allocation.hpp revision 6014:8a9bb7821e28
1284345Ssjg/*
2284345Ssjg * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3284345Ssjg * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4284345Ssjg *
5284345Ssjg * This code is free software; you can redistribute it and/or modify it
6284345Ssjg * under the terms of the GNU General Public License version 2 only, as
7284345Ssjg * published by the Free Software Foundation.
8284345Ssjg *
9284345Ssjg * This code is distributed in the hope that it will be useful, but WITHOUT
10284345Ssjg * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11284345Ssjg * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12284345Ssjg * version 2 for more details (a copy is included in the LICENSE file that
13284345Ssjg * accompanied this code).
14284345Ssjg *
15284345Ssjg * You should have received a copy of the GNU General Public License version
16284345Ssjg * 2 along with this work; if not, write to the Free Software Foundation,
17284345Ssjg * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18284345Ssjg *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
26#define SHARE_VM_MEMORY_ALLOCATION_HPP
27
28#include "runtime/globals.hpp"
29#include "utilities/globalDefinitions.hpp"
30#include "utilities/macros.hpp"
31#ifdef COMPILER1
32#include "c1/c1_globals.hpp"
33#endif
34#ifdef COMPILER2
35#include "opto/c2_globals.hpp"
36#endif
37
38#include <new>
39
40#define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
41#define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
42#define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
43
44
45// noinline attribute
46#ifdef _WINDOWS
47  #define _NOINLINE_  __declspec(noinline)
48#else
49  #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
50    #define _NOINLINE_
51  #else
52    #define _NOINLINE_ __attribute__ ((noinline))
53  #endif
54#endif
55
56class AllocFailStrategy {
57public:
58  enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
59};
60typedef AllocFailStrategy::AllocFailEnum AllocFailType;
61
62// All classes in the virtual machine must be subclassed
63// by one of the following allocation classes:
64//
65// For objects allocated in the resource area (see resourceArea.hpp).
66// - ResourceObj
67//
68// For objects allocated in the C-heap (managed by: free & malloc).
69// - CHeapObj
70//
71// For objects allocated on the stack.
72// - StackObj
73//
74// For embedded objects.
75// - ValueObj
76//
77// For classes used as name spaces.
78// - AllStatic
79//
80// For classes in Metaspace (class data)
81// - MetaspaceObj
82//
83// The printable subclasses are used for debugging and define virtual
84// member functions for printing. Classes that avoid allocating the
85// vtbl entries in the objects should therefore not be the printable
86// subclasses.
87//
88// The following macros and function should be used to allocate memory
89// directly in the resource area or in the C-heap, The _OBJ variants
90// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
91// objects which are not inherited from CHeapObj, note constructor and
92// destructor are not called. The preferable way to allocate objects
93// is using the new operator.
94//
95// WARNING: The array variant must only be used for a homogenous array
96// where all objects are of the exact type specified. If subtypes are
97// stored in the array then must pay attention to calling destructors
98// at needed.
99//
100//   NEW_RESOURCE_ARRAY(type, size)
101//   NEW_RESOURCE_OBJ(type)
102//   NEW_C_HEAP_ARRAY(type, size)
103//   NEW_C_HEAP_OBJ(type, memflags)
104//   FREE_C_HEAP_ARRAY(type, old, memflags)
105//   FREE_C_HEAP_OBJ(objname, type, memflags)
106//   char* AllocateHeap(size_t size, const char* name);
107//   void  FreeHeap(void* p);
108//
109// C-heap allocation can be traced using +PrintHeapAllocation.
110// malloc and free should therefore never called directly.
111
112// Base class for objects allocated in the C-heap.
113
114// In non product mode we introduce a super class for all allocation classes
115// that supports printing.
116// We avoid the superclass in product mode since some C++ compilers add
117// a word overhead for empty super classes.
118
119#ifdef PRODUCT
120#define ALLOCATION_SUPER_CLASS_SPEC
121#else
122#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
123class AllocatedObj {
124 public:
125  // Printing support
126  void print() const;
127  void print_value() const;
128
129  virtual void print_on(outputStream* st) const;
130  virtual void print_value_on(outputStream* st) const;
131};
132#endif
133
134
135/*
136 * MemoryType bitmap layout:
137 * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
138 * |      memory type        |   object    | reserved    |
139 * |                         |     type    |             |
140 */
141enum MemoryType {
142  // Memory type by sub systems. It occupies lower byte.
