()) {
557      assert(EnableInvokeDynamic, "");
558      intptr_t hash = ik->java_mirror()->identity_hash();
559      char     hash_buf[40];
560      sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
561      size_t   hash_len = strlen(hash_buf);
562
563      size_t result_len = name()->utf8_length();
564      char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
565      name()->as_klass_external_name(result, (int) result_len + 1);
566      assert(strlen(result) == result_len, "");
567      strcpy(result + result_len, hash_buf);
568      assert(strlen(result) == result_len + hash_len, "");
569      return result;
570    }
571  }
572  if (name() == NULL)  return "<unknown>";
573  return name()->as_klass_external_name();
574}
575
576
577const char* Klass::signature_name() const {
578  if (name() == NULL)  return "<unknown>";
579  return name()->as_C_string();
580}
581
582// Unless overridden, modifier_flags is 0.
583jint Klass::compute_modifier_flags(TRAPS) const {
584  return 0;
585}
586
587int Klass::atomic_incr_biased_lock_revocation_count() {
588  return (int) Atomic::add(1, &_biased_lock_revocation_count);
589}
590
591// Unless overridden, jvmti_class_status has no flags set.
592jint Klass::jvmti_class_status() const {
593  return 0;
594}
595
596
597// Printing
598
599void Klass::print_on(outputStream* st) const {
600  ResourceMark rm;
601  // print title
602  st->print("%s", internal_name());
603  print_address_on(st);
604  st->cr();
605}
606
607void Klass::oop_print_on(oop obj, outputStream* st) {
608  ResourceMark rm;
609  // print title
610  st->print_cr("%s ", internal_name());
611  obj->print_address_on(st);
612
613  if (WizardMode) {
614     // print header
615     obj->mark()->print_on(st);
616  }
617
618  // print class
619  st->print(" - klass: ");
620  obj->klass()->print_value_on(st);
621  st->cr();
622}
623
624void Klass::oop_print_value_on(oop obj, outputStream* st) {
625  // print title
626  ResourceMark rm;              // Cannot print in debug mode without this
627  st->print("%s", internal_name());
628  obj->print_address_on(st);
629}
630
631
632// Verification
633
634void Klass::verify_on(outputStream* st) {
635  guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
636  guarantee(this->is_metadata(), "should be in metaspace");
637
638  assert(ClassLoaderDataGraph::contains((address)this), "Should be");
639
640  guarantee(this->is_klass(),"should be klass");
641
642  if (super() != NULL) {
643    guarantee(super()->is_metadata(), "should be in metaspace");
644    guarantee(super()->is_klass(), "should be klass");
645  }
646  if (secondary_super_cache() != NULL) {
647    Klass* ko = secondary_super_cache();
648    guarantee(ko->is_metadata(), "should be in metaspace");
649    guarantee(ko->is_klass(), "should be klass");
650  }
651  for ( uint i = 0; i < primary_super_limit(); i++ ) {
652    Klass* ko = _primary_supers[i];
653    if (ko != NULL) {
654      guarantee(ko->is_metadata(), "should be in metaspace");
655      guarantee(ko->is_klass(), "should be klass");
656    }
657  }
658
659  if (java_mirror() != NULL) {
660    guarantee(java_mirror()->is_oop(), "should be instance");
661  }
662}
663
664void Klass::oop_verify_on(oop obj, outputStream* st) {
665  guarantee(obj->is_oop(),  "should be oop");
666  guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
667  guarantee(obj->klass()->is_klass(), "klass field is not a klass");
668}
669
670#ifndef PRODUCT
671
672void Klass::verify_vtable_index(int i) {
673  if (oop_is_instance()) {
674    assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
675  } else {
676    assert(oop_is_array(), "Must be");
677    assert(i>=0 && i<((arrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
678  }
679}
680
681#endif
682