universe.cpp revision 642:660978a2a31a
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_universe.cpp.incl"
27
28// Known objects
29klassOop Universe::_boolArrayKlassObj                 = NULL;
30klassOop Universe::_byteArrayKlassObj                 = NULL;
31klassOop Universe::_charArrayKlassObj                 = NULL;
32klassOop Universe::_intArrayKlassObj                  = NULL;
33klassOop Universe::_shortArrayKlassObj                = NULL;
34klassOop Universe::_longArrayKlassObj                 = NULL;
35klassOop Universe::_singleArrayKlassObj               = NULL;
36klassOop Universe::_doubleArrayKlassObj               = NULL;
37klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
38klassOop Universe::_objectArrayKlassObj               = NULL;
39klassOop Universe::_symbolKlassObj                    = NULL;
40klassOop Universe::_methodKlassObj                    = NULL;
41klassOop Universe::_constMethodKlassObj               = NULL;
42klassOop Universe::_methodDataKlassObj                = NULL;
43klassOop Universe::_klassKlassObj                     = NULL;
44klassOop Universe::_arrayKlassKlassObj                = NULL;
45klassOop Universe::_objArrayKlassKlassObj             = NULL;
46klassOop Universe::_typeArrayKlassKlassObj            = NULL;
47klassOop Universe::_instanceKlassKlassObj             = NULL;
48klassOop Universe::_constantPoolKlassObj              = NULL;
49klassOop Universe::_constantPoolCacheKlassObj         = NULL;
50klassOop Universe::_compiledICHolderKlassObj          = NULL;
51klassOop Universe::_systemObjArrayKlassObj            = NULL;
52oop Universe::_int_mirror                             = NULL;
53oop Universe::_float_mirror                           = NULL;
54oop Universe::_double_mirror                          = NULL;
55oop Universe::_byte_mirror                            = NULL;
56oop Universe::_bool_mirror                            = NULL;
57oop Universe::_char_mirror                            = NULL;
58oop Universe::_long_mirror                            = NULL;
59oop Universe::_short_mirror                           = NULL;
60oop Universe::_void_mirror                            = NULL;
61oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
62oop Universe::_main_thread_group                      = NULL;
63oop Universe::_system_thread_group                    = NULL;
64typeArrayOop Universe::_the_empty_byte_array          = NULL;
65typeArrayOop Universe::_the_empty_short_array         = NULL;
66typeArrayOop Universe::_the_empty_int_array           = NULL;
67objArrayOop Universe::_the_empty_system_obj_array     = NULL;
68objArrayOop Universe::_the_empty_class_klass_array    = NULL;
69objArrayOop Universe::_the_array_interfaces_array     = NULL;
70LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
71LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
72ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
73oop Universe::_out_of_memory_error_java_heap          = NULL;
74oop Universe::_out_of_memory_error_perm_gen           = NULL;
75oop Universe::_out_of_memory_error_array_size         = NULL;
76oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
77objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
78volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
79bool Universe::_verify_in_progress                    = false;
80oop Universe::_null_ptr_exception_instance            = NULL;
81oop Universe::_arithmetic_exception_instance          = NULL;
82oop Universe::_virtual_machine_error_instance         = NULL;
83oop Universe::_vm_exception                           = NULL;
84oop Universe::_emptySymbol                            = NULL;
85
86// These variables are guarded by FullGCALot_lock.
87debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
88debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
89
90
91// Heap
92int             Universe::_verify_count = 0;
93
94int             Universe::_base_vtable_size = 0;
95bool            Universe::_bootstrapping = false;
96bool            Universe::_fully_initialized = false;
97
98size_t          Universe::_heap_capacity_at_last_gc;
99size_t          Universe::_heap_used_at_last_gc = 0;
100
101CollectedHeap*  Universe::_collectedHeap = NULL;
102
103NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
104
105
106void Universe::basic_type_classes_do(void f(klassOop)) {
107  f(boolArrayKlassObj());
108  f(byteArrayKlassObj());
109  f(charArrayKlassObj());
110  f(intArrayKlassObj());
111  f(shortArrayKlassObj());
112  f(longArrayKlassObj());
113  f(singleArrayKlassObj());
114  f(doubleArrayKlassObj());
115}
116
117
118void Universe::system_classes_do(void f(klassOop)) {
119  f(symbolKlassObj());
120  f(methodKlassObj());
121  f(constMethodKlassObj());
122  f(methodDataKlassObj());
123  f(klassKlassObj());
124  f(arrayKlassKlassObj());
125  f(objArrayKlassKlassObj());
126  f(typeArrayKlassKlassObj());
127  f(instanceKlassKlassObj());
128  f(constantPoolKlassObj());
129  f(systemObjArrayKlassObj());
130}
131
132void Universe::oops_do(OopClosure* f, bool do_all) {
133
134  f->do_oop((oop*) &_int_mirror);
135  f->do_oop((oop*) &_float_mirror);
136  f->do_oop((oop*) &_double_mirror);
137  f->do_oop((oop*) &_byte_mirror);
138  f->do_oop((oop*) &_bool_mirror);
139  f->do_oop((oop*) &_char_mirror);
140  f->do_oop((oop*) &_long_mirror);
141  f->do_oop((oop*) &_short_mirror);
142  f->do_oop((oop*) &_void_mirror);
143
144  // It's important to iterate over these guys even if they are null,
145  // since that's how shared heaps are restored.
146  for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
147    f->do_oop((oop*) &_mirrors[i]);
148  }
149  assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
150
151  // %%% Consider moving those "shared oops" over here with the others.
