allocation.cpp revision 6418:e657971fd67a
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39#ifdef TARGET_OS_FAMILY_linux
40# include "os_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "os_solaris.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_windows
46# include "os_windows.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_aix
49# include "os_aix.inline.hpp"
50#endif
51#ifdef TARGET_OS_FAMILY_bsd
52# include "os_bsd.inline.hpp"
53#endif
54
55void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
56void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
57void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
58void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
59
60void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
61void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
62void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
63void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
64
65void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
66                                 size_t word_size, bool read_only,
67                                 MetaspaceObj::Type type, TRAPS) throw() {
68  // Klass has it's own operator new
69  return Metaspace::allocate(loader_data, word_size, read_only,
70                             type, CHECK_NULL);
71}
72
73bool MetaspaceObj::is_shared() const {
74  return MetaspaceShared::is_in_shared_space(this);
75}
76
77bool MetaspaceObj::is_metaspace_object() const {
78  return ClassLoaderDataGraph::contains((void*)this);
79}
80
81void MetaspaceObj::print_address_on(outputStream* st) const {
82  st->print(" {"INTPTR_FORMAT"}", this);
83}
84
85void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
86  address res;
87  switch (type) {
88   case C_HEAP:
89    res = (address)AllocateHeap(size, flags, CALLER_PC);
90    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
91    break;
92   case RESOURCE_AREA:
93    // new(size) sets allocation type RESOURCE_AREA.
94    res = (address)operator new(size);
95    break;
96   default:
97    ShouldNotReachHere();
98  }
99  return res;
100}
101
102void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
103  return (address) operator new(size, type, flags);
104}
105
106void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
107    allocation_type type, MEMFLAGS flags) throw() {
108  //should only call this with std::nothrow, use other operator new() otherwise
109  address res;
110  switch (type) {
111   case C_HEAP:
112    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
113    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
114    break;
115   case RESOURCE_AREA:
116    // new(size) sets allocation type RESOURCE_AREA.
117    res = (address)operator new(size, std::nothrow);
118    break;
119   default:
120    ShouldNotReachHere();
121  }
122  return res;
123}
124
125void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
126    allocation_type type, MEMFLAGS flags) throw() {
127  return (address)operator new(size, nothrow_constant, type, flags);
128}
129
130void ResourceObj::operator delete(void* p) {
131  assert(((ResourceObj *)p)->allocated_on_C_heap(),
132         "delete only allowed for C_HEAP objects");
133  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
134  FreeHeap(p);
135}
136
137void ResourceObj::operator delete [](void* p) {
138  operator delete(p);
139}
140
141#ifdef ASSERT
142void ResourceObj::set_allocation_type(address res, allocation_type type) {
143    // Set allocation type in the resource object
144    uintptr_t allocation = (uintptr_t)res;
145    assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " PTR_FORMAT, res));
146    assert(type <= allocation_mask, "incorrect allocation type");
147    ResourceObj* resobj = (ResourceObj *)res;
148    resobj->_allocation_t[0] = ~(allocation + type);
149    if (type != STACK_OR_EMBEDDED) {
150      // Called from operator new() and CollectionSetChooser(),
151      // set verification value.
152      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
153    }
154}
155
156ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
157    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
158    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
159}
160
161bool ResourceObj::is_type_set() const {
162    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
163    return get_allocation_type()  == type &&
164           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
165}
166
167ResourceObj::ResourceObj() { // default constructor
168    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
169      // Operator new() is not called for allocations
170      // on stack and for embedded objects.
171      set_allocation_type((address)this, STACK_OR_EMBEDDED);
172    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
173      // For some reason we got a value which resembles
174      // an embedded or stack object (operator new() does not
175      // set such type). Keep it since it is valid value
176      // (even if it was garbage).
177      // Ignore garbage in other fields.
178    } else if (is_type_set()) {
179      // Operator new() was called and type was set.
180      assert(!allocated_on_stack(),
181             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
182                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
183    } else {
184      // Operator new() was not called.
185      // Assume that it is embedded or stack object.
186      set_allocation_type((address)this, STACK_OR_EMBEDDED);
187    }
188    _allocation_t[1] = 0; // Zap verification value
189}
190
191ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
192    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
193    // Note: garbage may resembles valid value.
