universe.cpp revision 1499:e9ff18c4ace7
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_universe.cpp.incl"
27
28// Known objects
29klassOop Universe::_boolArrayKlassObj                 = NULL;
30klassOop Universe::_byteArrayKlassObj                 = NULL;
31klassOop Universe::_charArrayKlassObj                 = NULL;
32klassOop Universe::_intArrayKlassObj                  = NULL;
33klassOop Universe::_shortArrayKlassObj                = NULL;
34klassOop Universe::_longArrayKlassObj                 = NULL;
35klassOop Universe::_singleArrayKlassObj               = NULL;
36klassOop Universe::_doubleArrayKlassObj               = NULL;
37klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
38klassOop Universe::_objectArrayKlassObj               = NULL;
39klassOop Universe::_symbolKlassObj                    = NULL;
40klassOop Universe::_methodKlassObj                    = NULL;
41klassOop Universe::_constMethodKlassObj               = NULL;
42klassOop Universe::_methodDataKlassObj                = NULL;
43klassOop Universe::_klassKlassObj                     = NULL;
44klassOop Universe::_arrayKlassKlassObj                = NULL;
45klassOop Universe::_objArrayKlassKlassObj             = NULL;
46klassOop Universe::_typeArrayKlassKlassObj            = NULL;
47klassOop Universe::_instanceKlassKlassObj             = NULL;
48klassOop Universe::_constantPoolKlassObj              = NULL;
49klassOop Universe::_constantPoolCacheKlassObj         = NULL;
50klassOop Universe::_compiledICHolderKlassObj          = NULL;
51klassOop Universe::_systemObjArrayKlassObj            = NULL;
52oop Universe::_int_mirror                             = NULL;
53oop Universe::_float_mirror                           = NULL;
54oop Universe::_double_mirror                          = NULL;
55oop Universe::_byte_mirror                            = NULL;
56oop Universe::_bool_mirror                            = NULL;
57oop Universe::_char_mirror                            = NULL;
58oop Universe::_long_mirror                            = NULL;
59oop Universe::_short_mirror                           = NULL;
60oop Universe::_void_mirror                            = NULL;
61oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
62oop Universe::_main_thread_group                      = NULL;
63oop Universe::_system_thread_group                    = NULL;
64typeArrayOop Universe::_the_empty_byte_array          = NULL;
65typeArrayOop Universe::_the_empty_short_array         = NULL;
66typeArrayOop Universe::_the_empty_int_array           = NULL;
67objArrayOop Universe::_the_empty_system_obj_array     = NULL;
68objArrayOop Universe::_the_empty_class_klass_array    = NULL;
69objArrayOop Universe::_the_array_interfaces_array     = NULL;
70oop Universe::_the_null_string                        = NULL;
71oop Universe::_the_min_jint_string                   = NULL;
72LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
73LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
74ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
75oop Universe::_out_of_memory_error_java_heap          = NULL;
76oop Universe::_out_of_memory_error_perm_gen           = NULL;
77oop Universe::_out_of_memory_error_array_size         = NULL;
78oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
79objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
80volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
81bool Universe::_verify_in_progress                    = false;
82oop Universe::_null_ptr_exception_instance            = NULL;
83oop Universe::_arithmetic_exception_instance          = NULL;
84oop Universe::_virtual_machine_error_instance         = NULL;
85oop Universe::_vm_exception                           = NULL;
86oop Universe::_emptySymbol                            = NULL;
87
88// These variables are guarded by FullGCALot_lock.
89debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
90debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
91
92
93// Heap
94int             Universe::_verify_count = 0;
95
96int             Universe::_base_vtable_size = 0;
97bool            Universe::_bootstrapping = false;
98bool            Universe::_fully_initialized = false;
99
100size_t          Universe::_heap_capacity_at_last_gc;
101size_t          Universe::_heap_used_at_last_gc = 0;
102
103CollectedHeap*  Universe::_collectedHeap = NULL;
104
105NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
106
107
108void Universe::basic_type_classes_do(void f(klassOop)) {
109  f(boolArrayKlassObj());
110  f(byteArrayKlassObj());
111  f(charArrayKlassObj());
112  f(intArrayKlassObj());
113  f(shortArrayKlassObj());
114  f(longArrayKlassObj());
115  f(singleArrayKlassObj());
116  f(doubleArrayKlassObj());
117}
118
119
120void Universe::system_classes_do(void f(klassOop)) {
121  f(symbolKlassObj());
122  f(methodKlassObj());
123  f(constMethodKlassObj());
124  f(methodDataKlassObj());
125  f(klassKlassObj());
126  f(arrayKlassKlassObj());
127  f(objArrayKlassKlassObj());
128  f(typeArrayKlassKlassObj());
129  f(instanceKlassKlassObj());
130  f(constantPoolKlassObj());
131  f(systemObjArrayKlassObj());
132}
133
134void Universe::oops_do(OopClosure* f, bool do_all) {
135
136  f->do_oop((oop*) &_int_mirror);
137  f->do_oop((oop*) &_float_mirror);
138  f->do_oop((oop*) &_double_mirror);
139  f->do_oop((oop*) &_byte_mirror);
140  f->do_oop((oop*) &_bool_mirror);
141  f->do_oop((oop*) &_char_mirror);
142  f->do_oop((oop*) &_long_mirror);
143  f->do_oop((oop*) &_short_mirror);
144  f->do_oop((oop*) &_void_mirror);
145
146  // It's important to iterate over these guys even if they are null,
147  // since that's how shared heaps are restored.
148  for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
149    f->do_oop((oop*) &_mirrors[i]);
150  }
151  assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
152
153  // %%% Consider moving those "shared oops" over here with the others.