152  f->do_oop((oop*)&_boolArrayKlassObj);
153  f->do_oop((oop*)&_byteArrayKlassObj);
154  f->do_oop((oop*)&_charArrayKlassObj);
155  f->do_oop((oop*)&_intArrayKlassObj);
156  f->do_oop((oop*)&_shortArrayKlassObj);
157  f->do_oop((oop*)&_longArrayKlassObj);
158  f->do_oop((oop*)&_singleArrayKlassObj);
159  f->do_oop((oop*)&_doubleArrayKlassObj);
160  f->do_oop((oop*)&_objectArrayKlassObj);
161  {
162    for (int i = 0; i < T_VOID+1; i++) {
163      if (_typeArrayKlassObjs[i] != NULL) {
164        assert(i >= T_BOOLEAN, "checking");
165        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
166      } else if (do_all) {
167        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
168      }
169    }
170  }
171  f->do_oop((oop*)&_symbolKlassObj);
172  f->do_oop((oop*)&_methodKlassObj);
173  f->do_oop((oop*)&_constMethodKlassObj);
174  f->do_oop((oop*)&_methodDataKlassObj);
175  f->do_oop((oop*)&_klassKlassObj);
176  f->do_oop((oop*)&_arrayKlassKlassObj);
177  f->do_oop((oop*)&_objArrayKlassKlassObj);
178  f->do_oop((oop*)&_typeArrayKlassKlassObj);
179  f->do_oop((oop*)&_instanceKlassKlassObj);
180  f->do_oop((oop*)&_constantPoolKlassObj);
181  f->do_oop((oop*)&_constantPoolCacheKlassObj);
182  f->do_oop((oop*)&_compiledICHolderKlassObj);
183  f->do_oop((oop*)&_systemObjArrayKlassObj);
184  f->do_oop((oop*)&_the_empty_byte_array);
185  f->do_oop((oop*)&_the_empty_short_array);
186  f->do_oop((oop*)&_the_empty_int_array);
187  f->do_oop((oop*)&_the_empty_system_obj_array);
188  f->do_oop((oop*)&_the_empty_class_klass_array);
189  f->do_oop((oop*)&_the_array_interfaces_array);
190  _finalizer_register_cache->oops_do(f);
191  _loader_addClass_cache->oops_do(f);
192  _reflect_invoke_cache->oops_do(f);
193  f->do_oop((oop*)&_out_of_memory_error_java_heap);
194  f->do_oop((oop*)&_out_of_memory_error_perm_gen);
195  f->do_oop((oop*)&_out_of_memory_error_array_size);
196  f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
197  if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
198    f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
199  }
200  f->do_oop((oop*)&_null_ptr_exception_instance);
201  f->do_oop((oop*)&_arithmetic_exception_instance);
202  f->do_oop((oop*)&_virtual_machine_error_instance);
203  f->do_oop((oop*)&_main_thread_group);
204  f->do_oop((oop*)&_system_thread_group);
205  f->do_oop((oop*)&_vm_exception);
206  f->do_oop((oop*)&_emptySymbol);
207  debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
208}
209
210
211void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
212  if (size < alignment || size % alignment != 0) {
213    ResourceMark rm;
214    stringStream st;
215    st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
216    char* error = st.as_string();
217    vm_exit_during_initialization(error);
218  }
219}
220
221
222void Universe::genesis(TRAPS) {
223  ResourceMark rm;
224  { FlagSetting fs(_bootstrapping, true);
225
226    { MutexLocker mc(Compile_lock);
227
228      // determine base vtable size; without that we cannot create the array klasses
229      compute_base_vtable_size();
230
231      if (!UseSharedSpaces) {
232        _klassKlassObj          = klassKlass::create_klass(CHECK);
233        _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
234
235        _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
236        _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
237        _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
238
239        _symbolKlassObj         = symbolKlass::create_klass(CHECK);
240
241        _emptySymbol            = oopFactory::new_symbol("", CHECK);
242
243        _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
244        _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
245        _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
246        _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
247        _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
248        _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
249        _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
250        _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
251
252        _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
253        _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
254        _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
255        _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
256        _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
257        _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
258        _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
259        _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
260
261        _methodKlassObj             = methodKlass::create_klass(CHECK);
262        _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
263        _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
264        _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
265        _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
266
267        _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
268        _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
269
270        _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
271        _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
272        _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
273        _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
274
275        _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
276        _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
277      } else {
278        FileMapInfo *mapinfo = FileMapInfo::current_info();
279        char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
280        void** vtbl_list = (void**)buffer;
281        init_self_patching_vtbl_list(vtbl_list,
282                                     CompactingPermGenGen::vtbl_list_size);
283      }
284    }
285
286    vmSymbols::initialize(CHECK);
287
288    SystemDictionary::initialize(CHECK);
289
290    klassOop ok = SystemDictionary::object_klass();
291
292    if (UseSharedSpaces) {
293      // Verify shared interfaces array.
294      assert(_the_array_interfaces_array->obj_at(0) ==
295             SystemDictionary::cloneable_klass(), "u3");
296      assert(_the_array_interfaces_array->obj_at(1) ==
297             SystemDictionary::serializable_klass(), "u3");
298
299      // Verify element klass for system obj array klass
300      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
301      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
302
303      // Verify super class for the classes created above
304      assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
305      assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
306      assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
307      assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
308      assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
309      assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
310      assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
311      assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
312      assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
313      assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
314    } else {
315      // Set up shared interfaces array.  (Do this before supers are set up.)
316      _the_array_interfaces_array->obj_at_put(0, SystemDictionary::cloneable_klass());
317      _the_array_interfaces_array->obj_at_put(1, SystemDictionary::serializable_klass());
318
319      // Set element klass for system obj array klass
320      objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
321      objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
322
323      // Set super class for the classes created above
324      Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
325      Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
326      Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
327      Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
328      Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
329      Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
330      Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
331      Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
332      Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
333      Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
334      Klass::cast(boolArrayKlassObj()     )->set_super(ok);
335      Klass::cast(charArrayKlassObj()     )->set_super(ok);
336      Klass::cast(singleArrayKlassObj()   )->set_super(ok);
337      Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
338      Klass::cast(byteArrayKlassObj()     )->set_super(ok);
339      Klass::cast(shortArrayKlassObj()    )->set_super(ok);
340      Klass::cast(intArrayKlassObj()      )->set_super(ok);
341      Klass::cast(longArrayKlassObj()     )->set_super(ok);
342      Klass::cast(constantPoolKlassObj()  )->set_super(ok);
343      Klass::cast(systemObjArrayKlassObj())->set_super(ok);
344    }
345
346    Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
347    Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
348    Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
349    Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
350    Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
351    Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
352    Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
353    Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
354    Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
355    Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
356  } // end of core bootstrapping
357
358  // Initialize _objectArrayKlass after core bootstraping to make
359  // sure the super class is set up properly for _objectArrayKlass.
360  _objectArrayKlassObj = instanceKlass::
361    cast(SystemDictionary::object_klass())->array_klass(1, CHECK);
362  // Add the class to the class hierarchy manually to make sure that
363  // its vtable is initialized after core bootstrapping is completed.
364  Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
365
366  // Compute is_jdk version flags.
