allocation.cpp revision 5965:bdd155477289
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39#ifdef TARGET_OS_FAMILY_linux
40# include "os_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "os_solaris.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_windows
46# include "os_windows.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_aix
49# include "os_aix.inline.hpp"
50#endif
51#ifdef TARGET_OS_FAMILY_bsd
52# include "os_bsd.inline.hpp"
53#endif
54
55void* StackObj::operator new(size_t size)       { ShouldNotCallThis(); return 0; }
56void  StackObj::operator delete(void* p)        { ShouldNotCallThis(); }
57void* StackObj::operator new [](size_t size)    { ShouldNotCallThis(); return 0; }
58void  StackObj::operator delete [](void* p)     { ShouldNotCallThis(); }
59
60void* _ValueObj::operator new(size_t size)      { ShouldNotCallThis(); return 0; }
61void  _ValueObj::operator delete(void* p)       { ShouldNotCallThis(); }
62void* _ValueObj::operator new [](size_t size)   { ShouldNotCallThis(); return 0; }
63void  _ValueObj::operator delete [](void* p)    { ShouldNotCallThis(); }
64
65void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
66                                 size_t word_size, bool read_only,
67                                 MetaspaceObj::Type type, TRAPS) {
68  // Klass has it's own operator new
69  return Metaspace::allocate(loader_data, word_size, read_only,
70                             type, CHECK_NULL);
71}
72
73bool MetaspaceObj::is_shared() const {
74  return MetaspaceShared::is_in_shared_space(this);
75}
76
77
78bool MetaspaceObj::is_metaspace_object() const {
79  return Metaspace::contains((void*)this);
80}
81
82void MetaspaceObj::print_address_on(outputStream* st) const {
83  st->print(" {"INTPTR_FORMAT"}", this);
84}
85
86void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
87  address res;
88  switch (type) {
89   case C_HEAP:
90    res = (address)AllocateHeap(size, flags, CALLER_PC);
91    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
92    break;
93   case RESOURCE_AREA:
94    // new(size) sets allocation type RESOURCE_AREA.
95    res = (address)operator new(size);
96    break;
97   default:
98    ShouldNotReachHere();
99  }
100  return res;
101}
102
103void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
104  return (address) operator new(size, type, flags);
105}
106
107void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
108    allocation_type type, MEMFLAGS flags) {
109  //should only call this with std::nothrow, use other operator new() otherwise
110  address res;
111  switch (type) {
112   case C_HEAP:
113    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
114    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
115    break;
116   case RESOURCE_AREA:
117    // new(size) sets allocation type RESOURCE_AREA.
118    res = (address)operator new(size, std::nothrow);
119    break;
120   default:
121    ShouldNotReachHere();
122  }
123  return res;
124}
125
126void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
127    allocation_type type, MEMFLAGS flags) {
128  return (address)operator new(size, nothrow_constant, type, flags);
129}
130
131void ResourceObj::operator delete(void* p) {
132  assert(((ResourceObj *)p)->allocated_on_C_heap(),
133         "delete only allowed for C_HEAP objects");
134  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
135  FreeHeap(p);
136}
137
138void ResourceObj::operator delete [](void* p) {
139  operator delete(p);
140}
141
142#ifdef ASSERT
143void ResourceObj::set_allocation_type(address res, allocation_type type) {
144    // Set allocation type in the resource object
145    uintptr_t allocation = (uintptr_t)res;
146    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
147    assert(type <= allocation_mask, "incorrect allocation type");
148    ResourceObj* resobj = (ResourceObj *)res;
149    resobj->_allocation_t[0] = ~(allocation + type);
150    if (type != STACK_OR_EMBEDDED) {
151      // Called from operator new() and CollectionSetChooser(),
152      // set verification value.
153      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
154    }
155}
156
157ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
158    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
159    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
160}
161
162bool ResourceObj::is_type_set() const {
163    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
164    return get_allocation_type()  == type &&
165           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
166}
167
168ResourceObj::ResourceObj() { // default constructor
169    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
170      // Operator new() is not called for allocations
171      // on stack and for embedded objects.