154  f->do_oop((oop*)&_boolArrayKlassObj);
155  f->do_oop((oop*)&_byteArrayKlassObj);
156  f->do_oop((oop*)&_charArrayKlassObj);
157  f->do_oop((oop*)&_intArrayKlassObj);
158  f->do_oop((oop*)&_shortArrayKlassObj);
159  f->do_oop((oop*)&_longArrayKlassObj);
160  f->do_oop((oop*)&_singleArrayKlassObj);
161  f->do_oop((oop*)&_doubleArrayKlassObj);
162  f->do_oop((oop*)&_objectArrayKlassObj);
163  {
164    for (int i = 0; i < T_VOID+1; i++) {
165      if (_typeArrayKlassObjs[i] != NULL) {
166        assert(i >= T_BOOLEAN, "checking");
167        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
168      } else if (do_all) {
169        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
170      }
171    }
172  }
173  f->do_oop((oop*)&_symbolKlassObj);
174  f->do_oop((oop*)&_methodKlassObj);
175  f->do_oop((oop*)&_constMethodKlassObj);
176  f->do_oop((oop*)&_methodDataKlassObj);
177  f->do_oop((oop*)&_klassKlassObj);
178  f->do_oop((oop*)&_arrayKlassKlassObj);
179  f->do_oop((oop*)&_objArrayKlassKlassObj);
180  f->do_oop((oop*)&_typeArrayKlassKlassObj);
181  f->do_oop((oop*)&_instanceKlassKlassObj);
182  f->do_oop((oop*)&_constantPoolKlassObj);
183  f->do_oop((oop*)&_constantPoolCacheKlassObj);
184  f->do_oop((oop*)&_compiledICHolderKlassObj);
185  f->do_oop((oop*)&_systemObjArrayKlassObj);
186  f->do_oop((oop*)&_the_empty_byte_array);
187  f->do_oop((oop*)&_the_empty_short_array);
188  f->do_oop((oop*)&_the_empty_int_array);
189  f->do_oop((oop*)&_the_empty_system_obj_array);
190  f->do_oop((oop*)&_the_empty_class_klass_array);
191  f->do_oop((oop*)&_the_array_interfaces_array);
192  f->do_oop((oop*)&_the_null_string);
193  f->do_oop((oop*)&_the_min_jint_string);
194  _finalizer_register_cache->oops_do(f);
195  _loader_addClass_cache->oops_do(f);
196  _reflect_invoke_cache->oops_do(f);
197  f->do_oop((oop*)&_out_of_memory_error_java_heap);
198  f->do_oop((oop*)&_out_of_memory_error_perm_gen);
199  f->do_oop((oop*)&_out_of_memory_error_array_size);
200  f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
201  if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
202    f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
203  }
204  f->do_oop((oop*)&_null_ptr_exception_instance);
205  f->do_oop((oop*)&_arithmetic_exception_instance);
206  f->do_oop((oop*)&_virtual_machine_error_instance);
207  f->do_oop((oop*)&_main_thread_group);
208  f->do_oop((oop*)&_system_thread_group);
209  f->do_oop((oop*)&_vm_exception);
210  f->do_oop((oop*)&_emptySymbol);
211  debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
212}
213
214
215void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
216  if (size < alignment || size % alignment != 0) {
217    ResourceMark rm;
218    stringStream st;
219    st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
220    char* error = st.as_string();
221    vm_exit_during_initialization(error);
222  }
223}
224
225
226void Universe::genesis(TRAPS) {
227  ResourceMark rm;
228  { FlagSetting fs(_bootstrapping, true);
229
230    { MutexLocker mc(Compile_lock);
231
232      // determine base vtable size; without that we cannot create the array klasses
233      compute_base_vtable_size();
234
235      if (!UseSharedSpaces) {
236        _klassKlassObj          = klassKlass::create_klass(CHECK);
237        _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
238
239        _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
240        _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
241        _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
242
243        _symbolKlassObj         = symbolKlass::create_klass(CHECK);
244
245        _emptySymbol            = oopFactory::new_symbol("", CHECK);
246
247        _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
248        _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
249        _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
250        _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
251        _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
252        _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
253        _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
254        _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
255
256        _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
257        _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
258        _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
259        _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
260        _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
261        _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
262        _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
263        _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
264
265        _methodKlassObj             = methodKlass::create_klass(CHECK);
266        _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
267        _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
268        _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
269        _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
270
271        _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
272        _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
273
274        _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
275        _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
276        _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
277        _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
278
279        _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
280        _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
281      } else {
282        FileMapInfo *mapinfo = FileMapInfo::current_info();
283        char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
284        void** vtbl_list = (void**)buffer;
285        init_self_patching_vtbl_list(vtbl_list,
286                                     CompactingPermGenGen::vtbl_list_size);
287      }
288    }
289
290    vmSymbols::initialize(CHECK);
291
292    SystemDictionary::initialize(CHECK);
293
294    klassOop ok = SystemDictionary::Object_klass();
295
296    _the_null_string            = StringTable::intern("null", CHECK);
297    _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
298
299    if (UseSharedSpaces) {
300      // Verify shared interfaces array.
301      assert(_the_array_interfaces_array->obj_at(0) ==
302             SystemDictionary::Cloneable_klass(), "u3");
303      assert(_the_array_interfaces_array->obj_at(1) ==
304             SystemDictionary::Serializable_klass(), "u3");
305
306      // Verify element klass for system obj array klass
307      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
308      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
309
310      // Verify super class for the classes created above
311      assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
312      assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
313      assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
314      assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
315      assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
316      assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
317      assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
318      assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
319      assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
320      assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
321    } else {
322      // Set up shared interfaces array.  (Do this before supers are set up.)
323      _the_array_interfaces_array->obj_at_put(0, SystemDictionary::Cloneable_klass());
324      _the_array_interfaces_array->obj_at_put(1, SystemDictionary::Serializable_klass());
325
326      // Set element klass for system obj array klass
327      objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
328      objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
329
330      // Set super class for the classes created above
331      Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
332      Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
333      Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
334      Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
335      Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
336      Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
337      Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
338      Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
339      Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
340      Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
341      Klass::cast(boolArrayKlassObj()     )->set_super(ok);
342      Klass::cast(charArrayKlassObj()     )->set_super(ok);
343      Klass::cast(singleArrayKlassObj()   )->set_super(ok);
344      Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
345      Klass::cast(byteArrayKlassObj()     )->set_super(ok);
346      Klass::cast(shortArrayKlassObj()    )->set_super(ok);
347      Klass::cast(intArrayKlassObj()      )->set_super(ok);
348      Klass::cast(longArrayKlassObj()     )->set_super(ok);
349      Klass::cast(constantPoolKlassObj()  )->set_super(ok);
350      Klass::cast(systemObjArrayKlassObj())->set_super(ok);
351    }
352
353    Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
354    Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
355    Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
356    Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
357    Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
358    Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
359    Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
360    Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
361    Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
362    Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
363  } // end of core bootstrapping
364
365  // Initialize _objectArrayKlass after core bootstraping to make
366  // sure the super class is set up properly for _objectArrayKlass.
367  _objectArrayKlassObj = instanceKlass::
368    cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
369  // Add the class to the class hierarchy manually to make sure that
370  // its vtable is initialized after core bootstrapping is completed.