194    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
195           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
196                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
197    set_allocation_type((address)this, STACK_OR_EMBEDDED);
198    _allocation_t[1] = 0; // Zap verification value
199}
200
201ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
202    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
203    assert(allocated_on_stack(),
204           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
205                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
206    // Keep current _allocation_t value;
207    return *this;
208}
209
210ResourceObj::~ResourceObj() {
211    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
212    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
213      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
214    }
215}
216#endif // ASSERT
217
218
219void trace_heap_malloc(size_t size, const char* name, void* p) {
220  // A lock is not needed here - tty uses a lock internally
221  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
222}
223
224
225void trace_heap_free(void* p) {
226  // A lock is not needed here - tty uses a lock internally
227  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
228}
229
230//--------------------------------------------------------------------------------------
231// ChunkPool implementation
232
233// MT-safe pool of chunks to reduce malloc/free thrashing
234// NB: not using Mutex because pools are used before Threads are initialized
235class ChunkPool: public CHeapObj<mtInternal> {
236  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
237  size_t       _num_chunks;   // number of unused chunks in pool
238  size_t       _num_used;     // number of chunks currently checked out
239  const size_t _size;         // size of each chunk (must be uniform)
240
241  // Our four static pools
242  static ChunkPool* _large_pool;
243  static ChunkPool* _medium_pool;
244  static ChunkPool* _small_pool;
245  static ChunkPool* _tiny_pool;
246
247  // return first element or null
248  void* get_first() {
249    Chunk* c = _first;
250    if (_first) {
251      _first = _first->next();
252      _num_chunks--;
253    }
254    return c;
255  }
256
257 public:
258  // All chunks in a ChunkPool has the same size
259   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
260
261  // Allocate a new chunk from the pool (might expand the pool)
262  _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
263    assert(bytes == _size, "bad size");
264    void* p = NULL;
265    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
266    // should be done outside ThreadCritical lock due to NMT
267    { ThreadCritical tc;
268      _num_used++;
269      p = get_first();
270    }
271    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
272    if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
273      vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
274    }
275    return p;
276  }
277
278  // Return a chunk to the pool
279  void free(Chunk* chunk) {
280    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
281    ThreadCritical tc;
282    _num_used--;
283
284    // Add chunk to list
285    chunk->set_next(_first);
286    _first = chunk;
287    _num_chunks++;
288  }
289
290  // Prune the pool
291  void free_all_but(size_t n) {
292    Chunk* cur = NULL;
293    Chunk* next;
294    {
295    // if we have more than n chunks, free all of them
296    ThreadCritical tc;
297    if (_num_chunks > n) {
298      // free chunks at end of queue, for better locality
299        cur = _first;
300      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
301
302      if (cur != NULL) {
303          next = cur->next();
304        cur->set_next(NULL);
305        cur = next;
306
307          _num_chunks = n;
308        }
309      }
310    }
311
312    // Free all remaining chunks, outside of ThreadCritical
313    // to avoid deadlock with NMT
314        while(cur != NULL) {
315          next = cur->next();
316      os::free(cur, mtChunk);
317          cur = next;
318        }
319      }
320
321  // Accessors to preallocated pool's
322  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
323  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
324  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
325  static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
326
327  static void initialize() {
328    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
329    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
330    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
331    _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
332  }
333
334  static void clean() {
335    enum { BlocksToKeep = 5 };
336     _tiny_pool->free_all_but(BlocksToKeep);
337     _small_pool->free_all_but(BlocksToKeep);
338     _medium_pool->free_all_but(BlocksToKeep);
339     _large_pool->free_all_but(BlocksToKeep);
340  }
341};
342
343ChunkPool* ChunkPool::_large_pool  = NULL;
344ChunkPool* ChunkPool::_medium_pool = NULL;
345ChunkPool* ChunkPool::_small_pool  = NULL;
346ChunkPool* ChunkPool::_tiny_pool   = NULL;
347
348void chunkpool_init() {
349  ChunkPool::initialize();
350}
351
352void
353Chunk::clean_chunk_pool() {
354  ChunkPool::clean();
355}
356
357
358//--------------------------------------------------------------------------------------
359// ChunkPoolCleaner implementation
360//
361
362class ChunkPoolCleaner : public PeriodicTask {
363  enum { CleaningInterval = 5000 };      // cleaning interval in ms
364
365 public:
366   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
367   void task() {
368     ChunkPool::clean();
369   }
370};
371
372//--------------------------------------------------------------------------------------
373// Chunk implementation
374
375void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
376  // requested_size is equal to sizeof(Chunk) but in order for the arena
377  // allocations to come out aligned as expected the size must be aligned
378  // to expected arena alignment.