172      set_allocation_type((address)this, STACK_OR_EMBEDDED);
173    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
174      // For some reason we got a value which resembles
175      // an embedded or stack object (operator new() does not
176      // set such type). Keep it since it is valid value
177      // (even if it was garbage).
178      // Ignore garbage in other fields.
179    } else if (is_type_set()) {
180      // Operator new() was called and type was set.
181      assert(!allocated_on_stack(),
182             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
183                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
184    } else {
185      // Operator new() was not called.
186      // Assume that it is embedded or stack object.
187      set_allocation_type((address)this, STACK_OR_EMBEDDED);
188    }
189    _allocation_t[1] = 0; // Zap verification value
190}
191
192ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
193    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
194    // Note: garbage may resembles valid value.
195    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
196           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
197                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
198    set_allocation_type((address)this, STACK_OR_EMBEDDED);
199    _allocation_t[1] = 0; // Zap verification value
200}
201
202ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
203    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
204    assert(allocated_on_stack(),
205           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
206                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
207    // Keep current _allocation_t value;
208    return *this;
209}
210
211ResourceObj::~ResourceObj() {
212    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
213    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
214      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
215    }
216}
217#endif // ASSERT
218
219
220void trace_heap_malloc(size_t size, const char* name, void* p) {
221  // A lock is not needed here - tty uses a lock internally
222  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
223}
224
225
226void trace_heap_free(void* p) {
227  // A lock is not needed here - tty uses a lock internally
228  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
229}
230
231//--------------------------------------------------------------------------------------
232// ChunkPool implementation
233
234// MT-safe pool of chunks to reduce malloc/free thrashing
235// NB: not using Mutex because pools are used before Threads are initialized
236class ChunkPool: public CHeapObj<mtInternal> {
237  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
238  size_t       _num_chunks;   // number of unused chunks in pool
239  size_t       _num_used;     // number of chunks currently checked out
240  const size_t _size;         // size of each chunk (must be uniform)
241
242  // Our four static pools
243  static ChunkPool* _large_pool;
244  static ChunkPool* _medium_pool;
245  static ChunkPool* _small_pool;
246  static ChunkPool* _tiny_pool;
247
248  // return first element or null
249  void* get_first() {
250    Chunk* c = _first;
251    if (_first) {
252      _first = _first->next();
253      _num_chunks--;
254    }
255    return c;
256  }
257
258 public:
259  // All chunks in a ChunkPool has the same size
260   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
261
262  // Allocate a new chunk from the pool (might expand the pool)
263  _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
264    assert(bytes == _size, "bad size");
265    void* p = NULL;
266    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
267    // should be done outside ThreadCritical lock due to NMT
268    { ThreadCritical tc;
269      _num_used++;
270      p = get_first();
271    }
272    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
273    if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
274      vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
275    }
276    return p;
277  }
278
279  // Return a chunk to the pool
280  void free(Chunk* chunk) {
281    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
282    ThreadCritical tc;
283    _num_used--;
284
285    // Add chunk to list
286    chunk->set_next(_first);
287    _first = chunk;
288    _num_chunks++;
289  }
290
291  // Prune the pool
292  void free_all_but(size_t n) {
293    Chunk* cur = NULL;
294    Chunk* next;
295    {
296    // if we have more than n chunks, free all of them
297    ThreadCritical tc;
298    if (_num_chunks > n) {
299      // free chunks at end of queue, for better locality
300        cur = _first;
301      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
302
303      if (cur != NULL) {
304          next = cur->next();
305        cur->set_next(NULL);
306        cur = next;
307
308          _num_chunks = n;
309        }
310      }
311    }
312