367  // Only 1.3 or later has the java.lang.Shutdown class.
368  // Only 1.4 or later has the java.lang.CharSequence interface.
369  // Only 1.5 or later has the java.lang.management.MemoryUsage class.
370  if (JDK_Version::is_partially_initialized()) {
371    uint8_t jdk_version;
372    klassOop k = SystemDictionary::resolve_or_null(
373        vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
374    CLEAR_PENDING_EXCEPTION; // ignore exceptions
375    if (k == NULL) {
376      k = SystemDictionary::resolve_or_null(
377          vmSymbolHandles::java_lang_CharSequence(), THREAD);
378      CLEAR_PENDING_EXCEPTION; // ignore exceptions
379      if (k == NULL) {
380        k = SystemDictionary::resolve_or_null(
381            vmSymbolHandles::java_lang_Shutdown(), THREAD);
382        CLEAR_PENDING_EXCEPTION; // ignore exceptions
383        if (k == NULL) {
384          jdk_version = 2;
385        } else {
386          jdk_version = 3;
387        }
388      } else {
389        jdk_version = 4;
390      }
391    } else {
392      jdk_version = 5;
393    }
394    JDK_Version::fully_initialize(jdk_version);
395  }
396
397  #ifdef ASSERT
398  if (FullGCALot) {
399    // Allocate an array of dummy objects.
400    // We'd like these to be at the bottom of the old generation,
401    // so that when we free one and then collect,
402    // (almost) the whole heap moves
403    // and we find out if we actually update all the oops correctly.
404    // But we can't allocate directly in the old generation,
405    // so we allocate wherever, and hope that the first collection
406    // moves these objects to the bottom of the old generation.
407    // We can allocate directly in the permanent generation, so we do.
408    int size;
409    if (UseConcMarkSweepGC) {
410      warning("Using +FullGCALot with concurrent mark sweep gc "
411              "will not force all objects to relocate");
412      size = FullGCALotDummies;
413    } else {
414      size = FullGCALotDummies * 2;
415    }
416    objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
417    objArrayHandle dummy_array(THREAD, naked_array);
418    int i = 0;
419    while (i < size) {
420      if (!UseConcMarkSweepGC) {
421        // Allocate dummy in old generation
422        oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_instance(CHECK);
423        dummy_array->obj_at_put(i++, dummy);
424      }
425      // Allocate dummy in permanent generation
426      oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_permanent_instance(CHECK);
427      dummy_array->obj_at_put(i++, dummy);
428    }
429    {
430      // Only modify the global variable inside the mutex.
431      // If we had a race to here, the other dummy_array instances
432      // and their elements just get dropped on the floor, which is fine.
433      MutexLocker ml(FullGCALot_lock);
434      if (_fullgc_alot_dummy_array == NULL) {
435        _fullgc_alot_dummy_array = dummy_array();
436      }
437    }
438    assert(i == _fullgc_alot_dummy_array->length(), "just checking");
439  }
440  #endif
441}
442
443
444static inline void add_vtable(void** list, int* n, Klass* o, int count) {
445  list[(*n)++] = *(void**)&o->vtbl_value();
446  guarantee((*n) <= count, "vtable list too small.");
447}
448
449
450void Universe::init_self_patching_vtbl_list(void** list, int count) {
451  int n = 0;
452  { klassKlass o;             add_vtable(list, &n, &o, count); }
453  { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
454  { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
455  { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
456  { instanceKlass o;          add_vtable(list, &n, &o, count); }
457  { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
458  { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
459  { symbolKlass o;            add_vtable(list, &n, &o, count); }
460  { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
461  { methodKlass o;            add_vtable(list, &n, &o, count); }
462  { constMethodKlass o;       add_vtable(list, &n, &o, count); }
463  { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
464  { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
465  { objArrayKlass o;          add_vtable(list, &n, &o, count); }
466  { methodDataKlass o;        add_vtable(list, &n, &o, count); }
467  { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
468}
469
470
471class FixupMirrorClosure: public ObjectClosure {
472 public:
473  virtual void do_object(oop obj) {
474    if (obj->is_klass()) {
475      EXCEPTION_MARK;
476      KlassHandle k(THREAD, klassOop(obj));
477      // We will never reach the CATCH below since Exceptions::_throw will cause
478      // the VM to exit if an exception is thrown during initialization
479      java_lang_Class::create_mirror(k, CATCH);
480      // This call unconditionally creates a new mirror for k,
481      // and links in k's component_mirror field if k is an array.
482      // If k is an objArray, k's element type must already have
483      // a mirror.  In other words, this closure must process
484      // the component type of an objArray k before it processes k.
485      // This works because the permgen iterator presents arrays
486      // and their component types in order of creation.
487    }
488  }
489};
490
491void Universe::initialize_basic_type_mirrors(TRAPS) {
492  if (UseSharedSpaces) {
493    assert(_int_mirror != NULL, "already loaded");
494    assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
495  } else {
496
497    assert(_int_mirror==NULL, "basic type mirrors already initialized");
498    _int_mirror     =
499      java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
500    _float_mirror   =
501      java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
502    _double_mirror  =
503      java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
504    _byte_mirror    =
505      java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
506    _bool_mirror    =
507      java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
508    _char_mirror    =
509      java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
510    _long_mirror    =
511      java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
512    _short_mirror   =
513      java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
514    _void_mirror    =
515      java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
516
517    _mirrors[T_INT]     = _int_mirror;
518    _mirrors[T_FLOAT]   = _float_mirror;
519    _mirrors[T_DOUBLE]  = _double_mirror;
520    _mirrors[T_BYTE]    = _byte_mirror;
521    _mirrors[T_BOOLEAN] = _bool_mirror;
522    _mirrors[T_CHAR]    = _char_mirror;
523    _mirrors[T_LONG]    = _long_mirror;
524    _mirrors[T_SHORT]   = _short_mirror;
525    _mirrors[T_VOID]    = _void_mirror;
526    //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
527    //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
528  }
529}
530
531void Universe::fixup_mirrors(TRAPS) {
532  // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
533  // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
534  // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
535  // that the number of objects allocated at this point is very small.
536  assert(SystemDictionary::class_klass_loaded(), "java.lang.Class should be loaded");
537  FixupMirrorClosure blk;
538  Universe::heap()->permanent_object_iterate(&blk);
539}
540
541
542static bool has_run_finalizers_on_exit = false;
543
544void Universe::run_finalizers_on_exit() {
545  if (has_run_finalizers_on_exit) return;
546  has_run_finalizers_on_exit = true;
547
548  // Called on VM exit. This ought to be run in a separate thread.