379  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
380  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
381  size_t bytes = ARENA_ALIGN(requested_size) + length;
382  switch (length) {
383   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
384   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
385   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
386   case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
387   default: {
388     void* p = os::malloc(bytes, mtChunk, CALLER_PC);
389     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
390       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
391     }
392     return p;
393   }
394  }
395}
396
397void Chunk::operator delete(void* p) {
398  Chunk* c = (Chunk*)p;
399  switch (c->length()) {
400   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
401   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
402   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
403   case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
404   default:                 os::free(c, mtChunk);
405  }
406}
407
408Chunk::Chunk(size_t length) : _len(length) {
409  _next = NULL;         // Chain on the linked list
410}
411
412
413void Chunk::chop() {
414  Chunk *k = this;
415  while( k ) {
416    Chunk *tmp = k->next();
417    // clear out this chunk (to detect allocation bugs)
418    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
419    delete k;                   // Free chunk (was malloc'd)
420    k = tmp;
421  }
422}
423
424void Chunk::next_chop() {
425  _next->chop();
426  _next = NULL;
427}
428
429
430void Chunk::start_chunk_pool_cleaner_task() {
431#ifdef ASSERT
432  static bool task_created = false;
433  assert(!task_created, "should not start chuck pool cleaner twice");
434  task_created = true;
435#endif
436  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
437  cleaner->enroll();
438}
439
440//------------------------------Arena------------------------------------------
441NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
442
443Arena::Arena(size_t init_size) {
444  size_t round_size = (sizeof (char *)) - 1;
445  init_size = (init_size+round_size) & ~round_size;
446  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
447  _hwm = _chunk->bottom();      // Save the cached hwm, max
448  _max = _chunk->top();
449  _size_in_bytes = 0;
450  set_size_in_bytes(init_size);
451  NOT_PRODUCT(Atomic::inc(&_instance_count);)
452}
453
454Arena::Arena() {
455  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
456  _hwm = _chunk->bottom();      // Save the cached hwm, max
457  _max = _chunk->top();
458  _size_in_bytes = 0;
459  set_size_in_bytes(Chunk::init_size);
460  NOT_PRODUCT(Atomic::inc(&_instance_count);)
461}
462
463Arena *Arena::move_contents(Arena *copy) {
464  copy->destruct_contents();
465  copy->_chunk = _chunk;
466  copy->_hwm   = _hwm;
467  copy->_max   = _max;
468  copy->_first = _first;
469
470  // workaround rare racing condition, which could double count
471  // the arena size by native memory tracking
472  size_t size = size_in_bytes();
473  set_size_in_bytes(0);
474  copy->set_size_in_bytes(size);
475  // Destroy original arena
476  reset();
477  return copy;            // Return Arena with contents
478}
479
480Arena::~Arena() {
481  destruct_contents();
482  NOT_PRODUCT(Atomic::dec(&_instance_count);)
483}
484
485void* Arena::operator new(size_t size) throw() {
486  assert(false, "Use dynamic memory type binding");
487  return NULL;
488}
489
490void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
491  assert(false, "Use dynamic memory type binding");
492  return NULL;
493}
494
495  // dynamic memory type binding
496void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
497#ifdef ASSERT
498  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
499  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
500  return p;
501#else
502  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
503#endif
504}
505
506void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
507#ifdef ASSERT
508  void* p = os::malloc(size, flags|otArena, CALLER_PC);
509  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
510  return p;
511#else
512  return os::malloc(size, flags|otArena, CALLER_PC);
513#endif
514}
515
516void Arena::operator delete(void* p) {
517  FreeHeap(p);
518}
519
520// Destroy this arenas contents and reset to empty
521void Arena::destruct_contents() {
522  if (UseMallocOnly && _first != NULL) {
523    char* end = _first->next() ? _first->top() : _hwm;
524    free_malloced_objects(_first, _first->bottom(), end, _hwm);
525  }
526  // reset size before chop to avoid a rare racing condition
527  // that can have total arena memory exceed total chunk memory
528  set_size_in_bytes(0);
529  _first->chop();
530  reset();
531}
532
533// This is high traffic method, but many calls actually don't
534// change the size
535void Arena::set_size_in_bytes(size_t size) {
536  if (_size_in_bytes != size) {
537    _size_in_bytes = size;
538    MemTracker::record_arena_size((address)this, size);
539  }
540}
541
542// Total of all Chunks in arena
543size_t Arena::used() const {
544  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
545  register Chunk *k = _first;
546  while( k != _chunk) {         // Whilst have Chunks in a row
547    sum += k->length();         // Total size of this Chunk
548    k = k->next();              // Bump along to next Chunk
549  }
550  return sum;                   // Return total consumed space.
