universe.cpp revision 2721:f08d439fab8c
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/dependencies.hpp"
33#include "gc_interface/collectedHeap.inline.hpp"
34#include "interpreter/interpreter.hpp"
35#include "memory/cardTableModRefBS.hpp"
36#include "memory/filemap.hpp"
37#include "memory/gcLocker.inline.hpp"
38#include "memory/genCollectedHeap.hpp"
39#include "memory/genRemSet.hpp"
40#include "memory/generation.hpp"
41#include "memory/oopFactory.hpp"
42#include "memory/permGen.hpp"
43#include "memory/space.hpp"
44#include "memory/universe.hpp"
45#include "memory/universe.inline.hpp"
46#include "oops/arrayKlassKlass.hpp"
47#include "oops/compiledICHolderKlass.hpp"
48#include "oops/constMethodKlass.hpp"
49#include "oops/constantPoolKlass.hpp"
50#include "oops/constantPoolOop.hpp"
51#include "oops/cpCacheKlass.hpp"
52#include "oops/cpCacheOop.hpp"
53#include "oops/instanceKlass.hpp"
54#include "oops/instanceMirrorKlass.hpp"
55#include "oops/instanceKlassKlass.hpp"
56#include "oops/instanceRefKlass.hpp"
57#include "oops/klassKlass.hpp"
58#include "oops/klassOop.hpp"
59#include "oops/methodDataKlass.hpp"
60#include "oops/methodKlass.hpp"
61#include "oops/objArrayKlassKlass.hpp"
62#include "oops/oop.inline.hpp"
63#include "oops/typeArrayKlass.hpp"
64#include "oops/typeArrayKlassKlass.hpp"
65#include "prims/jvmtiRedefineClassesTrace.hpp"
66#include "runtime/aprofiler.hpp"
67#include "runtime/arguments.hpp"
68#include "runtime/deoptimization.hpp"
69#include "runtime/fprofiler.hpp"
70#include "runtime/handles.inline.hpp"
71#include "runtime/init.hpp"
72#include "runtime/java.hpp"
73#include "runtime/javaCalls.hpp"
74#include "runtime/sharedRuntime.hpp"
75#include "runtime/synchronizer.hpp"
76#include "runtime/timer.hpp"
77#include "runtime/vm_operations.hpp"
78#include "services/memoryService.hpp"
79#include "utilities/copy.hpp"
80#include "utilities/events.hpp"
81#include "utilities/hashtable.inline.hpp"
82#include "utilities/preserveException.hpp"
83#ifdef TARGET_OS_FAMILY_linux
84# include "thread_linux.inline.hpp"
85#endif
86#ifdef TARGET_OS_FAMILY_solaris
87# include "thread_solaris.inline.hpp"
88#endif
89#ifdef TARGET_OS_FAMILY_windows
90# include "thread_windows.inline.hpp"
91#endif
92#ifdef TARGET_OS_FAMILY_bsd
93# include "thread_bsd.inline.hpp"
94#endif
95#ifndef SERIALGC
96#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
97#include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
98#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
99#include "gc_implementation/g1/g1CollectorPolicy.hpp"
100#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
101#endif
102
103// Known objects
104klassOop Universe::_boolArrayKlassObj                 = NULL;
105klassOop Universe::_byteArrayKlassObj                 = NULL;
106klassOop Universe::_charArrayKlassObj                 = NULL;
107klassOop Universe::_intArrayKlassObj                  = NULL;
108klassOop Universe::_shortArrayKlassObj                = NULL;
109klassOop Universe::_longArrayKlassObj                 = NULL;
110klassOop Universe::_singleArrayKlassObj               = NULL;
111klassOop Universe::_doubleArrayKlassObj               = NULL;
112klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
113klassOop Universe::_objectArrayKlassObj               = NULL;
114klassOop Universe::_methodKlassObj                    = NULL;
115klassOop Universe::_constMethodKlassObj               = NULL;
116klassOop Universe::_methodDataKlassObj                = NULL;
117klassOop Universe::_klassKlassObj                     = NULL;
118klassOop Universe::_arrayKlassKlassObj                = NULL;
119klassOop Universe::_objArrayKlassKlassObj             = NULL;
120klassOop Universe::_typeArrayKlassKlassObj            = NULL;
121klassOop Universe::_instanceKlassKlassObj             = NULL;
122klassOop Universe::_constantPoolKlassObj              = NULL;
123klassOop Universe::_constantPoolCacheKlassObj         = NULL;
124klassOop Universe::_compiledICHolderKlassObj          = NULL;
125klassOop Universe::_systemObjArrayKlassObj            = NULL;
126oop Universe::_int_mirror                             = NULL;
127oop Universe::_float_mirror                           = NULL;
128oop Universe::_double_mirror                          = NULL;
129oop Universe::_byte_mirror                            = NULL;
130oop Universe::_bool_mirror                            = NULL;
131oop Universe::_char_mirror                            = NULL;
132oop Universe::_long_mirror                            = NULL;
133oop Universe::_short_mirror                           = NULL;
134oop Universe::_void_mirror                            = NULL;
135oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
136oop Universe::_main_thread_group                      = NULL;
137oop Universe::_system_thread_group                    = NULL;
138typeArrayOop Universe::_the_empty_byte_array          = NULL;
139typeArrayOop Universe::_the_empty_short_array         = NULL;
140typeArrayOop Universe::_the_empty_int_array           = NULL;
141objArrayOop Universe::_the_empty_system_obj_array     = NULL;
142objArrayOop Universe::_the_empty_class_klass_array    = NULL;
143objArrayOop Universe::_the_array_interfaces_array     = NULL;
144oop Universe::_the_null_string                        = NULL;
145oop Universe::_the_min_jint_string                   = NULL;
146LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
147LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
148ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
149oop Universe::_out_of_memory_error_java_heap          = NULL;
150oop Universe::_out_of_memory_error_perm_gen           = NULL;
151oop Universe::_out_of_memory_error_array_size         = NULL;
152oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
153objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
154volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
155bool Universe::_verify_in_progress                    = false;
156oop Universe::_null_ptr_exception_instance            = NULL;
157oop Universe::_arithmetic_exception_instance          = NULL;
158oop Universe::_virtual_machine_error_instance         = NULL;
159oop Universe::_vm_exception                           = NULL;
160
161// These variables are guarded by FullGCALot_lock.
162debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
163debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
164
165
166// Heap
167int             Universe::_verify_count = 0;
168
169int             Universe::_base_vtable_size = 0;
170bool            Universe::_bootstrapping = false;
171bool            Universe::_fully_initialized = false;
172
173size_t          Universe::_heap_capacity_at_last_gc;
174size_t          Universe::_heap_used_at_last_gc = 0;
175
176CollectedHeap*  Universe::_collectedHeap = NULL;
177
178NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
179
180
181void Universe::basic_type_classes_do(void f(klassOop)) {
182  f(boolArrayKlassObj());
183  f(byteArrayKlassObj());
184  f(charArrayKlassObj());
185  f(intArrayKlassObj());
186  f(shortArrayKlassObj());
187  f(longArrayKlassObj());
188  f(singleArrayKlassObj());
189  f(doubleArrayKlassObj());
190}
191
192
193void Universe::system_classes_do(void f(klassOop)) {
194  f(methodKlassObj());
195  f(constMethodKlassObj());
196  f(methodDataKlassObj());
197  f(klassKlassObj());
198  f(arrayKlassKlassObj());
199  f(objArrayKlassKlassObj());
200  f(typeArrayKlassKlassObj());
201  f(instanceKlassKlassObj());
202  f(constantPoolKlassObj());
203  f(systemObjArrayKlassObj());
204}
205
206void Universe::oops_do(OopClosure* f, bool do_all) {
207
208  f->do_oop((oop*) &_int_mirror);
209  f->do_oop((oop*) &_float_mirror);
210  f->do_oop((oop*) &_double_mirror);
211  f->do_oop((oop*) &_byte_mirror);
212  f->do_oop((oop*) &_bool_mirror);
213  f->do_oop((oop*) &_char_mirror);
214  f->do_oop((oop*) &_long_mirror);
215  f->do_oop((oop*) &_short_mirror);
216  f->do_oop((oop*) &_void_mirror);
217
218  // It's important to iterate over these guys even if they are null,
219  // since that's how shared heaps are restored.
220  for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
221    f->do_oop((oop*) &_mirrors[i]);
222  }
223  assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
224
225  // %%% Consider moving those "shared oops" over here with the others.
226  f->do_oop((oop*)&_boolArrayKlassObj);
227  f->do_oop((oop*)&_byteArrayKlassObj);
228  f->do_oop((oop*)&_charArrayKlassObj);
229  f->do_oop((oop*)&_intArrayKlassObj);
230  f->do_oop((oop*)&_shortArrayKlassObj);
231  f->do_oop((oop*)&_longArrayKlassObj);
232  f->do_oop((oop*)&_singleArrayKlassObj);
233  f->do_oop((oop*)&_doubleArrayKlassObj);
234  f->do_oop((oop*)&_objectArrayKlassObj);
235  {
236    for (int i = 0; i < T_VOID+1; i++) {
237      if (_typeArrayKlassObjs[i] != NULL) {
238        assert(i >= T_BOOLEAN, "checking");
239        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
240      } else if (do_all) {
241        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
242      }
243    }
244  }
245  f->do_oop((oop*)&_methodKlassObj);
246  f->do_oop((oop*)&_constMethodKlassObj);
247  f->do_oop((oop*)&_methodDataKlassObj);
248  f->do_oop((oop*)&_klassKlassObj);
249  f->do_oop((oop*)&_arrayKlassKlassObj);
250  f->do_oop((oop*)&_objArrayKlassKlassObj);
251  f->do_oop((oop*)&_typeArrayKlassKlassObj);
252  f->do_oop((oop*)&_instanceKlassKlassObj);
253  f->do_oop((oop*)&_constantPoolKlassObj);
254  f->do_oop((oop*)&_constantPoolCacheKlassObj);
255  f->do_oop((oop*)&_compiledICHolderKlassObj);
256  f->do_oop((oop*)&_systemObjArrayKlassObj);
257  f->do_oop((oop*)&_the_empty_byte_array);
258  f->do_oop((oop*)&_the_empty_short_array);
259  f->do_oop((oop*)&_the_empty_int_array);
260  f->do_oop((oop*)&_the_empty_system_obj_array);
261  f->do_oop((oop*)&_the_empty_class_klass_array);
262  f->do_oop((oop*)&_the_array_interfaces_array);
263  f->do_oop((oop*)&_the_null_string);
264  f->do_oop((oop*)&_the_min_jint_string);
265  _finalizer_register_cache->oops_do(f);
266  _loader_addClass_cache->oops_do(f);
267  _reflect_invoke_cache->oops_do(f);
268  f->do_oop((oop*)&_out_of_memory_error_java_heap);
269  f->do_oop((oop*)&_out_of_memory_error_perm_gen);
270  f->do_oop((oop*)&_out_of_memory_error_array_size);
271  f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
272  if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
273    f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
274  }
275  f->do_oop((oop*)&_null_ptr_exception_instance);
276  f->do_oop((oop*)&_arithmetic_exception_instance);
277  f->do_oop((oop*)&_virtual_machine_error_instance);
278  f->do_oop((oop*)&_main_thread_group);
279  f->do_oop((oop*)&_system_thread_group);
280  f->do_oop((oop*)&_vm_exception);
281  debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
282}
283
284
285void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
286  if (size < alignment || size % alignment != 0) {
287    ResourceMark rm;
288    stringStream st;
289    st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
290    char* error = st.as_string();
291    vm_exit_during_initialization(error);
292  }
293}
294
295
296void Universe::genesis(TRAPS) {
297  ResourceMark rm;
298  { FlagSetting fs(_bootstrapping, true);
299
300    { MutexLocker mc(Compile_lock);
301
302      // determine base vtable size; without that we cannot create the array klasses
303      compute_base_vtable_size();
304
305      if (!UseSharedSpaces) {
306        _klassKlassObj          = klassKlass::create_klass(CHECK);
307        _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
308
309        _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
310        _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
311        _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
312
313        _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
314        _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
315        _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
316        _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
317        _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
318        _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
319        _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
320        _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
321
322        _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
323        _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
324        _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
325        _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
326        _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
327        _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
328        _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
329        _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
330
331        _methodKlassObj             = methodKlass::create_klass(CHECK);
332        _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
333        _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
334        _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
335        _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
336
337        _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
338        _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
339
340        _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
341        _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
342        _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
343        _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
344
345        _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
346      }
347    }
348
349    vmSymbols::initialize(CHECK);
350
351    SystemDictionary::initialize(CHECK);
352
353    klassOop ok = SystemDictionary::Object_klass();
354
355    _the_null_string            = StringTable::intern("null", CHECK);
356    _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
357
358    if (UseSharedSpaces) {
359      // Verify shared interfaces array.
360      assert(_the_array_interfaces_array->obj_at(0) ==
361             SystemDictionary::Cloneable_klass(), "u3");
362      assert(_the_array_interfaces_array->obj_at(1) ==
363             SystemDictionary::Serializable_klass(), "u3");
364
365      // Verify element klass for system obj array klass
366      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
367      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
368
369      // Verify super class for the classes created above
370      assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
371      assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
372      assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
373      assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
374      assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
375      assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
376      assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
377      assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
378      assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
379      assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
380    } else {
381      // Set up shared interfaces array.  (Do this before supers are set up.)