143  mtNone              = 0x0000,  // undefined
144  mtClass             = 0x0100,  // memory class for Java classes
145  mtThread            = 0x0200,  // memory for thread objects
146  mtThreadStack       = 0x0300,
147  mtCode              = 0x0400,  // memory for generated code
148  mtGC                = 0x0500,  // memory for GC
149  mtCompiler          = 0x0600,  // memory for compiler
150  mtInternal          = 0x0700,  // memory used by VM, but does not belong to
151                                 // any of above categories, and not used for
152                                 // native memory tracking
153  mtOther             = 0x0800,  // memory not used by VM
154  mtSymbol            = 0x0900,  // symbol
155  mtNMT               = 0x0A00,  // memory used by native memory tracking
156  mtChunk             = 0x0B00,  // chunk that holds content of arenas
157  mtJavaHeap          = 0x0C00,  // Java heap
158  mtClassShared       = 0x0D00,  // class data sharing
159  mtTest              = 0x0E00,  // Test type for verifying NMT
160  mtTracing           = 0x0F00,  // memory used for Tracing
161  mt_number_of_types  = 0x000F,  // number of memory types (mtDontTrack
162                                 // is not included as validate type)
163  mtDontTrack         = 0x0F00,  // memory we do not or cannot track
164  mt_masks            = 0x7F00,
165
166  // object type mask
167  otArena             = 0x0010, // an arena object
168  otNMTRecorder       = 0x0020, // memory recorder object
169  ot_masks            = 0x00F0
170};
171
172#define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
173#define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
174#define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)
175
176#define IS_ARENA_OBJ(flags)         ((flags & ot_masks) == otArena)
177#define IS_NMT_RECORDER(flags)      ((flags & ot_masks) == otNMTRecorder)
178#define NMT_CAN_TRACK(flags)        (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))
179
180typedef unsigned short MEMFLAGS;
181
182#if INCLUDE_NMT
183
184extern bool NMT_track_callsite;
185
186#else
187
188const bool NMT_track_callsite = false;
189
190#endif // INCLUDE_NMT
191
192// debug build does not inline
193#if defined(_NMT_NOINLINE_)
194  #define CURRENT_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
195  #define CALLER_PC        (NMT_track_callsite ? os::get_caller_pc(2) : 0)
196  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
197#else
198  #define CURRENT_PC      (NMT_track_callsite? os::get_caller_pc(0) : 0)
199  #define CALLER_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
200  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
201#endif
202
203
204
205template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
206 public:
207  _NOINLINE_ void* operator new(size_t size, address caller_pc = 0) throw();
208  _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
209                               address caller_pc = 0) throw();
210  _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0) throw();
211  _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
212                               address caller_pc = 0) throw();
213  void  operator delete(void* p);
214  void  operator delete [] (void* p);
215};
216
217// Base class for objects allocated on the stack only.
218// Calling new or delete will result in fatal error.
219
220class StackObj ALLOCATION_SUPER_CLASS_SPEC {
221 private:
222  void* operator new(size_t size) throw();
223  void* operator new [](size_t size) throw();
224#ifdef __IBMCPP__
225 public:
226#endif
227  void  operator delete(void* p);
228  void  operator delete [](void* p);
229};
230
231// Base class for objects used as value objects.
232// Calling new or delete will result in fatal error.
233//
234// Portability note: Certain compilers (e.g. gcc) will
235// always make classes bigger if it has a superclass, even
236// if the superclass does not have any virtual methods or
237// instance fields. The HotSpot implementation relies on this
238// not to happen. So never make a ValueObj class a direct subclass
239// of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
240// like this:
241//
242//   class A VALUE_OBJ_CLASS_SPEC {
243//     ...
244//   }
245//
246// With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
247// be defined as a an empty string "".
248//
249class _ValueObj {
250 private:
251  void* operator new(size_t size) throw();
252  void  operator delete(void* p);
253  void* operator new [](size_t size) throw();
254  void  operator delete [](void* p);
255};
256
257
258// Base class for objects stored in Metaspace.
259// Calling delete will result in fatal error.
260//
261// Do not inherit from something with a vptr because this class does
262// not introduce one.  This class is used to allocate both shared read-only
263// and shared read-write classes.