551}
552
553void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
554  vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
555}
556
557// Grow a new Chunk
558void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
559  // Get minimal required size.  Either real big, or even bigger for giant objs
560  size_t len = MAX2(x, (size_t) Chunk::size);
561
562  Chunk *k = _chunk;            // Get filled-up chunk address
563  _chunk = new (alloc_failmode, len) Chunk(len);
564
565  if (_chunk == NULL) {
566    return NULL;
567  }
568  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
569  else _first = _chunk;
570  _hwm  = _chunk->bottom();     // Save the cached hwm, max
571  _max =  _chunk->top();
572  set_size_in_bytes(size_in_bytes() + len);
573  void* result = _hwm;
574  _hwm += x;
575  return result;
576}
577
578
579
580// Reallocate storage in Arena.
581void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
582  assert(new_size >= 0, "bad size");
583  if (new_size == 0) return NULL;
584#ifdef ASSERT
585  if (UseMallocOnly) {
586    // always allocate a new object  (otherwise we'll free this one twice)
587    char* copy = (char*)Amalloc(new_size, alloc_failmode);
588    if (copy == NULL) {
589      return NULL;
590    }
591    size_t n = MIN2(old_size, new_size);
592    if (n > 0) memcpy(copy, old_ptr, n);
593    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
594    return copy;
595  }
596#endif
597  char *c_old = (char*)old_ptr; // Handy name
598  // Stupid fast special case
599  if( new_size <= old_size ) {  // Shrink in-place
600    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
601      _hwm = c_old+new_size;    // Adjust hwm
602    return c_old;
603  }
604
605  // make sure that new_size is legal
606  size_t corrected_new_size = ARENA_ALIGN(new_size);
607
608  // See if we can resize in-place
609  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
610      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
611    _hwm = c_old+corrected_new_size;      // Adjust hwm
612    return c_old;               // Return old pointer
613  }
614
615  // Oops, got to relocate guts
616  void *new_ptr = Amalloc(new_size, alloc_failmode);
617  if (new_ptr == NULL) {
618    return NULL;
619  }
620  memcpy( new_ptr, c_old, old_size );
621  Afree(c_old,old_size);        // Mostly done to keep stats accurate
622  return new_ptr;
623}
624
625
626// Determine if pointer belongs to this Arena or not.
627bool Arena::contains( const void *ptr ) const {
628#ifdef ASSERT
629  if (UseMallocOnly) {
630    // really slow, but not easy to make fast
631    if (_chunk == NULL) return false;
632    char** bottom = (char**)_chunk->bottom();
633    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
634      if (*p == ptr) return true;
635    }
636    for (Chunk *c = _first; c != NULL; c = c->next()) {
637      if (c == _chunk) continue;  // current chunk has been processed
638      char** bottom = (char**)c->bottom();
639      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
640        if (*p == ptr) return true;
641      }
642    }
643    return false;
644  }
645#endif
646  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
647    return true;                // Check for in this chunk
648  for (Chunk *c = _first; c; c = c->next()) {
649    if (c == _chunk) continue;  // current chunk has been processed
650    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
651      return true;              // Check for every chunk in Arena
652    }
653  }
654  return false;                 // Not in any Chunk, so not in Arena
655}
656
657
658#ifdef ASSERT
659void* Arena::malloc(size_t size) {
660  assert(UseMallocOnly, "shouldn't call");
661  // use malloc, but save pointer in res. area for later freeing
662  char** save = (char**)internal_malloc_4(sizeof(char*));
663  return (*save = (char*)os::malloc(size, mtChunk));
664}
665
666// for debugging with UseMallocOnly
667void* Arena::internal_malloc_4(size_t x) {
668  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
669  check_for_overflow(x, "Arena::internal_malloc_4");
670  if (_hwm + x > _max) {
671    return grow(x);
672  } else {
673    char *old = _hwm;
674    _hwm += x;
675    return old;
676  }
677}
678#endif
679
680
681//--------------------------------------------------------------------------------------
682// Non-product code
683
684#ifndef PRODUCT
685// The global operator new should never be called since it will usually indicate
686// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
687// that they're allocated on the C heap.