382      _the_array_interfaces_array->obj_at_put(0, SystemDictionary::Cloneable_klass());
383      _the_array_interfaces_array->obj_at_put(1, SystemDictionary::Serializable_klass());
384
385      // Set element klass for system obj array klass
386      objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
387      objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
388
389      // Set super class for the classes created above
390      Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
391      Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
392      Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
393      Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
394      Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
395      Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
396      Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
397      Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
398      Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
399      Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
400      Klass::cast(boolArrayKlassObj()     )->set_super(ok);
401      Klass::cast(charArrayKlassObj()     )->set_super(ok);
402      Klass::cast(singleArrayKlassObj()   )->set_super(ok);
403      Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
404      Klass::cast(byteArrayKlassObj()     )->set_super(ok);
405      Klass::cast(shortArrayKlassObj()    )->set_super(ok);
406      Klass::cast(intArrayKlassObj()      )->set_super(ok);
407      Klass::cast(longArrayKlassObj()     )->set_super(ok);
408      Klass::cast(constantPoolKlassObj()  )->set_super(ok);
409      Klass::cast(systemObjArrayKlassObj())->set_super(ok);
410    }
411
412    Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
413    Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
414    Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
415    Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
416    Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
417    Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
418    Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
419    Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
420    Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
421    Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
422  } // end of core bootstrapping
423
424  // Initialize _objectArrayKlass after core bootstraping to make
425  // sure the super class is set up properly for _objectArrayKlass.
426  _objectArrayKlassObj = instanceKlass::
427    cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
428  // Add the class to the class hierarchy manually to make sure that
429  // its vtable is initialized after core bootstrapping is completed.
430  Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
431
432  // Compute is_jdk version flags.
433  // Only 1.3 or later has the java.lang.Shutdown class.
434  // Only 1.4 or later has the java.lang.CharSequence interface.
435  // Only 1.5 or later has the java.lang.management.MemoryUsage class.
436  if (JDK_Version::is_partially_initialized()) {
437    uint8_t jdk_version;
438    klassOop k = SystemDictionary::resolve_or_null(
439        vmSymbols::java_lang_management_MemoryUsage(), THREAD);
440    CLEAR_PENDING_EXCEPTION; // ignore exceptions
441    if (k == NULL) {
442      k = SystemDictionary::resolve_or_null(
443          vmSymbols::java_lang_CharSequence(), THREAD);
444      CLEAR_PENDING_EXCEPTION; // ignore exceptions
445      if (k == NULL) {
446        k = SystemDictionary::resolve_or_null(
447            vmSymbols::java_lang_Shutdown(), THREAD);
448        CLEAR_PENDING_EXCEPTION; // ignore exceptions
449        if (k == NULL) {
450          jdk_version = 2;
451        } else {
452          jdk_version = 3;
453        }
454      } else {
455        jdk_version = 4;
456      }
457    } else {
458      jdk_version = 5;
459    }
460    JDK_Version::fully_initialize(jdk_version);
461  }
462
463  #ifdef ASSERT
464  if (FullGCALot) {
465    // Allocate an array of dummy objects.
466    // We'd like these to be at the bottom of the old generation,
467    // so that when we free one and then collect,
468    // (almost) the whole heap moves
469    // and we find out if we actually update all the oops correctly.
470    // But we can't allocate directly in the old generation,
471    // so we allocate wherever, and hope that the first collection
472    // moves these objects to the bottom of the old generation.
473    // We can allocate directly in the permanent generation, so we do.
474    int size;
475    if (UseConcMarkSweepGC) {
476      warning("Using +FullGCALot with concurrent mark sweep gc "
477              "will not force all objects to relocate");
478      size = FullGCALotDummies;
479    } else {
480      size = FullGCALotDummies * 2;
481    }
482    objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
483    objArrayHandle dummy_array(THREAD, naked_array);
484    int i = 0;
485    while (i < size) {
486      if (!UseConcMarkSweepGC) {
487        // Allocate dummy in old generation
488        oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
489        dummy_array->obj_at_put(i++, dummy);
490      }
491      // Allocate dummy in permanent generation
492      oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_permanent_instance(CHECK);
493      dummy_array->obj_at_put(i++, dummy);
494    }
495    {
496      // Only modify the global variable inside the mutex.
497      // If we had a race to here, the other dummy_array instances
498      // and their elements just get dropped on the floor, which is fine.
499      MutexLocker ml(FullGCALot_lock);
500      if (_fullgc_alot_dummy_array == NULL) {
501        _fullgc_alot_dummy_array = dummy_array();
502      }
503    }
504    assert(i == _fullgc_alot_dummy_array->length(), "just checking");
505  }
506  #endif
507}
508
509
510static inline void* dereference(void* addr) {
511  return *(void**)addr;
512}
513
514static inline void add_vtable(void** list, int* n, void* o, int count) {
515  guarantee((*n) < count, "vtable list too small");
516  void* vtable = dereference(o);
517  assert(dereference(vtable) != NULL, "invalid vtable");
518  list[(*n)++] = vtable;
519}
520
521void Universe::init_self_patching_vtbl_list(void** list, int count) {
522  int n = 0;
523  { klassKlass o;             add_vtable(list, &n, &o, count); }
524  { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
525  { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
526  { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
527  { instanceKlass o;          add_vtable(list, &n, &o, count); }
528  { instanceMirrorKlass o;    add_vtable(list, &n, &o, count); }
529  { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
530  { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
531  { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
532  { methodKlass o;            add_vtable(list, &n, &o, count); }
533  { constMethodKlass o;       add_vtable(list, &n, &o, count); }
534  { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
535  { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
536  { objArrayKlass o;          add_vtable(list, &n, &o, count); }
537  { methodDataKlass o;        add_vtable(list, &n, &o, count); }
538  { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
539#ifndef PRODUCT
540  // In non-product builds CHeapObj is derived from AllocatedObj,
541  // so symbols in CDS archive should have their vtable pointer patched.
542  { Symbol o;                 add_vtable(list, &n, &o, count); }
543#endif
544}
545
546
547class FixupMirrorClosure: public ObjectClosure {
548 public:
549  virtual void do_object(oop obj) {
550    if (obj->is_klass()) {
551      EXCEPTION_MARK;
552      KlassHandle k(THREAD, klassOop(obj));
553      // We will never reach the CATCH below since Exceptions::_throw will cause
554      // the VM to exit if an exception is thrown during initialization
555      java_lang_Class::fixup_mirror(k, CATCH);
556      // This call unconditionally creates a new mirror for k,
557      // and links in k's component_mirror field if k is an array.
558      // If k is an objArray, k's element type must already have
559      // a mirror.  In other words, this closure must process
560      // the component type of an objArray k before it processes k.
561      // This works because the permgen iterator presents arrays
562      // and their component types in order of creation.
