allocation.hpp revision 4527:6f817ce50129
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
26#define SHARE_VM_MEMORY_ALLOCATION_HPP
27
28#include "runtime/globals.hpp"
29#include "utilities/globalDefinitions.hpp"
30#include "utilities/macros.hpp"
31#ifdef COMPILER1
32#include "c1/c1_globals.hpp"
33#endif
34#ifdef COMPILER2
35#include "opto/c2_globals.hpp"
36#endif
37
38#include <new>
39
40#define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
41#define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
42#define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
43
44
45// noinline attribute
46#ifdef _WINDOWS
47  #define _NOINLINE_  __declspec(noinline)
48#else
49  #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
50    #define _NOINLINE_
51  #else
52    #define _NOINLINE_ __attribute__ ((noinline))
53  #endif
54#endif
55
56class AllocFailStrategy {
57public:
58  enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
59};
60typedef AllocFailStrategy::AllocFailEnum AllocFailType;
61
62// All classes in the virtual machine must be subclassed
63// by one of the following allocation classes:
64//
65// For objects allocated in the resource area (see resourceArea.hpp).
66// - ResourceObj
67//
68// For objects allocated in the C-heap (managed by: free & malloc).
69// - CHeapObj
70//
71// For objects allocated on the stack.
72// - StackObj
73//
74// For embedded objects.
75// - ValueObj
76//
77// For classes used as name spaces.
78// - AllStatic
79//
80// For classes in Metaspace (class data)
81// - MetaspaceObj
82//
83// The printable subclasses are used for debugging and define virtual
84// member functions for printing. Classes that avoid allocating the
85// vtbl entries in the objects should therefore not be the printable
86// subclasses.
87//
88// The following macros and function should be used to allocate memory
89// directly in the resource area or in the C-heap, The _OBJECT variants
90// of the NEW_C_HEAP macros are used when a constructor and destructor
91// must be invoked for the object(s) and the objects are not inherited
92// from CHeapObj. The preferable way to allocate objects is using the
93// new operator.
94//
95// WARNING: The array variant must only be used for a homogenous array
96// where all objects are of the exact type specified. If subtypes are
97// stored in the array then the incorrect destructor might be called.
98//
99//   NEW_RESOURCE_ARRAY(type,size)
100//   NEW_RESOURCE_OBJ(type)
101//   NEW_C_HEAP_ARRAY(type,size)
102//   NEW_C_HEAP_OBJ(type)
103//   NEW_C_HEAP_OBJECT(type, memflags, pc, allocfail)
104//   NEW_C_HEAP_OBJECT_ARRAY(type, size, memflags, pc, allocfail)
105//   FREE_C_HEAP_OBJECT(type, objname, memflags)
106//   FREE_C_HEAP_OBJECT_ARRAY(type, size, arrayname, memflags)
107//   char* AllocateHeap(size_t size, const char* name);
108//   void  FreeHeap(void* p);
109//
110// C-heap allocation can be traced using +PrintHeapAllocation.
111// malloc and free should therefore never called directly.
112
113// Base class for objects allocated in the C-heap.
114
115// In non product mode we introduce a super class for all allocation classes
116// that supports printing.
117// We avoid the superclass in product mode since some C++ compilers add
118// a word overhead for empty super classes.
119
120#ifdef PRODUCT
121#define ALLOCATION_SUPER_CLASS_SPEC
122#else
123#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
124class AllocatedObj {
125 public:
126  // Printing support
127  void print() const;
128  void print_value() const;
129
130  virtual void print_on(outputStream* st) const;
131  virtual void print_value_on(outputStream* st) const;
132};
133#endif
134
135
136/*
137 * MemoryType bitmap layout:
138 * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
139 * |      memory type        |   object    | reserved    |
140 * |                         |     type    |             |
141 */
142enum MemoryType {
143  // Memory type by sub systems. It occupies lower byte.