371  Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
372
373  // Compute is_jdk version flags.
374  // Only 1.3 or later has the java.lang.Shutdown class.
375  // Only 1.4 or later has the java.lang.CharSequence interface.
376  // Only 1.5 or later has the java.lang.management.MemoryUsage class.
377  if (JDK_Version::is_partially_initialized()) {
378    uint8_t jdk_version;
379    klassOop k = SystemDictionary::resolve_or_null(
380        vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
381    CLEAR_PENDING_EXCEPTION; // ignore exceptions
382    if (k == NULL) {
383      k = SystemDictionary::resolve_or_null(
384          vmSymbolHandles::java_lang_CharSequence(), THREAD);
385      CLEAR_PENDING_EXCEPTION; // ignore exceptions
386      if (k == NULL) {
387        k = SystemDictionary::resolve_or_null(
388            vmSymbolHandles::java_lang_Shutdown(), THREAD);
389        CLEAR_PENDING_EXCEPTION; // ignore exceptions
390        if (k == NULL) {
391          jdk_version = 2;
392        } else {
393          jdk_version = 3;
394        }
395      } else {
396        jdk_version = 4;
397      }
398    } else {
399      jdk_version = 5;
400    }
401    JDK_Version::fully_initialize(jdk_version);
402  }
403
404  #ifdef ASSERT
405  if (FullGCALot) {
406    // Allocate an array of dummy objects.
407    // We'd like these to be at the bottom of the old generation,
408    // so that when we free one and then collect,
409    // (almost) the whole heap moves
410    // and we find out if we actually update all the oops correctly.
411    // But we can't allocate directly in the old generation,
412    // so we allocate wherever, and hope that the first collection
413    // moves these objects to the bottom of the old generation.
414    // We can allocate directly in the permanent generation, so we do.
415    int size;
416    if (UseConcMarkSweepGC) {
417      warning("Using +FullGCALot with concurrent mark sweep gc "
418              "will not force all objects to relocate");
419      size = FullGCALotDummies;
420    } else {
421      size = FullGCALotDummies * 2;
422    }
423    objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
424    objArrayHandle dummy_array(THREAD, naked_array);
425    int i = 0;
426    while (i < size) {
427      if (!UseConcMarkSweepGC) {
428        // Allocate dummy in old generation
429        oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
430        dummy_array->obj_at_put(i++, dummy);
431      }
432      // Allocate dummy in permanent generation
433      oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_permanent_instance(CHECK);
434      dummy_array->obj_at_put(i++, dummy);
435    }
436    {
437      // Only modify the global variable inside the mutex.
438      // If we had a race to here, the other dummy_array instances
439      // and their elements just get dropped on the floor, which is fine.
440      MutexLocker ml(FullGCALot_lock);
441      if (_fullgc_alot_dummy_array == NULL) {
442        _fullgc_alot_dummy_array = dummy_array();
443      }
444    }
445    assert(i == _fullgc_alot_dummy_array->length(), "just checking");
446  }
447  #endif
448}
449
450
451static inline void add_vtable(void** list, int* n, Klass* o, int count) {
452  list[(*n)++] = *(void**)&o->vtbl_value();
453  guarantee((*n) <= count, "vtable list too small.");
454}
455
456
457void Universe::init_self_patching_vtbl_list(void** list, int count) {
458  int n = 0;
459  { klassKlass o;             add_vtable(list, &n, &o, count); }
460  { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
461  { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
462  { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
463  { instanceKlass o;          add_vtable(list, &n, &o, count); }
464  { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
465  { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
466  { symbolKlass o;            add_vtable(list, &n, &o, count); }
467  { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
468  { methodKlass o;            add_vtable(list, &n, &o, count); }
469  { constMethodKlass o;       add_vtable(list, &n, &o, count); }
470  { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
471  { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
472  { objArrayKlass o;          add_vtable(list, &n, &o, count); }
473  { methodDataKlass o;        add_vtable(list, &n, &o, count); }
474  { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
475}
476
477
478class FixupMirrorClosure: public ObjectClosure {
479 public:
480  virtual void do_object(oop obj) {
481    if (obj->is_klass()) {
482      EXCEPTION_MARK;
483      KlassHandle k(THREAD, klassOop(obj));
484      // We will never reach the CATCH below since Exceptions::_throw will cause
485      // the VM to exit if an exception is thrown during initialization
486      java_lang_Class::create_mirror(k, CATCH);
487      // This call unconditionally creates a new mirror for k,
488      // and links in k's component_mirror field if k is an array.
489      // If k is an objArray, k's element type must already have
490      // a mirror.  In other words, this closure must process
491      // the component type of an objArray k before it processes k.
492      // This works because the permgen iterator presents arrays
493      // and their component types in order of creation.
494    }
495  }
496};
497
498void Universe::initialize_basic_type_mirrors(TRAPS) {
499  if (UseSharedSpaces) {
500    assert(_int_mirror != NULL, "already loaded");
501    assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
502  } else {
503
504    assert(_int_mirror==NULL, "basic type mirrors already initialized");
505    _int_mirror     =
506      java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
507    _float_mirror   =
508      java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
509    _double_mirror  =
510      java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
511    _byte_mirror    =
512      java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
513    _bool_mirror    =
514      java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
515    _char_mirror    =
516      java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
517    _long_mirror    =
518      java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
519    _short_mirror   =
520      java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
521    _void_mirror    =
522      java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
523
524    _mirrors[T_INT]     = _int_mirror;
525    _mirrors[T_FLOAT]   = _float_mirror;
526    _mirrors[T_DOUBLE]  = _double_mirror;
527    _mirrors[T_BYTE]    = _byte_mirror;
528    _mirrors[T_BOOLEAN] = _bool_mirror;
529    _mirrors[T_CHAR]    = _char_mirror;
530    _mirrors[T_LONG]    = _long_mirror;
531    _mirrors[T_SHORT]   = _short_mirror;
532    _mirrors[T_VOID]    = _void_mirror;
533    //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
534    //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
535  }
536}
537
538void Universe::fixup_mirrors(TRAPS) {
539  // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
540  // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
541  // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
542  // that the number of objects allocated at this point is very small.
543  assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
544  FixupMirrorClosure blk;
545  Universe::heap()->permanent_object_iterate(&blk);
546}
547
548
549static bool has_run_finalizers_on_exit = false;
550
551void Universe::run_finalizers_on_exit() {
552  if (has_run_finalizers_on_exit) return;
553  has_run_finalizers_on_exit = true;
554
555  // Called on VM exit. This ought to be run in a separate thread.