563    }
564  }
565};
566
567void Universe::initialize_basic_type_mirrors(TRAPS) {
568  if (UseSharedSpaces) {
569    assert(_int_mirror != NULL, "already loaded");
570    assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
571  } else {
572
573    assert(_int_mirror==NULL, "basic type mirrors already initialized");
574    _int_mirror     =
575      java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
576    _float_mirror   =
577      java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
578    _double_mirror  =
579      java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
580    _byte_mirror    =
581      java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
582    _bool_mirror    =
583      java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
584    _char_mirror    =
585      java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
586    _long_mirror    =
587      java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
588    _short_mirror   =
589      java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
590    _void_mirror    =
591      java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
592
593    _mirrors[T_INT]     = _int_mirror;
594    _mirrors[T_FLOAT]   = _float_mirror;
595    _mirrors[T_DOUBLE]  = _double_mirror;
596    _mirrors[T_BYTE]    = _byte_mirror;
597    _mirrors[T_BOOLEAN] = _bool_mirror;
598    _mirrors[T_CHAR]    = _char_mirror;
599    _mirrors[T_LONG]    = _long_mirror;
600    _mirrors[T_SHORT]   = _short_mirror;
601    _mirrors[T_VOID]    = _void_mirror;
602    //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
603    //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
604  }
605}
606
607void Universe::fixup_mirrors(TRAPS) {
608  // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
609  // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
610  // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
611  // that the number of objects allocated at this point is very small.
612  assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
613
614  // Cache the start of the static fields
615  instanceMirrorKlass::init_offset_of_static_fields();
616
617  FixupMirrorClosure blk;
618  Universe::heap()->permanent_object_iterate(&blk);
619}
620
621
622static bool has_run_finalizers_on_exit = false;
623
624void Universe::run_finalizers_on_exit() {
625  if (has_run_finalizers_on_exit) return;
626  has_run_finalizers_on_exit = true;
627
628  // Called on VM exit. This ought to be run in a separate thread.
629  if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
630  {
631    PRESERVE_EXCEPTION_MARK;
632    KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
633    JavaValue result(T_VOID);
634    JavaCalls::call_static(
635      &result,
636      finalizer_klass,
637      vmSymbols::run_finalizers_on_exit_name(),
638      vmSymbols::void_method_signature(),
639      THREAD
640    );
641    // Ignore any pending exceptions
642    CLEAR_PENDING_EXCEPTION;
643  }
644}
645
646
647// initialize_vtable could cause gc if
648// 1) we specified true to initialize_vtable and
649// 2) this ran after gc was enabled
650// In case those ever change we use handles for oops
651void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
652  // init vtable of k and all subclasses
653  Klass* ko = k_h()->klass_part();
654  klassVtable* vt = ko->vtable();
655  if (vt) vt->initialize_vtable(false, CHECK);
656  if (ko->oop_is_instance()) {
657    instanceKlass* ik = (instanceKlass*)ko;
658    for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
659      reinitialize_vtable_of(s_h, CHECK);
660    }
661  }
662}
663
664
665void initialize_itable_for_klass(klassOop k, TRAPS) {
666  instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
667}
668
669
670void Universe::reinitialize_itables(TRAPS) {
671  SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
672
673}
674
675
676bool Universe::on_page_boundary(void* addr) {
677  return ((uintptr_t) addr) % os::vm_page_size() == 0;
678}
679
680
681bool Universe::should_fill_in_stack_trace(Handle throwable) {
682  // never attempt to fill in the stack trace of preallocated errors that do not have
683  // backtrace. These errors are kept alive forever and may be "re-used" when all
684  // preallocated errors with backtrace have been consumed. Also need to avoid
685  // a potential loop which could happen if an out of memory occurs when attempting
686  // to allocate the backtrace.
687  return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
688          (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
689          (throwable() != Universe::_out_of_memory_error_array_size) &&
690          (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
691}
692
693
694oop Universe::gen_out_of_memory_error(oop default_err) {
695  // generate an out of memory error:
696  // - if there is a preallocated error with backtrace available then return it wth
697  //   a filled in stack trace.
698  // - if there are no preallocated errors with backtrace available then return
699  //   an error without backtrace.
700  int next;
701  if (_preallocated_out_of_memory_error_avail_count > 0) {
702    next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
703    assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
704  } else {
705    next = -1;
706  }
707  if (next < 0) {
708    // all preallocated errors have been used.
709    // return default
710    return default_err;
711  } else {
712    // get the error object at the slot and set set it to NULL so that the
713    // array isn't keeping it alive anymore.
714    oop exc = preallocated_out_of_memory_errors()->obj_at(next);
715    assert(exc != NULL, "slot has been used already");
716    preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
717
718    // use the message from the default error
719    oop msg = java_lang_Throwable::message(default_err);
720    assert(msg != NULL, "no message");
721    java_lang_Throwable::set_message(exc, msg);
722
723    // populate the stack trace and return it.
724    java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
725    return exc;
726  }
727}
728
729static intptr_t non_oop_bits = 0;
730
731void* Universe::non_oop_word() {
732  // Neither the high bits nor the low bits of this value is allowed
733  // to look like (respectively) the high or low bits of a real oop.
734  //
735  // High and low are CPU-specific notions, but low always includes
736  // the low-order bit.  Since oops are always aligned at least mod 4,
737  // setting the low-order bit will ensure that the low half of the
738  // word will never look like that of a real oop.
739  //
740  // Using the OS-supplied non-memory-address word (usually 0 or -1)
741  // will take care of the high bits, however many there are.
742
743  if (non_oop_bits == 0) {
744    non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
745  }
746
747  return (void*)non_oop_bits;
748}
749
750jint universe_init() {
751  assert(!Universe::_fully_initialized, "called after initialize_vtables");
752  guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
753         "LogHeapWordSize is incorrect.");
754  guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
755  guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
756            "oop size is not not a multiple of HeapWord size");
757  TraceTime timer("Genesis", TraceStartupTime);
758  GC_locker::lock();  // do not allow gc during bootstrapping
759  JavaClasses::compute_hard_coded_offsets();
760
761  // Get map info from shared archive file.
762  if (DumpSharedSpaces)
763    UseSharedSpaces = false;
764
765  FileMapInfo* mapinfo = NULL;
766  if (UseSharedSpaces) {
767    mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
768    memset(mapinfo, 0, sizeof(FileMapInfo));
769
770    // Open the shared archive file, read and validate the header. If
771    // initialization files, shared spaces [UseSharedSpaces] are
772    // disabled and the file is closed.
773
774    if (mapinfo->initialize()) {
775      FileMapInfo::set_current_info(mapinfo);
776    } else {
777      assert(!mapinfo->is_open() && !UseSharedSpaces,
778             "archive file not closed or shared spaces not disabled.");
779    }
780  }
781
782  jint status = Universe::initialize_heap();
783  if (status != JNI_OK) {
784    return status;
785  }
786
787  // We have a heap so create the methodOop caches before
788  // CompactingPermGenGen::initialize_oops() tries to populate them.
789  Universe::_finalizer_register_cache = new LatestMethodOopCache();
790  Universe::_loader_addClass_cache    = new LatestMethodOopCache();
791  Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
792
793  if (UseSharedSpaces) {
794
795    // Read the data structures supporting the shared spaces (shared
796    // system dictionary, symbol table, etc.).  After that, access to
797    // the file (other than the mapped regions) is no longer needed, and
798    // the file is closed. Closing the file does not affect the
799    // currently mapped regions.