144  mtNone              = 0x0000,  // undefined
145  mtClass             = 0x0100,  // memory class for Java classes
146  mtThread            = 0x0200,  // memory for thread objects
147  mtThreadStack       = 0x0300,
148  mtCode              = 0x0400,  // memory for generated code
149  mtGC                = 0x0500,  // memory for GC
150  mtCompiler          = 0x0600,  // memory for compiler
151  mtInternal          = 0x0700,  // memory used by VM, but does not belong to
152                                 // any of above categories, and not used for
153                                 // native memory tracking
154  mtOther             = 0x0800,  // memory not used by VM
155  mtSymbol            = 0x0900,  // symbol
156  mtNMT               = 0x0A00,  // memory used by native memory tracking
157  mtChunk             = 0x0B00,  // chunk that holds content of arenas
158  mtJavaHeap          = 0x0C00,  // Java heap
159  mtClassShared       = 0x0D00,  // class data sharing
160  mtTest              = 0x0E00,  // Test type for verifying NMT
161  mt_number_of_types  = 0x000E,  // number of memory types (mtDontTrack
162                                 // is not included as validate type)
163  mtDontTrack         = 0x0F00,  // memory we do not or cannot track
164  mt_masks            = 0x7F00,
165
166  // object type mask
167  otArena             = 0x0010, // an arena object
168  otNMTRecorder       = 0x0020, // memory recorder object
169  ot_masks            = 0x00F0
170};
171
172#define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
173#define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
174#define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)
175
176#define IS_ARENA_OBJ(flags)         ((flags & ot_masks) == otArena)
177#define IS_NMT_RECORDER(flags)      ((flags & ot_masks) == otNMTRecorder)
178#define NMT_CAN_TRACK(flags)        (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))
179
180typedef unsigned short MEMFLAGS;
181
182#if INCLUDE_NMT
183
184extern bool NMT_track_callsite;
185
186#else
187
188const bool NMT_track_callsite = false;
189
190#endif // INCLUDE_NMT
191
192// debug build does not inline
193#if defined(_DEBUG_)
194  #define CURRENT_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
195  #define CALLER_PC        (NMT_track_callsite ? os::get_caller_pc(2) : 0)
196  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
197#else
198  #define CURRENT_PC      (NMT_track_callsite? os::get_caller_pc(0) : 0)
199  #define CALLER_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
200  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
201#endif
202
203
204
205template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
206 public:
207  _NOINLINE_ void* operator new(size_t size, address caller_pc = 0);
208  _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
209                               address caller_pc = 0);
210  _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0);
211  _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
212                               address caller_pc = 0);
213  void  operator delete(void* p);
214  void  operator delete [] (void* p);
215};
216
217// Base class for objects allocated on the stack only.
218// Calling new or delete will result in fatal error.
219
220class StackObj ALLOCATION_SUPER_CLASS_SPEC {
221 private:
222  void* operator new(size_t size);
223  void  operator delete(void* p);
224  void* operator new [](size_t size);
225  void  operator delete [](void* p);
226};
227
228// Base class for objects used as value objects.
229// Calling new or delete will result in fatal error.
230//
231// Portability note: Certain compilers (e.g. gcc) will
232// always make classes bigger if it has a superclass, even
233// if the superclass does not have any virtual methods or
234// instance fields. The HotSpot implementation relies on this
235// not to happen. So never make a ValueObj class a direct subclass
236// of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
237// like this:
238//
239//   class A VALUE_OBJ_CLASS_SPEC {
240//     ...
241//   }
242//
243// With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
244// be defined as a an empty string "".
245//
246class _ValueObj {
247 private:
248  void* operator new(size_t size);
249  void  operator delete(void* p);
250  void* operator new [](size_t size);
251  void  operator delete [](void* p);
252};
253
254
255// Base class for objects stored in Metaspace.
256// Calling delete will result in fatal error.
257//
258// Do not inherit from something with a vptr because this class does
259// not introduce one.  This class is used to allocate both shared read-only
260// and shared read-write classes.
261//
262
263class ClassLoaderData;
264
265class MetaspaceObj {
266 public:
267  bool is_metadata() const;
268  bool is_metaspace_object() const;  // more specific test but slower
269  bool is_shared() const;
270  void print_address_on(outputStream* st) const;  // nonvirtual address printing
271
272  void* operator new(size_t size, ClassLoaderData* loader_data,
273                     size_t word_size, bool read_only, Thread* thread);
274                     // can't use TRAPS from this header file.
275  void operator delete(void* p) { ShouldNotCallThis(); }
276};
277
278// Base class for classes that constitute name spaces.
279
280class AllStatic {
281 public:
282  AllStatic()  { ShouldNotCallThis(); }
283  ~AllStatic() { ShouldNotCallThis(); }
284};
285
286
287//------------------------------Chunk------------------------------------------
288// Linked list of raw memory chunks
289class Chunk: CHeapObj<mtChunk> {
290  friend class VMStructs;
291
292 protected:
293  Chunk*       _next;     // Next Chunk in list
294  const size_t _len;      // Size of this Chunk
295 public:
296  void* operator new(size_t size, size_t length);
297  void  operator delete(void* p);
298  Chunk(size_t length);
299
300  enum {
301    // default sizes; make them slightly smaller than 2**k to guard against
302    // buddy-system style malloc implementations
303#ifdef _LP64
304    slack      = 40,            // [RGV] Not sure if this is right, but make it
305                                //       a multiple of 8.