556  if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
557  {
558    PRESERVE_EXCEPTION_MARK;
559    KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
560    JavaValue result(T_VOID);
561    JavaCalls::call_static(
562      &result,
563      finalizer_klass,
564      vmSymbolHandles::run_finalizers_on_exit_name(),
565      vmSymbolHandles::void_method_signature(),
566      THREAD
567    );
568    // Ignore any pending exceptions
569    CLEAR_PENDING_EXCEPTION;
570  }
571}
572
573
574// initialize_vtable could cause gc if
575// 1) we specified true to initialize_vtable and
576// 2) this ran after gc was enabled
577// In case those ever change we use handles for oops
578void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
579  // init vtable of k and all subclasses
580  Klass* ko = k_h()->klass_part();
581  klassVtable* vt = ko->vtable();
582  if (vt) vt->initialize_vtable(false, CHECK);
583  if (ko->oop_is_instance()) {
584    instanceKlass* ik = (instanceKlass*)ko;
585    for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
586      reinitialize_vtable_of(s_h, CHECK);
587    }
588  }
589}
590
591
592void initialize_itable_for_klass(klassOop k, TRAPS) {
593  instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
594}
595
596
597void Universe::reinitialize_itables(TRAPS) {
598  SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
599
600}
601
602
603bool Universe::on_page_boundary(void* addr) {
604  return ((uintptr_t) addr) % os::vm_page_size() == 0;
605}
606
607
608bool Universe::should_fill_in_stack_trace(Handle throwable) {
609  // never attempt to fill in the stack trace of preallocated errors that do not have
610  // backtrace. These errors are kept alive forever and may be "re-used" when all
611  // preallocated errors with backtrace have been consumed. Also need to avoid
612  // a potential loop which could happen if an out of memory occurs when attempting
613  // to allocate the backtrace.
614  return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
615          (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
616          (throwable() != Universe::_out_of_memory_error_array_size) &&
617          (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
618}
619
620
621oop Universe::gen_out_of_memory_error(oop default_err) {
622  // generate an out of memory error:
623  // - if there is a preallocated error with backtrace available then return it wth
624  //   a filled in stack trace.
625  // - if there are no preallocated errors with backtrace available then return
626  //   an error without backtrace.
627  int next;
628  if (_preallocated_out_of_memory_error_avail_count > 0) {
629    next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
630    assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
631  } else {
632    next = -1;
633  }
634  if (next < 0) {
635    // all preallocated errors have been used.
636    // return default
637    return default_err;
638  } else {
639    // get the error object at the slot and set set it to NULL so that the
640    // array isn't keeping it alive anymore.
641    oop exc = preallocated_out_of_memory_errors()->obj_at(next);
642    assert(exc != NULL, "slot has been used already");
643    preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
644
645    // use the message from the default error
646    oop msg = java_lang_Throwable::message(default_err);
647    assert(msg != NULL, "no message");
648    java_lang_Throwable::set_message(exc, msg);
649
650    // populate the stack trace and return it.
651    java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
652    return exc;
653  }
654}
655
656static intptr_t non_oop_bits = 0;
657
658void* Universe::non_oop_word() {
659  // Neither the high bits nor the low bits of this value is allowed
660  // to look like (respectively) the high or low bits of a real oop.
661  //
662  // High and low are CPU-specific notions, but low always includes
663  // the low-order bit.  Since oops are always aligned at least mod 4,
664  // setting the low-order bit will ensure that the low half of the
665  // word will never look like that of a real oop.
666  //
667  // Using the OS-supplied non-memory-address word (usually 0 or -1)
668  // will take care of the high bits, however many there are.
669
670  if (non_oop_bits == 0) {
671    non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
672  }
673
674  return (void*)non_oop_bits;
675}
676
677jint universe_init() {
678  assert(!Universe::_fully_initialized, "called after initialize_vtables");
679  guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
680         "LogHeapWordSize is incorrect.");
681  guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
682  guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
683            "oop size is not not a multiple of HeapWord size");
684  TraceTime timer("Genesis", TraceStartupTime);
685  GC_locker::lock();  // do not allow gc during bootstrapping
686  JavaClasses::compute_hard_coded_offsets();
687
688  // Get map info from shared archive file.
689  if (DumpSharedSpaces)
690    UseSharedSpaces = false;
691
692  FileMapInfo* mapinfo = NULL;
693  if (UseSharedSpaces) {
694    mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
695    memset(mapinfo, 0, sizeof(FileMapInfo));
696
697    // Open the shared archive file, read and validate the header. If
698    // initialization files, shared spaces [UseSharedSpaces] are
699    // disabled and the file is closed.
700
701    if (mapinfo->initialize()) {
702      FileMapInfo::set_current_info(mapinfo);
703    } else {
704      assert(!mapinfo->is_open() && !UseSharedSpaces,
705             "archive file not closed or shared spaces not disabled.");
706    }
707  }
708
709  jint status = Universe::initialize_heap();
710  if (status != JNI_OK) {
711    return status;
712  }
713
714  // We have a heap so create the methodOop caches before
715  // CompactingPermGenGen::initialize_oops() tries to populate them.
716  Universe::_finalizer_register_cache = new LatestMethodOopCache();
717  Universe::_loader_addClass_cache    = new LatestMethodOopCache();
718  Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
719
720  if (UseSharedSpaces) {
721
722    // Read the data structures supporting the shared spaces (shared
723    // system dictionary, symbol table, etc.).  After that, access to
724    // the file (other than the mapped regions) is no longer needed, and
725    // the file is closed. Closing the file does not affect the
726    // currently mapped regions.
727
728    CompactingPermGenGen::initialize_oops();
729    mapinfo->close();
730
731  } else {
732    SymbolTable::create_table();
733    StringTable::create_table();
734    ClassLoader::create_package_info_table();
735  }
736
737  return JNI_OK;
738}
739
740// Choose the heap base address and oop encoding mode
741// when compressed oops are used:
742// Unscaled  - Use 32-bits oops without encoding when
743//     NarrowOopHeapBaseMin + heap_size < 4Gb
744// ZeroBased - Use zero based compressed oops with encoding when
745//     NarrowOopHeapBaseMin + heap_size < 32Gb
746// HeapBased - Use compressed oops with heap base + encoding.