313    // Free all remaining chunks, outside of ThreadCritical
314    // to avoid deadlock with NMT
315        while(cur != NULL) {
316          next = cur->next();
317      os::free(cur, mtChunk);
318          cur = next;
319        }
320      }
321
322  // Accessors to preallocated pool's
323  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
324  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
325  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
326  static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
327
328  static void initialize() {
329    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
330    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
331    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
332    _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
333  }
334
335  static void clean() {
336    enum { BlocksToKeep = 5 };
337     _tiny_pool->free_all_but(BlocksToKeep);
338     _small_pool->free_all_but(BlocksToKeep);
339     _medium_pool->free_all_but(BlocksToKeep);
340     _large_pool->free_all_but(BlocksToKeep);
341  }
342};
343
344ChunkPool* ChunkPool::_large_pool  = NULL;
345ChunkPool* ChunkPool::_medium_pool = NULL;
346ChunkPool* ChunkPool::_small_pool  = NULL;
347ChunkPool* ChunkPool::_tiny_pool   = NULL;
348
349void chunkpool_init() {
350  ChunkPool::initialize();
351}
352
353void
354Chunk::clean_chunk_pool() {
355  ChunkPool::clean();
356}
357
358
359//--------------------------------------------------------------------------------------
360// ChunkPoolCleaner implementation
361//
362
363class ChunkPoolCleaner : public PeriodicTask {
364  enum { CleaningInterval = 5000 };      // cleaning interval in ms
365
366 public:
367   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
368   void task() {
369     ChunkPool::clean();
370   }
371};
372
373//--------------------------------------------------------------------------------------
374// Chunk implementation
375
376void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) {
377  // requested_size is equal to sizeof(Chunk) but in order for the arena
378  // allocations to come out aligned as expected the size must be aligned
379  // to expected arena alignment.
380  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
381  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
382  size_t bytes = ARENA_ALIGN(requested_size) + length;
383  switch (length) {
384   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
385   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
386   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
387   case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
388   default: {
389     void* p = os::malloc(bytes, mtChunk, CALLER_PC);
390     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
391       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
392     }
393     return p;
394   }
395  }
396}
397
398void Chunk::operator delete(void* p) {
399  Chunk* c = (Chunk*)p;
400  switch (c->length()) {
401   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
402   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
403   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
404   case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
405   default:                 os::free(c, mtChunk);
406  }
407}
408
409Chunk::Chunk(size_t length) : _len(length) {
410  _next = NULL;         // Chain on the linked list
411}
412
413
414void Chunk::chop() {
415  Chunk *k = this;
416  while( k ) {
417    Chunk *tmp = k->next();
418    // clear out this chunk (to detect allocation bugs)
419    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
420    delete k;                   // Free chunk (was malloc'd)
421    k = tmp;
422  }
423}
424
425void Chunk::next_chop() {
426  _next->chop();
427  _next = NULL;
428}
429
430
431void Chunk::start_chunk_pool_cleaner_task() {
432#ifdef ASSERT
433  static bool task_created = false;
434  assert(!task_created, "should not start chuck pool cleaner twice");
435  task_created = true;
436#endif
437  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
438  cleaner->enroll();
439}
440
441//------------------------------Arena------------------------------------------
442NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
443
444Arena::Arena(size_t init_size) {
445  size_t round_size = (sizeof (char *)) - 1;
446  init_size = (init_size+round_size) & ~round_size;
447  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
448  _hwm = _chunk->bottom();      // Save the cached hwm, max
449  _max = _chunk->top();
450  set_size_in_bytes(init_size);
451  NOT_PRODUCT(Atomic::inc(&_instance_count);)
452}
453
454Arena::Arena() {
455  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
456  _hwm = _chunk->bottom();      // Save the cached hwm, max
457  _max = _chunk->top();
458  set_size_in_bytes(Chunk::init_size);
459  NOT_PRODUCT(Atomic::inc(&_instance_count);)
460}
461
462Arena *Arena::move_contents(Arena *copy) {
463  copy->destruct_contents();
464  copy->_chunk = _chunk;