800
801    CompactingPermGenGen::initialize_oops();
802    mapinfo->close();
803
804  } else {
805    SymbolTable::create_table();
806    StringTable::create_table();
807    ClassLoader::create_package_info_table();
808  }
809
810  return JNI_OK;
811}
812
813// Choose the heap base address and oop encoding mode
814// when compressed oops are used:
815// Unscaled  - Use 32-bits oops without encoding when
816//     NarrowOopHeapBaseMin + heap_size < 4Gb
817// ZeroBased - Use zero based compressed oops with encoding when
818//     NarrowOopHeapBaseMin + heap_size < 32Gb
819// HeapBased - Use compressed oops with heap base + encoding.
820
821// 4Gb
822static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
823// 32Gb
824// OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
825
826char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
827  size_t base = 0;
828#ifdef _LP64
829  if (UseCompressedOops) {
830    assert(mode == UnscaledNarrowOop  ||
831           mode == ZeroBasedNarrowOop ||
832           mode == HeapBasedNarrowOop, "mode is invalid");
833    const size_t total_size = heap_size + HeapBaseMinAddress;
834    // Return specified base for the first request.
835    if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
836      base = HeapBaseMinAddress;
837    } else if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
838      if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
839          (Universe::narrow_oop_shift() == 0)) {
840        // Use 32-bits oops without encoding and
841        // place heap's top on the 4Gb boundary
842        base = (NarrowOopHeapMax - heap_size);
843      } else {
844        // Can't reserve with NarrowOopShift == 0
845        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
846        if (mode == UnscaledNarrowOop ||
847            mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
848          // Use zero based compressed oops with encoding and
849          // place heap's top on the 32Gb boundary in case
850          // total_size > 4Gb or failed to reserve below 4Gb.
851          base = (OopEncodingHeapMax - heap_size);
852        }
853      }
854    } else {
855      // Can't reserve below 32Gb.
856      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
857    }
858    // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
859    // used in ReservedHeapSpace() constructors.
860    // The final values will be set in initialize_heap() below.
861    if (base != 0 && (base + heap_size) <= OopEncodingHeapMax) {
862      // Use zero based compressed oops
863      Universe::set_narrow_oop_base(NULL);
864      // Don't need guard page for implicit checks in indexed
865      // addressing mode with zero based Compressed Oops.
866      Universe::set_narrow_oop_use_implicit_null_checks(true);
867    } else {
868      // Set to a non-NULL value so the ReservedSpace ctor computes
869      // the correct no-access prefix.
870      // The final value will be set in initialize_heap() below.
871      Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
872#ifdef _WIN64
873      if (UseLargePages) {
874        // Cannot allocate guard pages for implicit checks in indexed
875        // addressing mode when large pages are specified on windows.
876        Universe::set_narrow_oop_use_implicit_null_checks(false);
877      }
878#endif //  _WIN64
879    }
880  }
881#endif
882  return (char*)base; // also return NULL (don't care) for 32-bit VM
883}
884
885jint Universe::initialize_heap() {
886
887  if (UseParallelGC) {
888#ifndef SERIALGC
889    Universe::_collectedHeap = new ParallelScavengeHeap();
890#else  // SERIALGC
891    fatal("UseParallelGC not supported in java kernel vm.");
892#endif // SERIALGC
893
894  } else if (UseG1GC) {
895#ifndef SERIALGC
896    G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
897    G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
898    Universe::_collectedHeap = g1h;
899#else  // SERIALGC
900    fatal("UseG1GC not supported in java kernel vm.");
901#endif // SERIALGC
902
903  } else {
904    GenCollectorPolicy *gc_policy;
905
906    if (UseSerialGC) {
907      gc_policy = new MarkSweepPolicy();
908    } else if (UseConcMarkSweepGC) {
909#ifndef SERIALGC
910      if (UseAdaptiveSizePolicy) {
911        gc_policy = new ASConcurrentMarkSweepPolicy();
912      } else {
913        gc_policy = new ConcurrentMarkSweepPolicy();
914      }
915#else   // SERIALGC
916    fatal("UseConcMarkSweepGC not supported in java kernel vm.");
917#endif // SERIALGC
918    } else { // default old generation
919      gc_policy = new MarkSweepPolicy();
920    }
921
922    Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
923  }
924
925  jint status = Universe::heap()->initialize();
926  if (status != JNI_OK) {
927    return status;
928  }
929
930#ifdef _LP64
931  if (UseCompressedOops) {
932    // Subtract a page because something can get allocated at heap base.
933    // This also makes implicit null checking work, because the
934    // memory+1 page below heap_base needs to cause a signal.
935    // See needs_explicit_null_check.
936    // Only set the heap base for compressed oops because it indicates
937    // compressed oops for pstack code.
938    bool verbose = PrintCompressedOopsMode || (PrintMiscellaneous && Verbose);
939    if (verbose) {
940      tty->cr();
941      tty->print("heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
942                 Universe::heap()->base(), Universe::heap()->reserved_region().byte_size()/M);
943    }
944    if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
945      // Can't reserve heap below 32Gb.
946      Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
947      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
948      if (verbose) {
949        tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
950      }
951    } else {
952      Universe::set_narrow_oop_base(0);
953      if (verbose) {
954        tty->print(", zero based Compressed Oops");
955      }
956#ifdef _WIN64
957      if (!Universe::narrow_oop_use_implicit_null_checks()) {
958        // Don't need guard page for implicit checks in indexed addressing
959        // mode with zero based Compressed Oops.
960        Universe::set_narrow_oop_use_implicit_null_checks(true);
961      }
962#endif //  _WIN64
963      if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
964        // Can't reserve heap below 4Gb.
965        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
966      } else {
967        Universe::set_narrow_oop_shift(0);
968        if (verbose) {
969          tty->print(", 32-bits Oops");
970        }
971      }
972    }
973    if (verbose) {
974      tty->cr();
975      tty->cr();
976    }
977  }
978  assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
979         Universe::narrow_oop_base() == NULL, "invalid value");
980  assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
981         Universe::narrow_oop_shift() == 0, "invalid value");
982#endif
983
984  // We will never reach the CATCH below since Exceptions::_throw will cause
985  // the VM to exit if an exception is thrown during initialization
986
987  if (UseTLAB) {
988    assert(Universe::heap()->supports_tlab_allocation(),
989           "Should support thread-local allocation buffers");
990    ThreadLocalAllocBuffer::startup_initialization();
991  }
992  return JNI_OK;
993}
994
995// It's the caller's repsonsibility to ensure glitch-freedom
996// (if required).
997void Universe::update_heap_info_at_gc() {
998  _heap_capacity_at_last_gc = heap()->capacity();
999  _heap_used_at_last_gc     = heap()->used();
1000}
1001
1002
1003
1004void universe2_init() {
1005  EXCEPTION_MARK;
1006  Universe::genesis(CATCH);
1007  // Although we'd like to verify here that the state of the heap
1008  // is good, we can't because the main thread has not yet added
1009  // itself to the threads list (so, using current interfaces
1010  // we can't "fill" its TLAB), unless TLABs are disabled.