549  if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
550  {
551    PRESERVE_EXCEPTION_MARK;
552    KlassHandle finalizer_klass(THREAD, SystemDictionary::finalizer_klass());
553    JavaValue result(T_VOID);
554    JavaCalls::call_static(
555      &result,
556      finalizer_klass,
557      vmSymbolHandles::run_finalizers_on_exit_name(),
558      vmSymbolHandles::void_method_signature(),
559      THREAD
560    );
561    // Ignore any pending exceptions
562    CLEAR_PENDING_EXCEPTION;
563  }
564}
565
566
567// initialize_vtable could cause gc if
568// 1) we specified true to initialize_vtable and
569// 2) this ran after gc was enabled
570// In case those ever change we use handles for oops
571void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
572  // init vtable of k and all subclasses
573  Klass* ko = k_h()->klass_part();
574  klassVtable* vt = ko->vtable();
575  if (vt) vt->initialize_vtable(false, CHECK);
576  if (ko->oop_is_instance()) {
577    instanceKlass* ik = (instanceKlass*)ko;
578    for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
579      reinitialize_vtable_of(s_h, CHECK);
580    }
581  }
582}
583
584
585void initialize_itable_for_klass(klassOop k, TRAPS) {
586  instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
587}
588
589
590void Universe::reinitialize_itables(TRAPS) {
591  SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
592
593}
594
595
596bool Universe::on_page_boundary(void* addr) {
597  return ((uintptr_t) addr) % os::vm_page_size() == 0;
598}
599
600
601bool Universe::should_fill_in_stack_trace(Handle throwable) {
602  // never attempt to fill in the stack trace of preallocated errors that do not have
603  // backtrace. These errors are kept alive forever and may be "re-used" when all
604  // preallocated errors with backtrace have been consumed. Also need to avoid
605  // a potential loop which could happen if an out of memory occurs when attempting
606  // to allocate the backtrace.
607  return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
608          (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
609          (throwable() != Universe::_out_of_memory_error_array_size) &&
610          (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
611}
612
613
614oop Universe::gen_out_of_memory_error(oop default_err) {
615  // generate an out of memory error:
616  // - if there is a preallocated error with backtrace available then return it wth
617  //   a filled in stack trace.
618  // - if there are no preallocated errors with backtrace available then return
619  //   an error without backtrace.
620  int next;
621  if (_preallocated_out_of_memory_error_avail_count > 0) {
622    next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
623    assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
624  } else {
625    next = -1;
626  }
627  if (next < 0) {
628    // all preallocated errors have been used.
629    // return default
630    return default_err;
631  } else {
632    // get the error object at the slot and set set it to NULL so that the
633    // array isn't keeping it alive anymore.
634    oop exc = preallocated_out_of_memory_errors()->obj_at(next);
635    assert(exc != NULL, "slot has been used already");
636    preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
637
638    // use the message from the default error
639    oop msg = java_lang_Throwable::message(default_err);
640    assert(msg != NULL, "no message");
641    java_lang_Throwable::set_message(exc, msg);
642
643    // populate the stack trace and return it.
644    java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
645    return exc;
646  }
647}
648
649static intptr_t non_oop_bits = 0;
650
651void* Universe::non_oop_word() {
652  // Neither the high bits nor the low bits of this value is allowed
653  // to look like (respectively) the high or low bits of a real oop.
654  //
655  // High and low are CPU-specific notions, but low always includes
656  // the low-order bit.  Since oops are always aligned at least mod 4,
657  // setting the low-order bit will ensure that the low half of the
658  // word will never look like that of a real oop.
659  //
660  // Using the OS-supplied non-memory-address word (usually 0 or -1)
661  // will take care of the high bits, however many there are.
662
663  if (non_oop_bits == 0) {
664    non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
665  }
666
667  return (void*)non_oop_bits;
668}
669
670jint universe_init() {
671  assert(!Universe::_fully_initialized, "called after initialize_vtables");
672  guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
673         "LogHeapWordSize is incorrect.");
674  guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
675  guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
676            "oop size is not not a multiple of HeapWord size");
677  TraceTime timer("Genesis", TraceStartupTime);
678  GC_locker::lock();  // do not allow gc during bootstrapping
679  JavaClasses::compute_hard_coded_offsets();
680
681  // Get map info from shared archive file.
682  if (DumpSharedSpaces)
683    UseSharedSpaces = false;
684
685  FileMapInfo* mapinfo = NULL;
686  if (UseSharedSpaces) {
687    mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
688    memset(mapinfo, 0, sizeof(FileMapInfo));
689
690    // Open the shared archive file, read and validate the header. If
691    // initialization files, shared spaces [UseSharedSpaces] are
692    // disabled and the file is closed.
693
694    if (mapinfo->initialize()) {
695      FileMapInfo::set_current_info(mapinfo);
696    } else {
697      assert(!mapinfo->is_open() && !UseSharedSpaces,
698             "archive file not closed or shared spaces not disabled.");
699    }
700  }
701
702  jint status = Universe::initialize_heap();
703  if (status != JNI_OK) {
704    return status;
705  }
706
707  // We have a heap so create the methodOop caches before
708  // CompactingPermGenGen::initialize_oops() tries to populate them.
709  Universe::_finalizer_register_cache = new LatestMethodOopCache();
710  Universe::_loader_addClass_cache    = new LatestMethodOopCache();
711  Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
712
713  if (UseSharedSpaces) {
714
715    // Read the data structures supporting the shared spaces (shared
716    // system dictionary, symbol table, etc.).  After that, access to
717    // the file (other than the mapped regions) is no longer needed, and
718    // the file is closed. Closing the file does not affect the
719    // currently mapped regions.
720
721    CompactingPermGenGen::initialize_oops();
722    mapinfo->close();
723
724  } else {
725    SymbolTable::create_table();
726    StringTable::create_table();
727    ClassLoader::create_package_info_table();
728  }
729
730  return JNI_OK;
731}
732
733// Choose the heap base address and oop encoding mode
734// when compressed oops are used:
735// Unscaled  - Use 32-bits oops without encoding when
736//     NarrowOopHeapBaseMin + heap_size < 4Gb
737// ZeroBased - Use zero based compressed oops with encoding when
738//     NarrowOopHeapBaseMin + heap_size < 32Gb
739// HeapBased - Use compressed oops with heap base + encoding.