306#else
307    slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
308#endif
309
310    init_size  =  1*K  - slack, // Size of first chunk
311    medium_size= 10*K  - slack, // Size of medium-sized chunk
312    size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
313    non_pool_size = init_size + 32 // An initial size which is not one of above
314  };
315
316  void chop();                  // Chop this chunk
317  void next_chop();             // Chop next chunk
318  static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
319  static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
320
321  size_t length() const         { return _len;  }
322  Chunk* next() const           { return _next;  }
323  void set_next(Chunk* n)       { _next = n;  }
324  // Boundaries of data area (possibly unused)
325  char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
326  char* top()    const          { return bottom() + _len; }
327  bool contains(char* p) const  { return bottom() <= p && p <= top(); }
328
329  // Start the chunk_pool cleaner task
330  static void start_chunk_pool_cleaner_task();
331
332  static void clean_chunk_pool();
333};
334
335//------------------------------Arena------------------------------------------
336// Fast allocation of memory
337class Arena : public CHeapObj<mtNone|otArena> {
338protected:
339  friend class ResourceMark;
340  friend class HandleMark;
341  friend class NoHandleMark;
342  friend class VMStructs;
343
344  Chunk *_first;                // First chunk
345  Chunk *_chunk;                // current chunk
346  char *_hwm, *_max;            // High water mark and max in current chunk
347  // Get a new Chunk of at least size x
348  void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
349  size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
350
351  NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
352  friend class AllocStats;
353  debug_only(void* malloc(size_t size);)
354  debug_only(void* internal_malloc_4(size_t x);)
355  NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
356
357  void signal_out_of_memory(size_t request, const char* whence) const;
358
359  void check_for_overflow(size_t request, const char* whence) const {
360    if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
361      signal_out_of_memory(request, whence);
362    }
363 }
364
365 public:
366  Arena();
367  Arena(size_t init_size);
368  ~Arena();
369  void  destruct_contents();
370  char* hwm() const             { return _hwm; }
371
372  // new operators
373  void* operator new (size_t size);
374  void* operator new (size_t size, const std::nothrow_t& nothrow_constant);
375
376  // dynamic memory type tagging
377  void* operator new(size_t size, MEMFLAGS flags);
378  void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags);
379  void  operator delete(void* p);
380
381  // Fast allocate in the arena.  Common case is: pointer test + increment.
382  void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
383    assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
384    x = ARENA_ALIGN(x);
385    debug_only(if (UseMallocOnly) return malloc(x);)
386    check_for_overflow(x, "Arena::Amalloc");
387    NOT_PRODUCT(inc_bytes_allocated(x);)
388    if (_hwm + x > _max) {
389      return grow(x, alloc_failmode);
390    } else {
391      char *old = _hwm;
392      _hwm += x;
393      return old;
394    }
395  }
396  // Further assume size is padded out to words
397  void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
398    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
399    debug_only(if (UseMallocOnly) return malloc(x);)
400    check_for_overflow(x, "Arena::Amalloc_4");
401    NOT_PRODUCT(inc_bytes_allocated(x);)
402    if (_hwm + x > _max) {
403      return grow(x, alloc_failmode);
404    } else {
405      char *old = _hwm;
406      _hwm += x;
407      return old;
408    }
409  }
410
411  // Allocate with 'double' alignment. It is 8 bytes on sparc.
412  // In other cases Amalloc_D() should be the same as Amalloc_4().
413  void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
414    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
415    debug_only(if (UseMallocOnly) return malloc(x);)
416#if defined(SPARC) && !defined(_LP64)
417#define DALIGN_M1 7
418    size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
419    x += delta;
420#endif
421    check_for_overflow(x, "Arena::Amalloc_D");
422    NOT_PRODUCT(inc_bytes_allocated(x);)
423    if (_hwm + x > _max) {
424      return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
425    } else {
426      char *old = _hwm;
427      _hwm += x;
428#if defined(SPARC) && !defined(_LP64)
429      old += delta; // align to 8-bytes
430#endif
431      return old;
432    }
433  }
434
435  // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
436  void Afree(void *ptr, size_t size) {
437#ifdef ASSERT
438    if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
439    if (UseMallocOnly) return;
440#endif
441    if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
442  }
443
444  void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
445      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
446
447  // Move contents of this arena into an empty arena
448  Arena *move_contents(Arena *empty_arena);
449
450  // Determine if pointer belongs to this Arena or not.