1011  if (VerifyBeforeGC && !UseTLAB &&
1012      Universe::heap()->total_collections() >= VerifyGCStartAt) {
1013     Universe::heap()->prepare_for_verify();
1014     Universe::verify();   // make sure we're starting with a clean slate
1015  }
1016}
1017
1018
1019// This function is defined in JVM.cpp
1020extern void initialize_converter_functions();
1021
1022bool universe_post_init() {
1023  assert(!is_init_completed(), "Error: initialization not yet completed!");
1024  Universe::_fully_initialized = true;
1025  EXCEPTION_MARK;
1026  { ResourceMark rm;
1027    Interpreter::initialize();      // needed for interpreter entry points
1028    if (!UseSharedSpaces) {
1029      KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
1030      Universe::reinitialize_vtable_of(ok_h, CHECK_false);
1031      Universe::reinitialize_itables(CHECK_false);
1032    }
1033  }
1034
1035  klassOop k;
1036  instanceKlassHandle k_h;
1037  if (!UseSharedSpaces) {
1038    // Setup preallocated empty java.lang.Class array
1039    Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
1040    // Setup preallocated OutOfMemoryError errors
1041    k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false);
1042    k_h = instanceKlassHandle(THREAD, k);
1043    Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
1044    Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
1045    Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
1046    Universe::_out_of_memory_error_gc_overhead_limit =
1047      k_h->allocate_permanent_instance(CHECK_false);
1048
1049    // Setup preallocated NullPointerException
1050    // (this is currently used for a cheap & dirty solution in compiler exception handling)
1051    k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
1052    Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1053    // Setup preallocated ArithmeticException
1054    // (this is currently used for a cheap & dirty solution in compiler exception handling)
1055    k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
1056    Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1057    // Virtual Machine Error for when we get into a situation we can't resolve
1058    k = SystemDictionary::resolve_or_fail(
1059      vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false);
1060    bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
1061    if (!linked) {
1062      tty->print_cr("Unable to link/verify VirtualMachineError class");
1063      return false; // initialization failed
1064    }
1065    Universe::_virtual_machine_error_instance =
1066      instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1067
1068    Universe::_vm_exception               = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1069
1070  }
1071  if (!DumpSharedSpaces) {
1072    // These are the only Java fields that are currently set during shared space dumping.
1073    // We prefer to not handle this generally, so we always reinitialize these detail messages.
1074    Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
1075    java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
1076
1077    msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
1078    java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1079
1080    msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1081    java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1082
1083    msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1084    java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1085
1086    msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1087    java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1088
1089    // Setup the array of errors that have preallocated backtrace
1090    k = Universe::_out_of_memory_error_java_heap->klass();
1091    assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1092    k_h = instanceKlassHandle(THREAD, k);
1093
1094    int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1095    Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1096    for (int i=0; i<len; i++) {
1097      oop err = k_h->allocate_permanent_instance(CHECK_false);
1098      Handle err_h = Handle(THREAD, err);
1099      java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1100      Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1101    }
1102    Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1103  }
1104
1105
1106  // Setup static method for registering finalizers
1107  // The finalizer klass must be linked before looking up the method, in
1108  // case it needs to get rewritten.
1109  instanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1110  methodOop m = instanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1111                                  vmSymbols::register_method_name(),
1112                                  vmSymbols::register_method_signature());
1113  if (m == NULL || !m->is_static()) {
1114    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1115      "java.lang.ref.Finalizer.register", false);
1116  }
1117  Universe::_finalizer_register_cache->init(
1118    SystemDictionary::Finalizer_klass(), m, CHECK_false);
1119
1120  // Resolve on first use and initialize class.
1121  // Note: No race-condition here, since a resolve will always return the same result
1122
1123  // Setup method for security checks
1124  k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_reflect_Method(), true, CHECK_false);
1125  k_h = instanceKlassHandle(THREAD, k);
1126  k_h->link_class(CHECK_false);
1127  m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1128  if (m == NULL || m->is_static()) {
1129    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1130      "java.lang.reflect.Method.invoke", false);
1131  }
1132  Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1133
1134  // Setup method for registering loaded classes in class loader vector
1135  instanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1136  m = instanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1137  if (m == NULL || m->is_static()) {
1138    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1139      "java.lang.ClassLoader.addClass", false);
1140  }
1141  Universe::_loader_addClass_cache->init(
1142    SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1143
1144  // The folowing is initializing converter functions for serialization in
1145  // JVM.cpp. If we clean up the StrictMath code above we may want to find
1146  // a better solution for this as well.
1147  initialize_converter_functions();
1148
1149  // This needs to be done before the first scavenge/gc, since
1150  // it's an input to soft ref clearing policy.
1151  {
1152    MutexLocker x(Heap_lock);
1153    Universe::update_heap_info_at_gc();
1154  }
1155
1156  // ("weak") refs processing infrastructure initialization
1157  Universe::heap()->post_initialize();
1158
1159  GC_locker::unlock();  // allow gc after bootstrapping
1160
1161  MemoryService::set_universe_heap(Universe::_collectedHeap);
1162  return true;
1163}
1164
1165
1166void Universe::compute_base_vtable_size() {
1167  _base_vtable_size = ClassLoader::compute_Object_vtable();
1168}
1169
1170
1171// %%% The Universe::flush_foo methods belong in CodeCache.
1172
1173// Flushes compiled methods dependent on dependee.
1174void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1175  assert_lock_strong(Compile_lock);
1176
1177  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1178
1179  // CodeCache can only be updated by a thread_in_VM and they will all be
1180  // stopped dring the safepoint so CodeCache will be safe to update without
1181  // holding the CodeCache_lock.
1182
1183  KlassDepChange changes(dependee);
1184
1185  // Compute the dependent nmethods
1186  if (CodeCache::mark_for_deoptimization(changes) > 0) {
1187    // At least one nmethod has been marked for deoptimization
1188    VM_Deoptimize op;
1189    VMThread::execute(&op);
1190  }
1191}
1192
1193// Flushes compiled methods dependent on a particular CallSite
1194// instance when its target is different than the given MethodHandle.
1195void Universe::flush_dependents_on(Handle call_site, Handle method_handle) {
1196  assert_lock_strong(Compile_lock);
1197
1198  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1199
1200  // CodeCache can only be updated by a thread_in_VM and they will all be
1201  // stopped dring the safepoint so CodeCache will be safe to update without
1202  // holding the CodeCache_lock.
1203
1204  CallSiteDepChange changes(call_site(), method_handle());
1205
1206  // Compute the dependent nmethods that have a reference to a
1207  // CallSite object.  We use instanceKlass::mark_dependent_nmethod
1208  // directly instead of CodeCache::mark_for_deoptimization because we
1209  // want dependents on the call site class only not all classes in
1210  // the ContextStream.
1211  int marked = 0;
1212  {
1213    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1214    instanceKlass* call_site_klass = instanceKlass::cast(call_site->klass());
1215    marked = call_site_klass->mark_dependent_nmethods(changes);
1216  }
1217  if (marked > 0) {
1218    // At least one nmethod has been marked for deoptimization
1219    VM_Deoptimize op;
1220    VMThread::execute(&op);
1221  }
1222}
1223
1224#ifdef HOTSWAP
1225// Flushes compiled methods dependent on dependee in the evolutionary sense
1226void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1227  // --- Compile_lock is not held. However we are at a safepoint.