747
748// 4Gb
749static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
750// 32Gb
751// OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
752
753char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
754  size_t base = 0;
755#ifdef _LP64
756  if (UseCompressedOops) {
757    assert(mode == UnscaledNarrowOop  ||
758           mode == ZeroBasedNarrowOop ||
759           mode == HeapBasedNarrowOop, "mode is invalid");
760    const size_t total_size = heap_size + HeapBaseMinAddress;
761    // Return specified base for the first request.
762    if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
763      base = HeapBaseMinAddress;
764    } else if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
765      if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
766          (Universe::narrow_oop_shift() == 0)) {
767        // Use 32-bits oops without encoding and
768        // place heap's top on the 4Gb boundary
769        base = (NarrowOopHeapMax - heap_size);
770      } else {
771        // Can't reserve with NarrowOopShift == 0
772        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
773        if (mode == UnscaledNarrowOop ||
774            mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
775          // Use zero based compressed oops with encoding and
776          // place heap's top on the 32Gb boundary in case
777          // total_size > 4Gb or failed to reserve below 4Gb.
778          base = (OopEncodingHeapMax - heap_size);
779        }
780      }
781    } else {
782      // Can't reserve below 32Gb.
783      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
784    }
785    // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
786    // used in ReservedHeapSpace() constructors.
787    // The final values will be set in initialize_heap() below.
788    if (base != 0 && (base + heap_size) <= OopEncodingHeapMax) {
789      // Use zero based compressed oops
790      Universe::set_narrow_oop_base(NULL);
791      // Don't need guard page for implicit checks in indexed
792      // addressing mode with zero based Compressed Oops.
793      Universe::set_narrow_oop_use_implicit_null_checks(true);
794    } else {
795      // Set to a non-NULL value so the ReservedSpace ctor computes
796      // the correct no-access prefix.
797      // The final value will be set in initialize_heap() below.
798      Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
799#ifdef _WIN64
800      if (UseLargePages) {
801        // Cannot allocate guard pages for implicit checks in indexed
802        // addressing mode when large pages are specified on windows.
803        Universe::set_narrow_oop_use_implicit_null_checks(false);
804      }
805#endif //  _WIN64
806    }
807  }
808#endif
809  return (char*)base; // also return NULL (don't care) for 32-bit VM
810}
811
812jint Universe::initialize_heap() {
813
814  if (UseParallelGC) {
815#ifndef SERIALGC
816    Universe::_collectedHeap = new ParallelScavengeHeap();
817#else  // SERIALGC
818    fatal("UseParallelGC not supported in java kernel vm.");
819#endif // SERIALGC
820
821  } else if (UseG1GC) {
822#ifndef SERIALGC
823    G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
824    G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
825    Universe::_collectedHeap = g1h;
826#else  // SERIALGC
827    fatal("UseG1GC not supported in java kernel vm.");
828#endif // SERIALGC
829
830  } else {
831    GenCollectorPolicy *gc_policy;
832
833    if (UseSerialGC) {
834      gc_policy = new MarkSweepPolicy();
835    } else if (UseConcMarkSweepGC) {
836#ifndef SERIALGC
837      if (UseAdaptiveSizePolicy) {
838        gc_policy = new ASConcurrentMarkSweepPolicy();
839      } else {
840        gc_policy = new ConcurrentMarkSweepPolicy();
841      }
842#else   // SERIALGC
843    fatal("UseConcMarkSweepGC not supported in java kernel vm.");
844#endif // SERIALGC
845    } else { // default old generation
846      gc_policy = new MarkSweepPolicy();
847    }
848
849    Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
850  }
851
852  jint status = Universe::heap()->initialize();
853  if (status != JNI_OK) {
854    return status;
855  }
856
857#ifdef _LP64
858  if (UseCompressedOops) {
859    // Subtract a page because something can get allocated at heap base.
860    // This also makes implicit null checking work, because the
861    // memory+1 page below heap_base needs to cause a signal.
862    // See needs_explicit_null_check.
863    // Only set the heap base for compressed oops because it indicates
864    // compressed oops for pstack code.
865    if (PrintCompressedOopsMode) {
866      tty->cr();
867      tty->print("heap address: "PTR_FORMAT, Universe::heap()->base());
868    }
869    if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
870      // Can't reserve heap below 32Gb.
871      Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
872      Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
873      if (PrintCompressedOopsMode) {
874        tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
875      }
876    } else {
877      Universe::set_narrow_oop_base(0);
878      if (PrintCompressedOopsMode) {
879        tty->print(", zero based Compressed Oops");
880      }
881#ifdef _WIN64
882      if (!Universe::narrow_oop_use_implicit_null_checks()) {
883        // Don't need guard page for implicit checks in indexed addressing
884        // mode with zero based Compressed Oops.
885        Universe::set_narrow_oop_use_implicit_null_checks(true);
886      }
887#endif //  _WIN64
888      if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
889        // Can't reserve heap below 4Gb.
890        Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
891      } else {
892        Universe::set_narrow_oop_shift(0);
893        if (PrintCompressedOopsMode) {
894          tty->print(", 32-bits Oops");
895        }
896      }
897    }
898    if (PrintCompressedOopsMode) {
899      tty->cr();
900      tty->cr();
901    }
902  }
903  assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
904         Universe::narrow_oop_base() == NULL, "invalid value");
905  assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
906         Universe::narrow_oop_shift() == 0, "invalid value");
907#endif
908
909  // We will never reach the CATCH below since Exceptions::_throw will cause
910  // the VM to exit if an exception is thrown during initialization
911
912  if (UseTLAB) {
913    assert(Universe::heap()->supports_tlab_allocation(),
914           "Should support thread-local allocation buffers");
915    ThreadLocalAllocBuffer::startup_initialization();
916  }
917  return JNI_OK;
918}
919
920// It's the caller's repsonsibility to ensure glitch-freedom
921// (if required).
922void Universe::update_heap_info_at_gc() {
923  _heap_capacity_at_last_gc = heap()->capacity();
924  _heap_used_at_last_gc     = heap()->used();
925}
926
927
928
929void universe2_init() {
930  EXCEPTION_MARK;
931  Universe::genesis(CATCH);
932  // Although we'd like to verify here that the state of the heap
933  // is good, we can't because the main thread has not yet added
934  // itself to the threads list (so, using current interfaces
935  // we can't "fill" its TLAB), unless TLABs are disabled.