451  bool contains( const void *ptr ) const;
452
453  // Total of all chunks in use (not thread-safe)
454  size_t used() const;
455
456  // Total # of bytes used
457  size_t size_in_bytes() const         {  return _size_in_bytes; };
458  void set_size_in_bytes(size_t size);
459
460  static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
461  static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
462
463  // how many arena instances
464  NOT_PRODUCT(static volatile jint _instance_count;)
465private:
466  // Reset this Arena to empty, access will trigger grow if necessary
467  void   reset(void) {
468    _first = _chunk = NULL;
469    _hwm = _max = NULL;
470    set_size_in_bytes(0);
471  }
472};
473
474// One of the following macros must be used when allocating
475// an array or object from an arena
476#define NEW_ARENA_ARRAY(arena, type, size) \
477  (type*) (arena)->Amalloc((size) * sizeof(type))
478
479#define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
480  (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
481                            (new_size) * sizeof(type) )
482
483#define FREE_ARENA_ARRAY(arena, type, old, size) \
484  (arena)->Afree((char*)(old), (size) * sizeof(type))
485
486#define NEW_ARENA_OBJ(arena, type) \
487  NEW_ARENA_ARRAY(arena, type, 1)
488
489
490//%note allocation_1
491extern char* resource_allocate_bytes(size_t size,
492    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
493extern char* resource_allocate_bytes(Thread* thread, size_t size,
494    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
495extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
496    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
497extern void resource_free_bytes( char *old, size_t size );
498
499//----------------------------------------------------------------------
500// Base class for objects allocated in the resource area per default.
501// Optionally, objects may be allocated on the C heap with
502// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
503// ResourceObj's can be allocated within other objects, but don't use
504// new or delete (allocation_type is unknown).  If new is used to allocate,
505// use delete to deallocate.
506class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
507 public:
508  enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
509  static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
510#ifdef ASSERT
511 private:
512  // When this object is allocated on stack the new() operator is not
513  // called but garbage on stack may look like a valid allocation_type.
514  // Store negated 'this' pointer when new() is called to distinguish cases.
515  // Use second array's element for verification value to distinguish garbage.
516  uintptr_t _allocation_t[2];
517  bool is_type_set() const;
518 public:
519  allocation_type get_allocation_type() const;
520  bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
521  bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
522  bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
523  bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
524  ResourceObj(); // default construtor
525  ResourceObj(const ResourceObj& r); // default copy construtor
526  ResourceObj& operator=(const ResourceObj& r); // default copy assignment
527  ~ResourceObj();
528#endif // ASSERT
529
530 public:
531  void* operator new(size_t size, allocation_type type, MEMFLAGS flags);
532  void* operator new [](size_t size, allocation_type type, MEMFLAGS flags);
533  void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
534      allocation_type type, MEMFLAGS flags);
535  void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
536      allocation_type type, MEMFLAGS flags);
537
538  void* operator new(size_t size, Arena *arena) {
539      address res = (address)arena->Amalloc(size);
540      DEBUG_ONLY(set_allocation_type(res, ARENA);)
541      return res;
542  }
543
544  void* operator new [](size_t size, Arena *arena) {
545      address res = (address)arena->Amalloc(size);
546      DEBUG_ONLY(set_allocation_type(res, ARENA);)
547      return res;
548  }
549
550  void* operator new(size_t size) {
551      address res = (address)resource_allocate_bytes(size);
552      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
553      return res;
554  }
555
556  void* operator new(size_t size, const std::nothrow_t& nothrow_constant) {
557      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
558      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
559      return res;
560  }
561
562  void* operator new [](size_t size) {
563      address res = (address)resource_allocate_bytes(size);
564      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
565      return res;
566  }
567
568  void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) {
569      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
570      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
571      return res;
572  }
573
574  void  operator delete(void* p);
575  void  operator delete [](void* p);
576};
577
578// One of the following macros must be used when allocating an array
579// or object to determine whether it should reside in the C heap on in
580// the resource area.