1228  assert_locked_or_safepoint(Compile_lock);
1229  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1230
1231  // CodeCache can only be updated by a thread_in_VM and they will all be
1232  // stopped dring the safepoint so CodeCache will be safe to update without
1233  // holding the CodeCache_lock.
1234
1235  // Compute the dependent nmethods
1236  if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1237    // At least one nmethod has been marked for deoptimization
1238
1239    // All this already happens inside a VM_Operation, so we'll do all the work here.
1240    // Stuff copied from VM_Deoptimize and modified slightly.
1241
1242    // We do not want any GCs to happen while we are in the middle of this VM operation
1243    ResourceMark rm;
1244    DeoptimizationMarker dm;
1245
1246    // Deoptimize all activations depending on marked nmethods
1247    Deoptimization::deoptimize_dependents();
1248
1249    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1250    CodeCache::make_marked_nmethods_not_entrant();
1251  }
1252}
1253#endif // HOTSWAP
1254
1255
1256// Flushes compiled methods dependent on dependee
1257void Universe::flush_dependents_on_method(methodHandle m_h) {
1258  // --- Compile_lock is not held. However we are at a safepoint.
1259  assert_locked_or_safepoint(Compile_lock);
1260
1261  // CodeCache can only be updated by a thread_in_VM and they will all be
1262  // stopped dring the safepoint so CodeCache will be safe to update without
1263  // holding the CodeCache_lock.
1264
1265  // Compute the dependent nmethods
1266  if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1267    // At least one nmethod has been marked for deoptimization
1268
1269    // All this already happens inside a VM_Operation, so we'll do all the work here.
1270    // Stuff copied from VM_Deoptimize and modified slightly.
1271
1272    // We do not want any GCs to happen while we are in the middle of this VM operation
1273    ResourceMark rm;
1274    DeoptimizationMarker dm;
1275
1276    // Deoptimize all activations depending on marked nmethods
1277    Deoptimization::deoptimize_dependents();
1278
1279    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1280    CodeCache::make_marked_nmethods_not_entrant();
1281  }
1282}
1283
1284void Universe::print() { print_on(gclog_or_tty); }
1285
1286void Universe::print_on(outputStream* st) {
1287  st->print_cr("Heap");
1288  heap()->print_on(st);
1289}
1290
1291void Universe::print_heap_at_SIGBREAK() {
1292  if (PrintHeapAtSIGBREAK) {
1293    MutexLocker hl(Heap_lock);
1294    print_on(tty);
1295    tty->cr();
1296    tty->flush();
1297  }
1298}
1299
1300void Universe::print_heap_before_gc(outputStream* st) {
1301  st->print_cr("{Heap before GC invocations=%u (full %u):",
1302               heap()->total_collections(),
1303               heap()->total_full_collections());
1304  heap()->print_on(st);
1305}
1306
1307void Universe::print_heap_after_gc(outputStream* st) {
1308  st->print_cr("Heap after GC invocations=%u (full %u):",
1309               heap()->total_collections(),
1310               heap()->total_full_collections());
1311  heap()->print_on(st);
1312  st->print_cr("}");
1313}
1314
1315void Universe::verify(bool allow_dirty, bool silent, VerifyOption option) {
1316  if (SharedSkipVerify) {
1317    return;
1318  }
1319
1320  // The use of _verify_in_progress is a temporary work around for
1321  // 6320749.  Don't bother with a creating a class to set and clear
1322  // it since it is only used in this method and the control flow is
1323  // straight forward.
1324  _verify_in_progress = true;
1325
1326  COMPILER2_PRESENT(
1327    assert(!DerivedPointerTable::is_active(),
1328         "DPT should not be active during verification "
1329         "(of thread stacks below)");
1330  )
1331
1332  ResourceMark rm;
1333  HandleMark hm;  // Handles created during verification can be zapped
1334  _verify_count++;
1335
1336  if (!silent) gclog_or_tty->print("[Verifying ");
1337  if (!silent) gclog_or_tty->print("threads ");
1338  Threads::verify();
1339  heap()->verify(allow_dirty, silent, option);
1340
1341  if (!silent) gclog_or_tty->print("syms ");
1342  SymbolTable::verify();
1343  if (!silent) gclog_or_tty->print("strs ");
1344  StringTable::verify();
1345  {
1346    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1347    if (!silent) gclog_or_tty->print("zone ");
1348    CodeCache::verify();
1349  }
1350  if (!silent) gclog_or_tty->print("dict ");
1351  SystemDictionary::verify();
1352  if (!silent) gclog_or_tty->print("hand ");
1353  JNIHandles::verify();
1354  if (!silent) gclog_or_tty->print("C-heap ");
1355  os::check_heap();
1356  if (!silent) gclog_or_tty->print("code cache ");
1357  CodeCache::verify_oops();
1358  if (!silent) gclog_or_tty->print_cr("]");
1359
1360  _verify_in_progress = false;
1361}
1362
1363// Oop verification (see MacroAssembler::verify_oop)
1364
1365static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1366static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1367
1368
1369static void calculate_verify_data(uintptr_t verify_data[2],
1370                                  HeapWord* low_boundary,
1371                                  HeapWord* high_boundary) {
1372  assert(low_boundary < high_boundary, "bad interval");
1373
1374  // decide which low-order bits we require to be clear:
1375  size_t alignSize = MinObjAlignmentInBytes;
1376  size_t min_object_size = CollectedHeap::min_fill_size();
1377
1378  // make an inclusive limit:
1379  uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1380  uintptr_t min = (uintptr_t)low_boundary;
1381  assert(min < max, "bad interval");
1382  uintptr_t diff = max ^ min;
1383
1384  // throw away enough low-order bits to make the diff vanish
1385  uintptr_t mask = (uintptr_t)(-1);
1386  while ((mask & diff) != 0)
1387    mask <<= 1;
1388  uintptr_t bits = (min & mask);
1389  assert(bits == (max & mask), "correct mask");
1390  // check an intermediate value between min and max, just to make sure:
1391  assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1392
1393  // require address alignment, too:
1394  mask |= (alignSize - 1);
1395
1396  if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1397    assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1398  }
1399  verify_data[0] = mask;
1400  verify_data[1] = bits;
1401}
1402
1403
1404// Oop verification (see MacroAssembler::verify_oop)
1405#ifndef PRODUCT
1406
1407uintptr_t Universe::verify_oop_mask() {
1408  MemRegion m = heap()->reserved_region();
1409  calculate_verify_data(_verify_oop_data,
1410                        m.start(),
1411                        m.end());
1412  return _verify_oop_data[0];
1413}
1414
1415
1416
1417uintptr_t Universe::verify_oop_bits() {
1418  verify_oop_mask();
1419  return _verify_oop_data[1];
1420}
1421
1422
1423uintptr_t Universe::verify_klass_mask() {
1424  /* $$$
1425  // A klass can never live in the new space.  Since the new and old
1426  // spaces can change size, we must settle for bounds-checking against
1427  // the bottom of the world, plus the smallest possible new and old
1428  // space sizes that may arise during execution.