936  if (VerifyBeforeGC && !UseTLAB &&
937      Universe::heap()->total_collections() >= VerifyGCStartAt) {
938     Universe::heap()->prepare_for_verify();
939     Universe::verify();   // make sure we're starting with a clean slate
940  }
941}
942
943
944// This function is defined in JVM.cpp
945extern void initialize_converter_functions();
946
947bool universe_post_init() {
948  Universe::_fully_initialized = true;
949  EXCEPTION_MARK;
950  { ResourceMark rm;
951    Interpreter::initialize();      // needed for interpreter entry points
952    if (!UseSharedSpaces) {
953      KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
954      Universe::reinitialize_vtable_of(ok_h, CHECK_false);
955      Universe::reinitialize_itables(CHECK_false);
956    }
957  }
958
959  klassOop k;
960  instanceKlassHandle k_h;
961  if (!UseSharedSpaces) {
962    // Setup preallocated empty java.lang.Class array
963    Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
964    // Setup preallocated OutOfMemoryError errors
965    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
966    k_h = instanceKlassHandle(THREAD, k);
967    Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
968    Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
969    Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
970    Universe::_out_of_memory_error_gc_overhead_limit =
971      k_h->allocate_permanent_instance(CHECK_false);
972
973    // Setup preallocated NullPointerException
974    // (this is currently used for a cheap & dirty solution in compiler exception handling)
975    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
976    Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
977    // Setup preallocated ArithmeticException
978    // (this is currently used for a cheap & dirty solution in compiler exception handling)
979    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
980    Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
981    // Virtual Machine Error for when we get into a situation we can't resolve
982    k = SystemDictionary::resolve_or_fail(
983      vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
984    bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
985    if (!linked) {
986      tty->print_cr("Unable to link/verify VirtualMachineError class");
987      return false; // initialization failed
988    }
989    Universe::_virtual_machine_error_instance =
990      instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
991  }
992  if (!DumpSharedSpaces) {
993    // These are the only Java fields that are currently set during shared space dumping.
994    // We prefer to not handle this generally, so we always reinitialize these detail messages.
995    Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
996    java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
997
998    msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
999    java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1000
1001    msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1002    java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1003
1004    msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1005    java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1006
1007    msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1008    java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1009
1010    // Setup the array of errors that have preallocated backtrace
1011    k = Universe::_out_of_memory_error_java_heap->klass();
1012    assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1013    k_h = instanceKlassHandle(THREAD, k);
1014
1015    int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1016    Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1017    for (int i=0; i<len; i++) {
1018      oop err = k_h->allocate_permanent_instance(CHECK_false);
1019      Handle err_h = Handle(THREAD, err);
1020      java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1021      Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1022    }
1023    Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1024  }
1025
1026
1027  // Setup static method for registering finalizers
1028  // The finalizer klass must be linked before looking up the method, in
1029  // case it needs to get rewritten.
1030  instanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1031  methodOop m = instanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1032                                  vmSymbols::register_method_name(),
1033                                  vmSymbols::register_method_signature());
1034  if (m == NULL || !m->is_static()) {
1035    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1036      "java.lang.ref.Finalizer.register", false);
1037  }
1038  Universe::_finalizer_register_cache->init(
1039    SystemDictionary::Finalizer_klass(), m, CHECK_false);
1040
1041  // Resolve on first use and initialize class.
1042  // Note: No race-condition here, since a resolve will always return the same result
1043
1044  // Setup method for security checks
1045  k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
1046  k_h = instanceKlassHandle(THREAD, k);
1047  k_h->link_class(CHECK_false);
1048  m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1049  if (m == NULL || m->is_static()) {
1050    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1051      "java.lang.reflect.Method.invoke", false);
1052  }
1053  Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1054
1055  // Setup method for registering loaded classes in class loader vector
1056  instanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1057  m = instanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1058  if (m == NULL || m->is_static()) {
1059    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1060      "java.lang.ClassLoader.addClass", false);
1061  }
1062  Universe::_loader_addClass_cache->init(
1063    SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1064
1065  // The folowing is initializing converter functions for serialization in
1066  // JVM.cpp. If we clean up the StrictMath code above we may want to find
1067  // a better solution for this as well.
1068  initialize_converter_functions();
1069
1070  // This needs to be done before the first scavenge/gc, since
1071  // it's an input to soft ref clearing policy.
1072  {
1073    MutexLocker x(Heap_lock);
1074    Universe::update_heap_info_at_gc();
1075  }
1076
1077  // ("weak") refs processing infrastructure initialization
1078  Universe::heap()->post_initialize();
1079
1080  GC_locker::unlock();  // allow gc after bootstrapping
1081
1082  MemoryService::set_universe_heap(Universe::_collectedHeap);
1083  return true;
1084}
1085
1086
1087void Universe::compute_base_vtable_size() {
1088  _base_vtable_size = ClassLoader::compute_Object_vtable();
1089}
1090
1091
1092// %%% The Universe::flush_foo methods belong in CodeCache.
1093
1094// Flushes compiled methods dependent on dependee.
1095void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1096  assert_lock_strong(Compile_lock);
1097
1098  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1099
1100  // CodeCache can only be updated by a thread_in_VM and they will all be
1101  // stopped dring the safepoint so CodeCache will be safe to update without
1102  // holding the CodeCache_lock.
1103
1104  DepChange changes(dependee);
1105
1106  // Compute the dependent nmethods
1107  if (CodeCache::mark_for_deoptimization(changes) > 0) {
1108    // At least one nmethod has been marked for deoptimization
1109    VM_Deoptimize op;
1110    VMThread::execute(&op);
1111  }
1112}
1113
1114#ifdef HOTSWAP
1115// Flushes compiled methods dependent on dependee in the evolutionary sense
1116void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1117  // --- Compile_lock is not held. However we are at a safepoint.
1118  assert_locked_or_safepoint(Compile_lock);
1119  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1120
1121  // CodeCache can only be updated by a thread_in_VM and they will all be
1122  // stopped dring the safepoint so CodeCache will be safe to update without
1123  // holding the CodeCache_lock.
1124
1125  // Compute the dependent nmethods
1126  if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1127    // At least one nmethod has been marked for deoptimization
1128
1129    // All this already happens inside a VM_Operation, so we'll do all the work here.
1130    // Stuff copied from VM_Deoptimize and modified slightly.