581
582#define NEW_RESOURCE_ARRAY(type, size)\
583  (type*) resource_allocate_bytes((size) * sizeof(type))
584
585#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
586  (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
587
588#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
589  (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) )
590
591#define FREE_RESOURCE_ARRAY(type, old, size)\
592  resource_free_bytes((char*)(old), (size) * sizeof(type))
593
594#define FREE_FAST(old)\
595    /* nop */
596
597#define NEW_RESOURCE_OBJ(type)\
598  NEW_RESOURCE_ARRAY(type, 1)
599
600#define NEW_C_HEAP_ARRAY(type, size, memflags)\
601  (type*) (AllocateHeap((size) * sizeof(type), memflags))
602
603#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
604  (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags))
605
606#define FREE_C_HEAP_ARRAY(type, old, memflags) \
607  FreeHeap((char*)(old), memflags)
608
609// allocate type in heap without calling ctor
610// WARNING: type must not have virtual functions!!! There is no way to initialize vtable.
611#define NEW_C_HEAP_OBJ(type, memflags)\
612  NEW_C_HEAP_ARRAY(type, 1, memflags)
613
614#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
615  (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
616
617#define REALLOC_C_HEAP_ARRAY2(type, old, size, memflags, pc)\
618  (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), memflags, pc))
619
620#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)         \
621  (type*) AllocateHeap(size * sizeof(type), memflags, pc, allocfail);
622
623// !!! Attention, see comments above about the usage !!!
624
625// allocate type in heap and call ctor
626#define NEW_C_HEAP_OBJECT(objname, type, memflags, pc, allocfail)\
627  {                                                                                 \
628    objname = (type*)AllocateHeap(sizeof(type), memflags, pc, allocfail);           \
629    if (objname != NULL) ::new ((void *)objname) type();                            \
630  }
631
632// allocate array of type, call ctor for every element in the array
633#define NEW_C_HEAP_OBJECT_ARRAY(array_name, type, size, memflags, pc, allocfail)    \
634  {                                                                                 \
635    array_name = (type*)AllocateHeap(size * sizeof(type), memflags, pc, allocfail); \
636    if (array_name != NULL) {                                                       \
637      for (int index = 0; index < size; index++) {                                  \
638        ::new ((void*)&array_name[index]) type();                                   \
639      }                                                                             \
640    }                                                                               \
641  }
642
643// deallocate type in heap, call dtor
644#define FREE_C_HEAP_OBJECT(type, objname, memflags)                                 \
645  if (objname != NULL) {                                                            \
646    ((type*)objname)->~type();                                                      \
647    FREE_C_HEAP_ARRAY(type, objname, memflags);                                     \
648  }
649
650// deallocate array of type with size, call dtor for every element in the array
651#define FREE_C_HEAP_OBJECT_ARRAY(type, array_name, size, memflags)                  \
652  {                                                                                 \
653    if (array_name != NULL) {                                                       \
654      for (int index = 0; index < size; index++) {                                  \
655        ((type*)&array_name[index])->~type();                                       \
656      }                                                                             \
657      FREE_C_HEAP_ARRAY(type, array_name, memflags);                                \
658    }                                                                               \
659  }
660
661extern bool warn_new_operator;
662
663// for statistics
664#ifndef PRODUCT
665class AllocStats : StackObj {
666  julong start_mallocs, start_frees;
667  julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
668 public:
669  AllocStats();
670
671  julong num_mallocs();    // since creation of receiver
672  julong alloc_bytes();
673  julong num_frees();
674  julong free_bytes();
675  julong resource_bytes();
676  void   print();
677};
678#endif
679
680
681//------------------------------ReallocMark---------------------------------
682// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
683// ReallocMark, which is declared in the same scope as the reallocated
684// pointer.  Any operation that could __potentially__ cause a reallocation
685// should check the ReallocMark.
686class ReallocMark: public StackObj {
687protected:
688  NOT_PRODUCT(int _nesting;)
689
690public:
691  ReallocMark()   PRODUCT_RETURN;
692  void check()    PRODUCT_RETURN;
693};
694
695// Helper class to allocate arrays that may become large.
696// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
697// and uses mapped memory for larger allocations.
698// Most OS mallocs do something similar but Solaris malloc does not revert
699// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
700// is set so that we always use malloc except for Solaris where we set the
701// limit to get mapped memory.
702template <class E, MEMFLAGS F>
703class ArrayAllocator : StackObj {
704  char* _addr;
705  bool _use_malloc;
706  size_t _size;
707 public:
708  ArrayAllocator() : _addr(NULL), _use_malloc(false), _size(0) { }
709  ~ArrayAllocator() { free(); }
710  E* allocate(size_t length);
711  void free();
712};
713
714#endif // SHARE_VM_MEMORY_ALLOCATION_HPP
715