740
741// 4Gb
742static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
743// 32Gb
744static const uint64_t OopEncodingHeapMax = NarrowOopHeapMax << LogMinObjAlignmentInBytes;
745
746char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
747#ifdef _LP64
748  if (UseCompressedOops) {
749    assert(mode == UnscaledNarrowOop  ||
750           mode == ZeroBasedNarrowOop ||
751           mode == HeapBasedNarrowOop, "mode is invalid");
752
753    const size_t total_size = heap_size + HeapBaseMinAddress;
754    if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
755      if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
756          (Universe::narrow_oop_shift() == 0)) {
757        // Use 32-bits oops without encoding and
758        // place heap's top on the 4Gb boundary
759        return (char*)(NarrowOopHeapMax - heap_size);
760      } else {
761        // Can't reserve with NarrowOopShift == 0
762        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
763        if (mode == UnscaledNarrowOop ||
764            mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
765          // Use zero based compressed oops with encoding and
766          // place heap's top on the 32Gb boundary in case
767          // total_size > 4Gb or failed to reserve below 4Gb.
768          return (char*)(OopEncodingHeapMax - heap_size);
769        }
770      }
771    } else {
772      // Can't reserve below 32Gb.
773      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
774    }
775  }
776#endif
777  return NULL; // also return NULL (don't care) for 32-bit VM
778}
779
780jint Universe::initialize_heap() {
781
782  if (UseParallelGC) {
783#ifndef SERIALGC
784    Universe::_collectedHeap = new ParallelScavengeHeap();
785#else  // SERIALGC
786    fatal("UseParallelGC not supported in java kernel vm.");
787#endif // SERIALGC
788
789  } else if (UseG1GC) {
790#ifndef SERIALGC
791    G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
792    G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
793    Universe::_collectedHeap = g1h;
794#else  // SERIALGC
795    fatal("UseG1GC not supported in java kernel vm.");
796#endif // SERIALGC
797
798  } else {
799    GenCollectorPolicy *gc_policy;
800
801    if (UseSerialGC) {
802      gc_policy = new MarkSweepPolicy();
803    } else if (UseConcMarkSweepGC) {
804#ifndef SERIALGC
805      if (UseAdaptiveSizePolicy) {
806        gc_policy = new ASConcurrentMarkSweepPolicy();
807      } else {
808        gc_policy = new ConcurrentMarkSweepPolicy();
809      }
810#else   // SERIALGC
811    fatal("UseConcMarkSweepGC not supported in java kernel vm.");
812#endif // SERIALGC
813    } else { // default old generation
814      gc_policy = new MarkSweepPolicy();
815    }
816
817    Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
818  }
819
820  jint status = Universe::heap()->initialize();
821  if (status != JNI_OK) {
822    return status;
823  }
824
825#ifdef _LP64
826  if (UseCompressedOops) {
827    // Subtract a page because something can get allocated at heap base.
828    // This also makes implicit null checking work, because the
829    // memory+1 page below heap_base needs to cause a signal.
830    // See needs_explicit_null_check.
831    // Only set the heap base for compressed oops because it indicates
832    // compressed oops for pstack code.
833    if (PrintCompressedOopsMode) {
834      tty->cr();
835      tty->print("heap address: "PTR_FORMAT, Universe::heap()->base());
836    }
837    if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
838      // Can't reserve heap below 32Gb.
839      Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
840      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
841      if (PrintCompressedOopsMode) {
842        tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
843      }
844    } else {
845      Universe::set_narrow_oop_base(0);
846      if (PrintCompressedOopsMode) {
847        tty->print(", zero based Compressed Oops");
848      }
849#ifdef _WIN64
850      if (!Universe::narrow_oop_use_implicit_null_checks()) {
851        // Don't need guard page for implicit checks in indexed addressing
852        // mode with zero based Compressed Oops.
853        Universe::set_narrow_oop_use_implicit_null_checks(true);
854      }
855#endif //  _WIN64
856      if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
857        // Can't reserve heap below 4Gb.
858        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
859      } else {
860        assert(Universe::narrow_oop_shift() == 0, "use unscaled narrow oop");
861        if (PrintCompressedOopsMode) {
862          tty->print(", 32-bits Oops");
863        }
864      }
865    }
866    if (PrintCompressedOopsMode) {
867      tty->cr();
868      tty->cr();
869    }
870  }
871  assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
872         Universe::narrow_oop_base() == NULL, "invalid value");
873  assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
874         Universe::narrow_oop_shift() == 0, "invalid value");
875#endif
876
877  // We will never reach the CATCH below since Exceptions::_throw will cause
878  // the VM to exit if an exception is thrown during initialization
879
880  if (UseTLAB) {
881    assert(Universe::heap()->supports_tlab_allocation(),
882           "Should support thread-local allocation buffers");
883    ThreadLocalAllocBuffer::startup_initialization();
884  }
885  return JNI_OK;
886}
887
888// It's the caller's repsonsibility to ensure glitch-freedom
889// (if required).
890void Universe::update_heap_info_at_gc() {
891  _heap_capacity_at_last_gc = heap()->capacity();
892  _heap_used_at_last_gc     = heap()->used();
893}
894
895
896
897void universe2_init() {
898  EXCEPTION_MARK;
899  Universe::genesis(CATCH);
900  // Although we'd like to verify here that the state of the heap
901  // is good, we can't because the main thread has not yet added
902  // itself to the threads list (so, using current interfaces
903  // we can't "fill" its TLAB), unless TLABs are disabled.