264//
265
266class ClassLoaderData;
267
268class MetaspaceObj {
269 public:
270  bool is_metaspace_object() const;
271  bool is_shared() const;
272  void print_address_on(outputStream* st) const;  // nonvirtual address printing
273
274#define METASPACE_OBJ_TYPES_DO(f) \
275  f(Unknown) \
276  f(Class) \
277  f(Symbol) \
278  f(TypeArrayU1) \
279  f(TypeArrayU2) \
280  f(TypeArrayU4) \
281  f(TypeArrayU8) \
282  f(TypeArrayOther) \
283  f(Method) \
284  f(ConstMethod) \
285  f(MethodData) \
286  f(ConstantPool) \
287  f(ConstantPoolCache) \
288  f(Annotation) \
289  f(MethodCounters)
290
291#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
292#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
293
294  enum Type {
295    // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
296    METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
297    _number_of_types
298  };
299
300  static const char * type_name(Type type) {
301    switch(type) {
302    METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
303    default:
304      ShouldNotReachHere();
305      return NULL;
306    }
307  }
308
309  static MetaspaceObj::Type array_type(size_t elem_size) {
310    switch (elem_size) {
311    case 1: return TypeArrayU1Type;
312    case 2: return TypeArrayU2Type;
313    case 4: return TypeArrayU4Type;
314    case 8: return TypeArrayU8Type;
315    default:
316      return TypeArrayOtherType;
317    }
318  }
319
320  void* operator new(size_t size, ClassLoaderData* loader_data,
321                     size_t word_size, bool read_only,
322                     Type type, Thread* thread) throw();
323                     // can't use TRAPS from this header file.
324  void operator delete(void* p) { ShouldNotCallThis(); }
325};
326
327// Base class for classes that constitute name spaces.
328
329class AllStatic {
330 public:
331  AllStatic()  { ShouldNotCallThis(); }
332  ~AllStatic() { ShouldNotCallThis(); }
333};
334
335
336//------------------------------Chunk------------------------------------------
337// Linked list of raw memory chunks
338class Chunk: CHeapObj<mtChunk> {
339  friend class VMStructs;
340
341 protected:
342  Chunk*       _next;     // Next Chunk in list
343  const size_t _len;      // Size of this Chunk
344 public:
345  void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
346  void  operator delete(void* p);
347  Chunk(size_t length);
348
349  enum {
350    // default sizes; make them slightly smaller than 2**k to guard against
351    // buddy-system style malloc implementations
352#ifdef _LP64
353    slack      = 40,            // [RGV] Not sure if this is right, but make it
354                                //       a multiple of 8.
355#else
356    slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
357#endif
358
359    tiny_size  =  256  - slack, // Size of first chunk (tiny)
360    init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
361    medium_size= 10*K  - slack, // Size of medium-sized chunk
362    size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
363    non_pool_size = init_size + 32 // An initial size which is not one of above
364  };
365
366  void chop();                  // Chop this chunk
367  void next_chop();             // Chop next chunk
368  static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
369  static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
370
371  size_t length() const         { return _len;  }
372  Chunk* next() const           { return _next;  }
373  void set_next(Chunk* n)       { _next = n;  }
374  // Boundaries of data area (possibly unused)
375  char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
376  char* top()    const          { return bottom() + _len; }
377  bool contains(char* p) const  { return bottom() <= p && p <= top(); }
378
379  // Start the chunk_pool cleaner task
380  static void start_chunk_pool_cleaner_task();
381
382  static void clean_chunk_pool();
383};
384
385//------------------------------Arena------------------------------------------
386// Fast allocation of memory
387class Arena : public CHeapObj<mtNone|otArena> {
388protected:
389  friend class ResourceMark;
390  friend class HandleMark;
391  friend class NoHandleMark;
392  friend class VMStructs;
393
394  Chunk *_first;                // First chunk
395  Chunk *_chunk;                // current chunk
396  char *_hwm, *_max;            // High water mark and max in current chunk
397  // Get a new Chunk of at least size x
398  void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
399  size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
400
401  NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
402  friend class AllocStats;
403  debug_only(void* malloc(size_t size);)
404  debug_only(void* internal_malloc_4(size_t x);)
405  NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
406
407  void signal_out_of_memory(size_t request, const char* whence) const;
408
409  bool check_for_overflow(size_t request, const char* whence,
410      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
411    if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
412      if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
413        return false;
414      }
415      signal_out_of_memory(request, whence);
416    }
417    return true;
418 }
419
420 public:
421  Arena();
422  Arena(size_t init_size);
423  ~Arena();
424  void  destruct_contents();
425  char* hwm() const             { return _hwm; }
426
427  // new operators
428  void* operator new (size_t size) throw();
429  void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();
430
431  // dynamic memory type tagging
432  void* operator new(size_t size, MEMFLAGS flags) throw();
433  void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
434  void  operator delete(void* p);
435
436  // Fast allocate in the arena.  Common case is: pointer test + increment.