1131
1132    // We do not want any GCs to happen while we are in the middle of this VM operation
1133    ResourceMark rm;
1134    DeoptimizationMarker dm;
1135
1136    // Deoptimize all activations depending on marked nmethods
1137    Deoptimization::deoptimize_dependents();
1138
1139    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1140    CodeCache::make_marked_nmethods_not_entrant();
1141  }
1142}
1143#endif // HOTSWAP
1144
1145
1146// Flushes compiled methods dependent on dependee
1147void Universe::flush_dependents_on_method(methodHandle m_h) {
1148  // --- Compile_lock is not held. However we are at a safepoint.
1149  assert_locked_or_safepoint(Compile_lock);
1150
1151  // CodeCache can only be updated by a thread_in_VM and they will all be
1152  // stopped dring the safepoint so CodeCache will be safe to update without
1153  // holding the CodeCache_lock.
1154
1155  // Compute the dependent nmethods
1156  if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1157    // At least one nmethod has been marked for deoptimization
1158
1159    // All this already happens inside a VM_Operation, so we'll do all the work here.
1160    // Stuff copied from VM_Deoptimize and modified slightly.
1161
1162    // We do not want any GCs to happen while we are in the middle of this VM operation
1163    ResourceMark rm;
1164    DeoptimizationMarker dm;
1165
1166    // Deoptimize all activations depending on marked nmethods
1167    Deoptimization::deoptimize_dependents();
1168
1169    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1170    CodeCache::make_marked_nmethods_not_entrant();
1171  }
1172}
1173
1174void Universe::print() { print_on(gclog_or_tty); }
1175
1176void Universe::print_on(outputStream* st) {
1177  st->print_cr("Heap");
1178  heap()->print_on(st);
1179}
1180
1181void Universe::print_heap_at_SIGBREAK() {
1182  if (PrintHeapAtSIGBREAK) {
1183    MutexLocker hl(Heap_lock);
1184    print_on(tty);
1185    tty->cr();
1186    tty->flush();
1187  }
1188}
1189
1190void Universe::print_heap_before_gc(outputStream* st) {
1191  st->print_cr("{Heap before GC invocations=%u (full %u):",
1192               heap()->total_collections(),
1193               heap()->total_full_collections());
1194  heap()->print_on(st);
1195}
1196
1197void Universe::print_heap_after_gc(outputStream* st) {
1198  st->print_cr("Heap after GC invocations=%u (full %u):",
1199               heap()->total_collections(),
1200               heap()->total_full_collections());
1201  heap()->print_on(st);
1202  st->print_cr("}");
1203}
1204
1205void Universe::verify(bool allow_dirty, bool silent, bool option) {
1206  if (SharedSkipVerify) {
1207    return;
1208  }
1209
1210  // The use of _verify_in_progress is a temporary work around for
1211  // 6320749.  Don't bother with a creating a class to set and clear
1212  // it since it is only used in this method and the control flow is
1213  // straight forward.
1214  _verify_in_progress = true;
1215
1216  COMPILER2_PRESENT(
1217    assert(!DerivedPointerTable::is_active(),
1218         "DPT should not be active during verification "
1219         "(of thread stacks below)");
1220  )
1221
1222  ResourceMark rm;
1223  HandleMark hm;  // Handles created during verification can be zapped
1224  _verify_count++;
1225
1226  if (!silent) gclog_or_tty->print("[Verifying ");
1227  if (!silent) gclog_or_tty->print("threads ");
1228  Threads::verify();
1229  heap()->verify(allow_dirty, silent, option);
1230
1231  if (!silent) gclog_or_tty->print("syms ");
1232  SymbolTable::verify();
1233  if (!silent) gclog_or_tty->print("strs ");
1234  StringTable::verify();
1235  {
1236    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1237    if (!silent) gclog_or_tty->print("zone ");
1238    CodeCache::verify();
1239  }
1240  if (!silent) gclog_or_tty->print("dict ");
1241  SystemDictionary::verify();
1242  if (!silent) gclog_or_tty->print("hand ");
1243  JNIHandles::verify();
1244  if (!silent) gclog_or_tty->print("C-heap ");
1245  os::check_heap();
1246  if (!silent) gclog_or_tty->print_cr("]");
1247
1248  _verify_in_progress = false;
1249}
1250
1251// Oop verification (see MacroAssembler::verify_oop)
1252
1253static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1254static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1255
1256
1257static void calculate_verify_data(uintptr_t verify_data[2],
1258                                  HeapWord* low_boundary,
1259                                  HeapWord* high_boundary) {
1260  assert(low_boundary < high_boundary, "bad interval");
1261
1262  // decide which low-order bits we require to be clear:
1263  size_t alignSize = MinObjAlignmentInBytes;
1264  size_t min_object_size = CollectedHeap::min_fill_size();
1265
1266  // make an inclusive limit:
1267  uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1268  uintptr_t min = (uintptr_t)low_boundary;
1269  assert(min < max, "bad interval");
1270  uintptr_t diff = max ^ min;
1271
1272  // throw away enough low-order bits to make the diff vanish
1273  uintptr_t mask = (uintptr_t)(-1);
1274  while ((mask & diff) != 0)
1275    mask <<= 1;
1276  uintptr_t bits = (min & mask);
1277  assert(bits == (max & mask), "correct mask");
1278  // check an intermediate value between min and max, just to make sure:
1279  assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1280
1281  // require address alignment, too:
1282  mask |= (alignSize - 1);
1283
1284  if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1285    assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1286  }
1287  verify_data[0] = mask;
1288  verify_data[1] = bits;
1289}
1290
1291
1292// Oop verification (see MacroAssembler::verify_oop)
1293#ifndef PRODUCT
1294
1295uintptr_t Universe::verify_oop_mask() {
1296  MemRegion m = heap()->reserved_region();
1297  calculate_verify_data(_verify_oop_data,
1298                        m.start(),
1299                        m.end());
1300  return _verify_oop_data[0];
1301}
1302
1303
1304
1305uintptr_t Universe::verify_oop_bits() {
1306  verify_oop_mask();
1307  return _verify_oop_data[1];
1308}
1309
1310
1311uintptr_t Universe::verify_klass_mask() {
1312  /* $$$
1313  // A klass can never live in the new space.  Since the new and old
1314  // spaces can change size, we must settle for bounds-checking against
1315  // the bottom of the world, plus the smallest possible new and old
1316  // space sizes that may arise during execution.
1317  size_t min_new_size = Universe::new_size();   // in bytes
1318  size_t min_old_size = Universe::old_size();   // in bytes
1319  calculate_verify_data(_verify_klass_data,
1320          (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1321          _perm_gen->high_boundary);
1322                        */
1323  // Why doesn't the above just say that klass's always live in the perm
1324  // gen?  I'll see if that seems to work...