688// Commented out in product version to avoid conflicts with third-party C++ native code.
689//
690// In C++98/03 the throwing new operators are defined with the following signature:
691//
692// void* operator new(std::size_tsize) throw(std::bad_alloc);
693// void* operator new[](std::size_tsize) throw(std::bad_alloc);
694//
695// while all the other (non-throwing) new and delete operators are defined with an empty
696// throw clause (i.e. "operator delete(void* p) throw()") which means that they do not
697// throw any exceptions (see section 18.4 of the C++ standard).
698//
699// In the new C++11/14 standard, the signature of the throwing new operators was changed
700// by completely omitting the throw clause (which effectively means they could throw any
701// exception) while all the other new/delete operators where changed to have a 'nothrow'
702// clause instead of an empty throw clause.
703//
704// Unfortunately, the support for exception specifications among C++ compilers is still
705// very fragile. While some more strict compilers like AIX xlC or HP aCC reject to
706// override the default throwing new operator with a user operator with an empty throw()
707// clause, the MS Visual C++ compiler warns for every non-empty throw clause like
708// throw(std::bad_alloc) that it will ignore the exception specification. The following
709// operator definitions have been checked to correctly work with all currently supported
710// compilers and they should be upwards compatible with C++11/14. Therefore
711// PLEASE BE CAREFUL if you change the signature of the following operators!
712
713void* operator new(size_t size) /* throw(std::bad_alloc) */ {
714  fatal("Should not call global operator new");
715  return 0;
716}
717
718void* operator new [](size_t size) /* throw(std::bad_alloc) */ {
719  fatal("Should not call global operator new[]");
720  return 0;
721}
722
723void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
724  fatal("Should not call global operator new");
725  return 0;
726}
727
728void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
729  fatal("Should not call global operator new[]");
730  return 0;
731}
732
733void operator delete(void* p) throw() {
734  fatal("Should not call global delete");
735}
736
737void operator delete [](void* p) throw() {
738  fatal("Should not call global delete []");
739}
740
741void AllocatedObj::print() const       { print_on(tty); }
742void AllocatedObj::print_value() const { print_value_on(tty); }
743
744void AllocatedObj::print_on(outputStream* st) const {
745  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
746}
747
748void AllocatedObj::print_value_on(outputStream* st) const {
749  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
750}
751
752julong Arena::_bytes_allocated = 0;
753
754void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
755
756AllocStats::AllocStats() {
757  start_mallocs      = os::num_mallocs;
758  start_frees        = os::num_frees;
759  start_malloc_bytes = os::alloc_bytes;
760  start_mfree_bytes  = os::free_bytes;
761  start_res_bytes    = Arena::_bytes_allocated;
762}
763
764julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
765julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
766julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
767julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
768julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
769void    AllocStats::print() {
770  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
771                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
772                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
773}
774
775
776// debugging code
777inline void Arena::free_all(char** start, char** end) {
778  for (char** p = start; p < end; p++) if (*p) os::free(*p);
779}
780
781void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
782  assert(UseMallocOnly, "should not call");
783  // free all objects malloced since resource mark was created; resource area
784  // contains their addresses
785  if (chunk->next()) {
786    // this chunk is full, and some others too
787    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
788      char* top = c->top();
789      if (c->next() == NULL) {
790        top = hwm2;     // last junk is only used up to hwm2
791        assert(c->contains(hwm2), "bad hwm2");
792      }
793      free_all((char**)c->bottom(), (char**)top);
794    }
795    assert(chunk->contains(hwm), "bad hwm");
796    assert(chunk->contains(max), "bad max");
797    free_all((char**)hwm, (char**)max);
798  } else {
799    // this chunk was partially used
800    assert(chunk->contains(hwm), "bad hwm");
801    assert(chunk->contains(hwm2), "bad hwm2");
802    free_all((char**)hwm, (char**)hwm2);
803  }
804}
805
806
807ReallocMark::ReallocMark() {
808#ifdef ASSERT
809  Thread *thread = ThreadLocalStorage::get_thread_slow();
810  _nesting = thread->resource_area()->nesting();
811#endif
812}
813
814void ReallocMark::check() {
815#ifdef ASSERT
816  if (_nesting != Thread::current()->resource_area()->nesting()) {
817    fatal("allocation bug: array could grow within nested ResourceMark");
818  }
819#endif
820}
821
822#endif // Non-product
823