904  if (VerifyBeforeGC && !UseTLAB &&
905      Universe::heap()->total_collections() >= VerifyGCStartAt) {
906     Universe::heap()->prepare_for_verify();
907     Universe::verify();   // make sure we're starting with a clean slate
908  }
909}
910
911
912// This function is defined in JVM.cpp
913extern void initialize_converter_functions();
914
915bool universe_post_init() {
916  Universe::_fully_initialized = true;
917  EXCEPTION_MARK;
918  { ResourceMark rm;
919    Interpreter::initialize();      // needed for interpreter entry points
920    if (!UseSharedSpaces) {
921      KlassHandle ok_h(THREAD, SystemDictionary::object_klass());
922      Universe::reinitialize_vtable_of(ok_h, CHECK_false);
923      Universe::reinitialize_itables(CHECK_false);
924    }
925  }
926
927  klassOop k;
928  instanceKlassHandle k_h;
929  if (!UseSharedSpaces) {
930    // Setup preallocated empty java.lang.Class array
931    Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::class_klass(), 0, CHECK_false);
932    // Setup preallocated OutOfMemoryError errors
933    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
934    k_h = instanceKlassHandle(THREAD, k);
935    Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
936    Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
937    Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
938    Universe::_out_of_memory_error_gc_overhead_limit =
939      k_h->allocate_permanent_instance(CHECK_false);
940
941    // Setup preallocated NullPointerException
942    // (this is currently used for a cheap & dirty solution in compiler exception handling)
943    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
944    Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
945    // Setup preallocated ArithmeticException
946    // (this is currently used for a cheap & dirty solution in compiler exception handling)
947    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
948    Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
949    // Virtual Machine Error for when we get into a situation we can't resolve
950    k = SystemDictionary::resolve_or_fail(
951      vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
952    bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
953    if (!linked) {
954      tty->print_cr("Unable to link/verify VirtualMachineError class");
955      return false; // initialization failed
956    }
957    Universe::_virtual_machine_error_instance =
958      instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
959  }
960  if (!DumpSharedSpaces) {
961    // These are the only Java fields that are currently set during shared space dumping.
962    // We prefer to not handle this generally, so we always reinitialize these detail messages.
963    Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
964    java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
965
966    msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
967    java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
968
969    msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
970    java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
971
972    msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
973    java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
974
975    msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
976    java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
977
978    // Setup the array of errors that have preallocated backtrace
979    k = Universe::_out_of_memory_error_java_heap->klass();
980    assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
981    k_h = instanceKlassHandle(THREAD, k);
982
983    int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
984    Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
985    for (int i=0; i<len; i++) {
986      oop err = k_h->allocate_permanent_instance(CHECK_false);
987      Handle err_h = Handle(THREAD, err);
988      java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
989      Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
990    }
991    Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
992  }
993
994
995  // Setup static method for registering finalizers
996  // The finalizer klass must be linked before looking up the method, in
997  // case it needs to get rewritten.
998  instanceKlass::cast(SystemDictionary::finalizer_klass())->link_class(CHECK_false);
999  methodOop m = instanceKlass::cast(SystemDictionary::finalizer_klass())->find_method(
1000                                  vmSymbols::register_method_name(),
1001                                  vmSymbols::register_method_signature());
1002  if (m == NULL || !m->is_static()) {
1003    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1004      "java.lang.ref.Finalizer.register", false);
1005  }
1006  Universe::_finalizer_register_cache->init(
1007    SystemDictionary::finalizer_klass(), m, CHECK_false);
1008
1009  // Resolve on first use and initialize class.
1010  // Note: No race-condition here, since a resolve will always return the same result
1011
1012  // Setup method for security checks
1013  k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
1014  k_h = instanceKlassHandle(THREAD, k);
1015  k_h->link_class(CHECK_false);
1016  m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_array_object_object_signature());
1017  if (m == NULL || m->is_static()) {
1018    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1019      "java.lang.reflect.Method.invoke", false);
1020  }
1021  Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1022
1023  // Setup method for registering loaded classes in class loader vector
1024  instanceKlass::cast(SystemDictionary::classloader_klass())->link_class(CHECK_false);
1025  m = instanceKlass::cast(SystemDictionary::classloader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1026  if (m == NULL || m->is_static()) {
1027    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1028      "java.lang.ClassLoader.addClass", false);
1029  }
1030  Universe::_loader_addClass_cache->init(
1031    SystemDictionary::classloader_klass(), m, CHECK_false);
1032
1033  // The folowing is initializing converter functions for serialization in
1034  // JVM.cpp. If we clean up the StrictMath code above we may want to find
1035  // a better solution for this as well.
1036  initialize_converter_functions();
1037
1038  // This needs to be done before the first scavenge/gc, since
1039  // it's an input to soft ref clearing policy.
1040  {
1041    MutexLocker x(Heap_lock);
1042    Universe::update_heap_info_at_gc();
1043  }
1044
1045  // ("weak") refs processing infrastructure initialization
1046  Universe::heap()->post_initialize();
1047
1048  GC_locker::unlock();  // allow gc after bootstrapping
1049
1050  MemoryService::set_universe_heap(Universe::_collectedHeap);
1051  return true;
1052}
1053
1054
1055void Universe::compute_base_vtable_size() {
1056  _base_vtable_size = ClassLoader::compute_Object_vtable();
1057}
1058
1059
1060// %%% The Universe::flush_foo methods belong in CodeCache.
1061
1062// Flushes compiled methods dependent on dependee.
1063void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1064  assert_lock_strong(Compile_lock);
1065
1066  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1067
1068  // CodeCache can only be updated by a thread_in_VM and they will all be
1069  // stopped dring the safepoint so CodeCache will be safe to update without
1070  // holding the CodeCache_lock.
1071
1072  DepChange changes(dependee);
1073
1074  // Compute the dependent nmethods
1075  if (CodeCache::mark_for_deoptimization(changes) > 0) {
1076    // At least one nmethod has been marked for deoptimization
1077    VM_Deoptimize op;
1078    VMThread::execute(&op);
1079  }
1080}
1081
1082#ifdef HOTSWAP
1083// Flushes compiled methods dependent on dependee in the evolutionary sense
1084void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1085  // --- Compile_lock is not held. However we are at a safepoint.
1086  assert_locked_or_safepoint(Compile_lock);
1087  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1088
1089  // CodeCache can only be updated by a thread_in_VM and they will all be
1090  // stopped dring the safepoint so CodeCache will be safe to update without
1091  // holding the CodeCache_lock.
1092
1093  // Compute the dependent nmethods
1094  if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1095    // At least one nmethod has been marked for deoptimization
1096
1097    // All this already happens inside a VM_Operation, so we'll do all the work here.
1098    // Stuff copied from VM_Deoptimize and modified slightly.
1099
1100    // We do not want any GCs to happen while we are in the middle of this VM operation
1101    ResourceMark rm;
1102    DeoptimizationMarker dm;
1103
1104    // Deoptimize all activations depending on marked nmethods
1105    Deoptimization::deoptimize_dependents();
1106
1107    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1108    CodeCache::make_marked_nmethods_not_entrant();
1109  }
1110}
1111#endif // HOTSWAP
1112
1113
1114// Flushes compiled methods dependent on dependee
1115void Universe::flush_dependents_on_method(methodHandle m_h) {
1116  // --- Compile_lock is not held. However we are at a safepoint.