1325  MemRegion permanent_reserved;
1326  switch (Universe::heap()->kind()) {
1327  default:
1328    // ???: What if a CollectedHeap doesn't have a permanent generation?
1329    ShouldNotReachHere();
1330    break;
1331  case CollectedHeap::GenCollectedHeap:
1332  case CollectedHeap::G1CollectedHeap: {
1333    SharedHeap* sh = (SharedHeap*) Universe::heap();
1334    permanent_reserved = sh->perm_gen()->reserved();
1335   break;
1336  }
1337#ifndef SERIALGC
1338  case CollectedHeap::ParallelScavengeHeap: {
1339    ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1340    permanent_reserved = psh->perm_gen()->reserved();
1341    break;
1342  }
1343#endif // SERIALGC
1344  }
1345  calculate_verify_data(_verify_klass_data,
1346                        permanent_reserved.start(),
1347                        permanent_reserved.end());
1348
1349  return _verify_klass_data[0];
1350}
1351
1352
1353
1354uintptr_t Universe::verify_klass_bits() {
1355  verify_klass_mask();
1356  return _verify_klass_data[1];
1357}
1358
1359
1360uintptr_t Universe::verify_mark_mask() {
1361  return markOopDesc::lock_mask_in_place;
1362}
1363
1364
1365
1366uintptr_t Universe::verify_mark_bits() {
1367  intptr_t mask = verify_mark_mask();
1368  intptr_t bits = (intptr_t)markOopDesc::prototype();
1369  assert((bits & ~mask) == 0, "no stray header bits");
1370  return bits;
1371}
1372#endif // PRODUCT
1373
1374
1375void Universe::compute_verify_oop_data() {
1376  verify_oop_mask();
1377  verify_oop_bits();
1378  verify_mark_mask();
1379  verify_mark_bits();
1380  verify_klass_mask();
1381  verify_klass_bits();
1382}
1383
1384
1385void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1386  if (!UseSharedSpaces) {
1387    _klass = k;
1388  }
1389#ifndef PRODUCT
1390  else {
1391    // sharing initilization should have already set up _klass
1392    assert(_klass != NULL, "just checking");
1393  }
1394#endif
1395
1396  _method_idnum = m->method_idnum();
1397  assert(_method_idnum >= 0, "sanity check");
1398}
1399
1400
1401ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1402  if (_prev_methods != NULL) {
1403    for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1404      jweak method_ref = _prev_methods->at(i);
1405      if (method_ref != NULL) {
1406        JNIHandles::destroy_weak_global(method_ref);
1407      }
1408    }
1409    delete _prev_methods;
1410    _prev_methods = NULL;
1411  }
1412}
1413
1414
1415void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1416  assert(Thread::current()->is_VM_thread(),
1417    "only VMThread can add previous versions");
1418
1419  if (_prev_methods == NULL) {
1420    // This is the first previous version so make some space.
1421    // Start with 2 elements under the assumption that the class
1422    // won't be redefined much.
1423    _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1424  }
1425
1426  // RC_TRACE macro has an embedded ResourceMark
1427  RC_TRACE(0x00000100,
1428    ("add: %s(%s): adding prev version ref for cached method @%d",
1429    method->name()->as_C_string(), method->signature()->as_C_string(),
1430    _prev_methods->length()));
1431
1432  methodHandle method_h(method);
1433  jweak method_ref = JNIHandles::make_weak_global(method_h);
1434  _prev_methods->append(method_ref);
1435
1436  // Using weak references allows previous versions of the cached
1437  // method to be GC'ed when they are no longer needed. Since the
1438  // caller is the VMThread and we are at a safepoint, this is a good
1439  // time to clear out unused weak references.
1440
1441  for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1442    jweak method_ref = _prev_methods->at(i);
1443    assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1444    if (method_ref == NULL) {
1445      _prev_methods->remove_at(i);
1446      // Since we are traversing the array backwards, we don't have to
1447      // do anything special with the index.
1448      continue;  // robustness
1449    }
1450
1451    methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1452    if (m == NULL) {
1453      // this method entry has been GC'ed so remove it
1454      JNIHandles::destroy_weak_global(method_ref);
1455      _prev_methods->remove_at(i);
1456    } else {
1457      // RC_TRACE macro has an embedded ResourceMark
1458      RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1459        m->name()->as_C_string(), m->signature()->as_C_string(), i));
1460    }
1461  }
1462} // end add_previous_version()
1463
1464
1465bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1466  instanceKlass* ik = instanceKlass::cast(klass());
1467  methodOop check_method = ik->method_with_idnum(method_idnum());
1468  assert(check_method != NULL, "sanity check");
1469  if (check_method == method) {
1470    // done with the easy case
1471    return true;
1472  }
1473
1474  if (_prev_methods != NULL) {
1475    // The cached method has been redefined at least once so search
1476    // the previous versions for a match.
1477    for (int i = 0; i < _prev_methods->length(); i++) {
1478      jweak method_ref = _prev_methods->at(i);
1479      assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1480      if (method_ref == NULL) {
1481        continue;  // robustness
1482      }
1483
1484      check_method = (methodOop)JNIHandles::resolve(method_ref);
1485      if (check_method == method) {
1486        // a previous version matches
1487        return true;
1488      }
1489    }
1490  }
1491
1492  // either no previous versions or no previous version matched
1493  return false;
1494}
1495
1496
1497methodOop LatestMethodOopCache::get_methodOop() {
1498  instanceKlass* ik = instanceKlass::cast(klass());
1499  methodOop m = ik->method_with_idnum(method_idnum());
1500  assert(m != NULL, "sanity check");
1501  return m;
1502}
1503
1504
1505#ifdef ASSERT
1506// Release dummy object(s) at bottom of heap
1507bool Universe::release_fullgc_alot_dummy() {
1508  MutexLocker ml(FullGCALot_lock);
1509  if (_fullgc_alot_dummy_array != NULL) {
1510    if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1511      // No more dummies to release, release entire array instead
1512      _fullgc_alot_dummy_array = NULL;
1513      return false;
1514    }
1515    if (!UseConcMarkSweepGC) {
1516      // Release dummy at bottom of old generation
1517      _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1518    }
1519    // Release dummy at bottom of permanent generation
1520    _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1521  }
1522  return true;
1523}
1524
1525#endif // ASSERT
1526