437  void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
438    assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
439    x = ARENA_ALIGN(x);
440    debug_only(if (UseMallocOnly) return malloc(x);)
441    if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
442      return NULL;
443    NOT_PRODUCT(inc_bytes_allocated(x);)
444    if (_hwm + x > _max) {
445      return grow(x, alloc_failmode);
446    } else {
447      char *old = _hwm;
448      _hwm += x;
449      return old;
450    }
451  }
452  // Further assume size is padded out to words
453  void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
454    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
455    debug_only(if (UseMallocOnly) return malloc(x);)
456    if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
457      return NULL;
458    NOT_PRODUCT(inc_bytes_allocated(x);)
459    if (_hwm + x > _max) {
460      return grow(x, alloc_failmode);
461    } else {
462      char *old = _hwm;
463      _hwm += x;
464      return old;
465    }
466  }
467
468  // Allocate with 'double' alignment. It is 8 bytes on sparc.
469  // In other cases Amalloc_D() should be the same as Amalloc_4().
470  void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
471    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
472    debug_only(if (UseMallocOnly) return malloc(x);)
473#if defined(SPARC) && !defined(_LP64)
474#define DALIGN_M1 7
475    size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
476    x += delta;
477#endif
478    if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
479      return NULL;
480    NOT_PRODUCT(inc_bytes_allocated(x);)
481    if (_hwm + x > _max) {
482      return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
483    } else {
484      char *old = _hwm;
485      _hwm += x;
486#if defined(SPARC) && !defined(_LP64)
487      old += delta; // align to 8-bytes
488#endif
489      return old;
490    }
491  }
492
493  // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
494  void Afree(void *ptr, size_t size) {
495#ifdef ASSERT
496    if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
497    if (UseMallocOnly) return;
498#endif
499    if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
500  }
501
502  void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
503      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
504
505  // Move contents of this arena into an empty arena
506  Arena *move_contents(Arena *empty_arena);
507
508  // Determine if pointer belongs to this Arena or not.
509  bool contains( const void *ptr ) const;
510
511  // Total of all chunks in use (not thread-safe)
512  size_t used() const;
513
514  // Total # of bytes used
515  size_t size_in_bytes() const         {  return _size_in_bytes; };
516  void set_size_in_bytes(size_t size);
517
518  static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
519  static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
520
521  // how many arena instances
522  NOT_PRODUCT(static volatile jint _instance_count;)
523private:
524  // Reset this Arena to empty, access will trigger grow if necessary
525  void   reset(void) {
526    _first = _chunk = NULL;
527    _hwm = _max = NULL;
528    set_size_in_bytes(0);
529  }
530};
531
532// One of the following macros must be used when allocating
533// an array or object from an arena
534#define NEW_ARENA_ARRAY(arena, type, size) \
535  (type*) (arena)->Amalloc((size) * sizeof(type))
536
537#define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
538  (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
539                            (new_size) * sizeof(type) )
540
541#define FREE_ARENA_ARRAY(arena, type, old, size) \
542  (arena)->Afree((char*)(old), (size) * sizeof(type))
543
544#define NEW_ARENA_OBJ(arena, type) \
545  NEW_ARENA_ARRAY(arena, type, 1)
546
547
548//%note allocation_1
549extern char* resource_allocate_bytes(size_t size,
550    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
551extern char* resource_allocate_bytes(Thread* thread, size_t size,
552    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
553extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
554    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
555extern void resource_free_bytes( char *old, size_t size );
556
557//----------------------------------------------------------------------
558// Base class for objects allocated in the resource area per default.
559// Optionally, objects may be allocated on the C heap with
560// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
561// ResourceObj's can be allocated within other objects, but don't use
562// new or delete (allocation_type is unknown).  If new is used to allocate,
563// use delete to deallocate.
564class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
565 public:
566  enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
567  static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
568#ifdef ASSERT
569 private:
570  // When this object is allocated on stack the new() operator is not
571  // called but garbage on stack may look like a valid allocation_type.
572  // Store negated 'this' pointer when new() is called to distinguish cases.
573  // Use second array's element for verification value to distinguish garbage.