1117  assert_locked_or_safepoint(Compile_lock);
1118
1119  // CodeCache can only be updated by a thread_in_VM and they will all be
1120  // stopped dring the safepoint so CodeCache will be safe to update without
1121  // holding the CodeCache_lock.
1122
1123  // Compute the dependent nmethods
1124  if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1125    // At least one nmethod has been marked for deoptimization
1126
1127    // All this already happens inside a VM_Operation, so we'll do all the work here.
1128    // Stuff copied from VM_Deoptimize and modified slightly.
1129
1130    // We do not want any GCs to happen while we are in the middle of this VM operation
1131    ResourceMark rm;
1132    DeoptimizationMarker dm;
1133
1134    // Deoptimize all activations depending on marked nmethods
1135    Deoptimization::deoptimize_dependents();
1136
1137    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1138    CodeCache::make_marked_nmethods_not_entrant();
1139  }
1140}
1141
1142void Universe::print() { print_on(gclog_or_tty); }
1143
1144void Universe::print_on(outputStream* st) {
1145  st->print_cr("Heap");
1146  heap()->print_on(st);
1147}
1148
1149void Universe::print_heap_at_SIGBREAK() {
1150  if (PrintHeapAtSIGBREAK) {
1151    MutexLocker hl(Heap_lock);
1152    print_on(tty);
1153    tty->cr();
1154    tty->flush();
1155  }
1156}
1157
1158void Universe::print_heap_before_gc(outputStream* st) {
1159  st->print_cr("{Heap before GC invocations=%u (full %u):",
1160               heap()->total_collections(),
1161               heap()->total_full_collections());
1162  heap()->print_on(st);
1163}
1164
1165void Universe::print_heap_after_gc(outputStream* st) {
1166  st->print_cr("Heap after GC invocations=%u (full %u):",
1167               heap()->total_collections(),
1168               heap()->total_full_collections());
1169  heap()->print_on(st);
1170  st->print_cr("}");
1171}
1172
1173void Universe::verify(bool allow_dirty, bool silent) {
1174  if (SharedSkipVerify) {
1175    return;
1176  }
1177
1178  // The use of _verify_in_progress is a temporary work around for
1179  // 6320749.  Don't bother with a creating a class to set and clear
1180  // it since it is only used in this method and the control flow is
1181  // straight forward.
1182  _verify_in_progress = true;
1183
1184  COMPILER2_PRESENT(
1185    assert(!DerivedPointerTable::is_active(),
1186         "DPT should not be active during verification "
1187         "(of thread stacks below)");
1188  )
1189
1190  ResourceMark rm;
1191  HandleMark hm;  // Handles created during verification can be zapped
1192  _verify_count++;
1193
1194  if (!silent) gclog_or_tty->print("[Verifying ");
1195  if (!silent) gclog_or_tty->print("threads ");
1196  Threads::verify();
1197  heap()->verify(allow_dirty, silent);
1198
1199  if (!silent) gclog_or_tty->print("syms ");
1200  SymbolTable::verify();
1201  if (!silent) gclog_or_tty->print("strs ");
1202  StringTable::verify();
1203  {
1204    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1205    if (!silent) gclog_or_tty->print("zone ");
1206    CodeCache::verify();
1207  }
1208  if (!silent) gclog_or_tty->print("dict ");
1209  SystemDictionary::verify();
1210  if (!silent) gclog_or_tty->print("hand ");
1211  JNIHandles::verify();
1212  if (!silent) gclog_or_tty->print("C-heap ");
1213  os::check_heap();
1214  if (!silent) gclog_or_tty->print_cr("]");
1215
1216  _verify_in_progress = false;
1217}
1218
1219// Oop verification (see MacroAssembler::verify_oop)
1220
1221static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1222static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1223
1224
1225static void calculate_verify_data(uintptr_t verify_data[2],
1226                                  HeapWord* low_boundary,
1227                                  HeapWord* high_boundary) {
1228  assert(low_boundary < high_boundary, "bad interval");
1229
1230  // decide which low-order bits we require to be clear:
1231  size_t alignSize = MinObjAlignmentInBytes;
1232  size_t min_object_size = oopDesc::header_size();
1233
1234  // make an inclusive limit:
1235  uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1236  uintptr_t min = (uintptr_t)low_boundary;
1237  assert(min < max, "bad interval");
1238  uintptr_t diff = max ^ min;
1239
1240  // throw away enough low-order bits to make the diff vanish
1241  uintptr_t mask = (uintptr_t)(-1);
1242  while ((mask & diff) != 0)
1243    mask <<= 1;
1244  uintptr_t bits = (min & mask);
1245  assert(bits == (max & mask), "correct mask");
1246  // check an intermediate value between min and max, just to make sure:
1247  assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1248
1249  // require address alignment, too:
1250  mask |= (alignSize - 1);
1251
1252  if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1253    assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1254  }
1255  verify_data[0] = mask;
1256  verify_data[1] = bits;
1257}
1258
1259
1260// Oop verification (see MacroAssembler::verify_oop)
1261#ifndef PRODUCT
1262
1263uintptr_t Universe::verify_oop_mask() {
1264  MemRegion m = heap()->reserved_region();
1265  calculate_verify_data(_verify_oop_data,
1266                        m.start(),
1267                        m.end());
1268  return _verify_oop_data[0];
1269}
1270
1271
1272
1273uintptr_t Universe::verify_oop_bits() {
1274  verify_oop_mask();
1275  return _verify_oop_data[1];
1276}
1277
1278
1279uintptr_t Universe::verify_klass_mask() {
1280  /* $$$
1281  // A klass can never live in the new space.  Since the new and old
1282  // spaces can change size, we must settle for bounds-checking against
1283  // the bottom of the world, plus the smallest possible new and old
1284  // space sizes that may arise during execution.
1285  size_t min_new_size = Universe::new_size();   // in bytes
1286  size_t min_old_size = Universe::old_size();   // in bytes
1287  calculate_verify_data(_verify_klass_data,
1288          (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1289          _perm_gen->high_boundary);
1290                        */
1291  // Why doesn't the above just say that klass's always live in the perm
1292  // gen?  I'll see if that seems to work...