1429  size_t min_new_size = Universe::new_size();   // in bytes
1430  size_t min_old_size = Universe::old_size();   // in bytes
1431  calculate_verify_data(_verify_klass_data,
1432          (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1433          _perm_gen->high_boundary);
1434                        */
1435  // Why doesn't the above just say that klass's always live in the perm
1436  // gen?  I'll see if that seems to work...
1437  MemRegion permanent_reserved;
1438  switch (Universe::heap()->kind()) {
1439  default:
1440    // ???: What if a CollectedHeap doesn't have a permanent generation?
1441    ShouldNotReachHere();
1442    break;
1443  case CollectedHeap::GenCollectedHeap:
1444  case CollectedHeap::G1CollectedHeap: {
1445    SharedHeap* sh = (SharedHeap*) Universe::heap();
1446    permanent_reserved = sh->perm_gen()->reserved();
1447   break;
1448  }
1449#ifndef SERIALGC
1450  case CollectedHeap::ParallelScavengeHeap: {
1451    ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1452    permanent_reserved = psh->perm_gen()->reserved();
1453    break;
1454  }
1455#endif // SERIALGC
1456  }
1457  calculate_verify_data(_verify_klass_data,
1458                        permanent_reserved.start(),
1459                        permanent_reserved.end());
1460
1461  return _verify_klass_data[0];
1462}
1463
1464
1465
1466uintptr_t Universe::verify_klass_bits() {
1467  verify_klass_mask();
1468  return _verify_klass_data[1];
1469}
1470
1471
1472uintptr_t Universe::verify_mark_mask() {
1473  return markOopDesc::lock_mask_in_place;
1474}
1475
1476
1477
1478uintptr_t Universe::verify_mark_bits() {
1479  intptr_t mask = verify_mark_mask();
1480  intptr_t bits = (intptr_t)markOopDesc::prototype();
1481  assert((bits & ~mask) == 0, "no stray header bits");
1482  return bits;
1483}
1484#endif // PRODUCT
1485
1486
1487void Universe::compute_verify_oop_data() {
1488  verify_oop_mask();
1489  verify_oop_bits();
1490  verify_mark_mask();
1491  verify_mark_bits();
1492  verify_klass_mask();
1493  verify_klass_bits();
1494}
1495
1496
1497void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1498  if (!UseSharedSpaces) {
1499    _klass = k;
1500  }
1501#ifndef PRODUCT
1502  else {
1503    // sharing initilization should have already set up _klass
1504    assert(_klass != NULL, "just checking");
1505  }
1506#endif
1507
1508  _method_idnum = m->method_idnum();
1509  assert(_method_idnum >= 0, "sanity check");
1510}
1511
1512
1513ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1514  if (_prev_methods != NULL) {
1515    for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1516      jweak method_ref = _prev_methods->at(i);
1517      if (method_ref != NULL) {
1518        JNIHandles::destroy_weak_global(method_ref);
1519      }
1520    }
1521    delete _prev_methods;
1522    _prev_methods = NULL;
1523  }
1524}
1525
1526
1527void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1528  assert(Thread::current()->is_VM_thread(),
1529    "only VMThread can add previous versions");
1530
1531  if (_prev_methods == NULL) {
1532    // This is the first previous version so make some space.
1533    // Start with 2 elements under the assumption that the class
1534    // won't be redefined much.
1535    _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1536  }
1537
1538  // RC_TRACE macro has an embedded ResourceMark
1539  RC_TRACE(0x00000100,
1540    ("add: %s(%s): adding prev version ref for cached method @%d",
1541    method->name()->as_C_string(), method->signature()->as_C_string(),
1542    _prev_methods->length()));
1543
1544  methodHandle method_h(method);
1545  jweak method_ref = JNIHandles::make_weak_global(method_h);
1546  _prev_methods->append(method_ref);
1547
1548  // Using weak references allows previous versions of the cached
1549  // method to be GC'ed when they are no longer needed. Since the
1550  // caller is the VMThread and we are at a safepoint, this is a good
1551  // time to clear out unused weak references.
1552
1553  for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1554    jweak method_ref = _prev_methods->at(i);
1555    assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1556    if (method_ref == NULL) {
1557      _prev_methods->remove_at(i);
1558      // Since we are traversing the array backwards, we don't have to
1559      // do anything special with the index.
1560      continue;  // robustness
1561    }
1562
1563    methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1564    if (m == NULL) {
1565      // this method entry has been GC'ed so remove it
1566      JNIHandles::destroy_weak_global(method_ref);
1567      _prev_methods->remove_at(i);
1568    } else {
1569      // RC_TRACE macro has an embedded ResourceMark
1570      RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1571        m->name()->as_C_string(), m->signature()->as_C_string(), i));
1572    }
1573  }
1574} // end add_previous_version()
1575
1576
1577bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1578  instanceKlass* ik = instanceKlass::cast(klass());
1579  methodOop check_method = ik->method_with_idnum(method_idnum());
1580  assert(check_method != NULL, "sanity check");
1581  if (check_method == method) {
1582    // done with the easy case
1583    return true;
1584  }
1585
1586  if (_prev_methods != NULL) {
1587    // The cached method has been redefined at least once so search
1588    // the previous versions for a match.
1589    for (int i = 0; i < _prev_methods->length(); i++) {
1590      jweak method_ref = _prev_methods->at(i);
1591      assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1592      if (method_ref == NULL) {
1593        continue;  // robustness
1594      }
1595
1596      check_method = (methodOop)JNIHandles::resolve(method_ref);
1597      if (check_method == method) {
1598        // a previous version matches
1599        return true;
1600      }
1601    }
1602  }
1603
1604  // either no previous versions or no previous version matched
1605  return false;
1606}
1607
1608
1609methodOop LatestMethodOopCache::get_methodOop() {
1610  instanceKlass* ik = instanceKlass::cast(klass());
1611  methodOop m = ik->method_with_idnum(method_idnum());
1612  assert(m != NULL, "sanity check");
1613  return m;
1614}
1615
1616
1617#ifdef ASSERT
1618// Release dummy object(s) at bottom of heap
1619bool Universe::release_fullgc_alot_dummy() {
1620  MutexLocker ml(FullGCALot_lock);
1621  if (_fullgc_alot_dummy_array != NULL) {
1622    if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1623      // No more dummies to release, release entire array instead
1624      _fullgc_alot_dummy_array = NULL;
1625      return false;
1626    }
1627    if (!UseConcMarkSweepGC) {
1628      // Release dummy at bottom of old generation
1629      _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1630    }
1631    // Release dummy at bottom of permanent generation
1632    _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1633  }
1634  return true;
1635}
1636
1637#endif // ASSERT
1638