574  uintptr_t _allocation_t[2];
575  bool is_type_set() const;
576 public:
577  allocation_type get_allocation_type() const;
578  bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
579  bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
580  bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
581  bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
582  ResourceObj(); // default constructor
583  ResourceObj(const ResourceObj& r); // default copy constructor
584  ResourceObj& operator=(const ResourceObj& r); // default copy assignment
585  ~ResourceObj();
586#endif // ASSERT
587
588 public:
589  void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
590  void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
591  void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
592      allocation_type type, MEMFLAGS flags) throw();
593  void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
594      allocation_type type, MEMFLAGS flags) throw();
595
596  void* operator new(size_t size, Arena *arena) throw() {
597      address res = (address)arena->Amalloc(size);
598      DEBUG_ONLY(set_allocation_type(res, ARENA);)
599      return res;
600  }
601
602  void* operator new [](size_t size, Arena *arena) throw() {
603      address res = (address)arena->Amalloc(size);
604      DEBUG_ONLY(set_allocation_type(res, ARENA);)
605      return res;
606  }
607
608  void* operator new(size_t size) throw() {
609      address res = (address)resource_allocate_bytes(size);
610      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
611      return res;
612  }
613
614  void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
615      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
616      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
617      return res;
618  }
619
620  void* operator new [](size_t size) throw() {
621      address res = (address)resource_allocate_bytes(size);
622      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
623      return res;
624  }
625
626  void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
627      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
628      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
629      return res;
630  }
631
632  void  operator delete(void* p);
633  void  operator delete [](void* p);
634};
635
636// One of the following macros must be used when allocating an array
637// or object to determine whether it should reside in the C heap on in
638// the resource area.
639
640#define NEW_RESOURCE_ARRAY(type, size)\
641  (type*) resource_allocate_bytes((size) * sizeof(type))
642
643#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
644  (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
645
646#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
647  (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
648
649#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
650  (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
651
652#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
653  (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
654
655#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
656  (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
657                                    (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
658
659#define FREE_RESOURCE_ARRAY(type, old, size)\
660  resource_free_bytes((char*)(old), (size) * sizeof(type))
661
662#define FREE_FAST(old)\
663    /* nop */
664
665#define NEW_RESOURCE_OBJ(type)\
666  NEW_RESOURCE_ARRAY(type, 1)
667
668#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
669  NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
670
671#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
672  (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
673
674#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
675  (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
676
677#define NEW_C_HEAP_ARRAY(type, size, memflags)\
678  (type*) (AllocateHeap((size) * sizeof(type), memflags))
679
680#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
681  NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
682
683#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
684  NEW_C_HEAP_ARRAY3(type, (size), memflags, (address)0, AllocFailStrategy::RETURN_NULL)
685
686#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
687  (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
688
689#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
690  (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
691
692#define FREE_C_HEAP_ARRAY(type, old, memflags) \
693  FreeHeap((char*)(old), memflags)
694
695// allocate type in heap without calling ctor
696#define NEW_C_HEAP_OBJ(type, memflags)\
697  NEW_C_HEAP_ARRAY(type, 1, memflags)
698
699#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
700  NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
701
702// deallocate obj of type in heap without calling dtor
703#define FREE_C_HEAP_OBJ(objname, memflags)\
704  FreeHeap((char*)objname, memflags);
705
706// for statistics
707#ifndef PRODUCT
708class AllocStats : StackObj {
709  julong start_mallocs, start_frees;
710  julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
711 public:
712  AllocStats();
713
714  julong num_mallocs();    // since creation of receiver
715  julong alloc_bytes();
716  julong num_frees();
717  julong free_bytes();
718  julong resource_bytes();
719  void   print();
720};
721#endif
722
723
724//------------------------------ReallocMark---------------------------------
725// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
726// ReallocMark, which is declared in the same scope as the reallocated
727// pointer.  Any operation that could __potentially__ cause a reallocation
728// should check the ReallocMark.
729class ReallocMark: public StackObj {
730protected:
731  NOT_PRODUCT(int _nesting;)
732
733public:
734  ReallocMark()   PRODUCT_RETURN;
735  void check()    PRODUCT_RETURN;
736};
737
738// Helper class to allocate arrays that may become large.
739// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
740// and uses mapped memory for larger allocations.
741// Most OS mallocs do something similar but Solaris malloc does not revert
742// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
743// is set so that we always use malloc except for Solaris where we set the
744// limit to get mapped memory.
745template <class E, MEMFLAGS F>
746class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
747  char* _addr;
748  bool _use_malloc;
749  size_t _size;
750  bool _free_in_destructor;
751 public:
752  ArrayAllocator(bool free_in_destructor = true) :
753    _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
754
755  ~ArrayAllocator() {
756    if (_free_in_destructor) {
757      free();
758    }
759  }
760
761  E* allocate(size_t length);
762  void free();
763};
764
765#endif // SHARE_VM_MEMORY_ALLOCATION_HPP
766