1293  MemRegion permanent_reserved;
1294  switch (Universe::heap()->kind()) {
1295  default:
1296    // ???: What if a CollectedHeap doesn't have a permanent generation?
1297    ShouldNotReachHere();
1298    break;
1299  case CollectedHeap::GenCollectedHeap:
1300  case CollectedHeap::G1CollectedHeap: {
1301    SharedHeap* sh = (SharedHeap*) Universe::heap();
1302    permanent_reserved = sh->perm_gen()->reserved();
1303   break;
1304  }
1305#ifndef SERIALGC
1306  case CollectedHeap::ParallelScavengeHeap: {
1307    ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1308    permanent_reserved = psh->perm_gen()->reserved();
1309    break;
1310  }
1311#endif // SERIALGC
1312  }
1313  calculate_verify_data(_verify_klass_data,
1314                        permanent_reserved.start(),
1315                        permanent_reserved.end());
1316
1317  return _verify_klass_data[0];
1318}
1319
1320
1321
1322uintptr_t Universe::verify_klass_bits() {
1323  verify_klass_mask();
1324  return _verify_klass_data[1];
1325}
1326
1327
1328uintptr_t Universe::verify_mark_mask() {
1329  return markOopDesc::lock_mask_in_place;
1330}
1331
1332
1333
1334uintptr_t Universe::verify_mark_bits() {
1335  intptr_t mask = verify_mark_mask();
1336  intptr_t bits = (intptr_t)markOopDesc::prototype();
1337  assert((bits & ~mask) == 0, "no stray header bits");
1338  return bits;
1339}
1340#endif // PRODUCT
1341
1342
1343void Universe::compute_verify_oop_data() {
1344  verify_oop_mask();
1345  verify_oop_bits();
1346  verify_mark_mask();
1347  verify_mark_bits();
1348  verify_klass_mask();
1349  verify_klass_bits();
1350}
1351
1352
1353void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1354  if (!UseSharedSpaces) {
1355    _klass = k;
1356  }
1357#ifndef PRODUCT
1358  else {
1359    // sharing initilization should have already set up _klass
1360    assert(_klass != NULL, "just checking");
1361  }
1362#endif
1363
1364  _method_idnum = m->method_idnum();
1365  assert(_method_idnum >= 0, "sanity check");
1366}
1367
1368
1369ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1370  if (_prev_methods != NULL) {
1371    for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1372      jweak method_ref = _prev_methods->at(i);
1373      if (method_ref != NULL) {
1374        JNIHandles::destroy_weak_global(method_ref);
1375      }
1376    }
1377    delete _prev_methods;
1378    _prev_methods = NULL;
1379  }
1380}
1381
1382
1383void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1384  assert(Thread::current()->is_VM_thread(),
1385    "only VMThread can add previous versions");
1386
1387  if (_prev_methods == NULL) {
1388    // This is the first previous version so make some space.
1389    // Start with 2 elements under the assumption that the class
1390    // won't be redefined much.
1391    _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1392  }
1393
1394  // RC_TRACE macro has an embedded ResourceMark
1395  RC_TRACE(0x00000100,
1396    ("add: %s(%s): adding prev version ref for cached method @%d",
1397    method->name()->as_C_string(), method->signature()->as_C_string(),
1398    _prev_methods->length()));
1399
1400  methodHandle method_h(method);
1401  jweak method_ref = JNIHandles::make_weak_global(method_h);
1402  _prev_methods->append(method_ref);
1403
1404  // Using weak references allows previous versions of the cached
1405  // method to be GC'ed when they are no longer needed. Since the
1406  // caller is the VMThread and we are at a safepoint, this is a good
1407  // time to clear out unused weak references.
1408
1409  for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1410    jweak method_ref = _prev_methods->at(i);
1411    assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1412    if (method_ref == NULL) {
1413      _prev_methods->remove_at(i);
1414      // Since we are traversing the array backwards, we don't have to
1415      // do anything special with the index.
1416      continue;  // robustness
1417    }
1418
1419    methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1420    if (m == NULL) {
1421      // this method entry has been GC'ed so remove it
1422      JNIHandles::destroy_weak_global(method_ref);
1423      _prev_methods->remove_at(i);
1424    } else {
1425      // RC_TRACE macro has an embedded ResourceMark
1426      RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1427        m->name()->as_C_string(), m->signature()->as_C_string(), i));
1428    }
1429  }
1430} // end add_previous_version()
1431
1432
1433bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1434  instanceKlass* ik = instanceKlass::cast(klass());
1435  methodOop check_method = ik->method_with_idnum(method_idnum());
1436  assert(check_method != NULL, "sanity check");
1437  if (check_method == method) {
1438    // done with the easy case
1439    return true;
1440  }
1441
1442  if (_prev_methods != NULL) {
1443    // The cached method has been redefined at least once so search
1444    // the previous versions for a match.
1445    for (int i = 0; i < _prev_methods->length(); i++) {
1446      jweak method_ref = _prev_methods->at(i);
1447      assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1448      if (method_ref == NULL) {
1449        continue;  // robustness
1450      }
1451
1452      check_method = (methodOop)JNIHandles::resolve(method_ref);
1453      if (check_method == method) {
1454        // a previous version matches
1455        return true;
1456      }
1457    }
1458  }
1459
1460  // either no previous versions or no previous version matched
1461  return false;
1462}
1463
1464
1465methodOop LatestMethodOopCache::get_methodOop() {
1466  instanceKlass* ik = instanceKlass::cast(klass());
1467  methodOop m = ik->method_with_idnum(method_idnum());
1468  assert(m != NULL, "sanity check");
1469  return m;
1470}
1471
1472
1473#ifdef ASSERT
1474// Release dummy object(s) at bottom of heap
1475bool Universe::release_fullgc_alot_dummy() {
1476  MutexLocker ml(FullGCALot_lock);
1477  if (_fullgc_alot_dummy_array != NULL) {
1478    if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1479      // No more dummies to release, release entire array instead
1480      _fullgc_alot_dummy_array = NULL;
1481      return false;
1482    }
1483    if (!UseConcMarkSweepGC) {
1484      // Release dummy at bottom of old generation
1485      _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1486    }
1487    // Release dummy at bottom of permanent generation
1488    _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1489  }
1490  return true;
1491}
1492
1493#endif // ASSERT
1494