465  copy->_hwm   = _hwm;
466  copy->_max   = _max;
467  copy->_first = _first;
468
469  // workaround rare racing condition, which could double count
470  // the arena size by native memory tracking
471  size_t size = size_in_bytes();
472  set_size_in_bytes(0);
473  copy->set_size_in_bytes(size);
474  // Destroy original arena
475  reset();
476  return copy;            // Return Arena with contents
477}
478
479Arena::~Arena() {
480  destruct_contents();
481  NOT_PRODUCT(Atomic::dec(&_instance_count);)
482}
483
484void* Arena::operator new(size_t size) {
485  assert(false, "Use dynamic memory type binding");
486  return NULL;
487}
488
489void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
490  assert(false, "Use dynamic memory type binding");
491  return NULL;
492}
493
494  // dynamic memory type binding
495void* Arena::operator new(size_t size, MEMFLAGS flags) {
496#ifdef ASSERT
497  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
498  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
499  return p;
500#else
501  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
502#endif
503}
504
505void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
506#ifdef ASSERT
507  void* p = os::malloc(size, flags|otArena, CALLER_PC);
508  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
509  return p;
510#else
511  return os::malloc(size, flags|otArena, CALLER_PC);
512#endif
513}
514
515void Arena::operator delete(void* p) {
516  FreeHeap(p);
517}
518
519// Destroy this arenas contents and reset to empty
520void Arena::destruct_contents() {
521  if (UseMallocOnly && _first != NULL) {
522    char* end = _first->next() ? _first->top() : _hwm;
523    free_malloced_objects(_first, _first->bottom(), end, _hwm);
524  }
525  // reset size before chop to avoid a rare racing condition
526  // that can have total arena memory exceed total chunk memory
527  set_size_in_bytes(0);
528  _first->chop();
529  reset();
530}
531
532// This is high traffic method, but many calls actually don't
533// change the size
534void Arena::set_size_in_bytes(size_t size) {
535  if (_size_in_bytes != size) {
536    _size_in_bytes = size;
537    MemTracker::record_arena_size((address)this, size);
538  }
539}
540
541// Total of all Chunks in arena
542size_t Arena::used() const {
543  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
544  register Chunk *k = _first;
545  while( k != _chunk) {         // Whilst have Chunks in a row
546    sum += k->length();         // Total size of this Chunk
547    k = k->next();              // Bump along to next Chunk
548  }
549  return sum;                   // Return total consumed space.
550}
551
552void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
553  vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
554}
555
556// Grow a new Chunk
557void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
558  // Get minimal required size.  Either real big, or even bigger for giant objs
559  size_t len = MAX2(x, (size_t) Chunk::size);
560
561  Chunk *k = _chunk;            // Get filled-up chunk address
562  _chunk = new (alloc_failmode, len) Chunk(len);
563
564  if (_chunk == NULL) {
565    return NULL;
566  }
567  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
568  else _first = _chunk;
569  _hwm  = _chunk->bottom();     // Save the cached hwm, max
570  _max =  _chunk->top();
571  set_size_in_bytes(size_in_bytes() + len);
572  void* result = _hwm;
573  _hwm += x;
574  return result;
575}
576
577
578
579// Reallocate storage in Arena.
580void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
581  assert(new_size >= 0, "bad size");
582  if (new_size == 0) return NULL;
583#ifdef ASSERT
584  if (UseMallocOnly) {
585    // always allocate a new object  (otherwise we'll free this one twice)
586    char* copy = (char*)Amalloc(new_size, alloc_failmode);
587    if (copy == NULL) {
588      return NULL;
589    }
590    size_t n = MIN2(old_size, new_size);
591    if (n > 0) memcpy(copy, old_ptr, n);
592    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
593    return copy;
594  }
595#endif
596  char *c_old = (char*)old_ptr; // Handy name
597  // Stupid fast special case
598  if( new_size <= old_size ) {  // Shrink in-place
599    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
600      _hwm = c_old+new_size;    // Adjust hwm
601    return c_old;
602  }
603
604  // make sure that new_size is legal
605  size_t corrected_new_size = ARENA_ALIGN(new_size);
606
607  // See if we can resize in-place
608  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
609      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
610    _hwm = c_old+corrected_new_size;      // Adjust hwm
611    return c_old;               // Return old pointer
612  }
613
614  // Oops, got to relocate guts
615  void *new_ptr = Amalloc(new_size, alloc_failmode);
616  if (new_ptr == NULL) {
617    return NULL;
618  }
619  memcpy( new_ptr, c_old, old_size );
620  Afree(c_old,old_size);        // Mostly done to keep stats accurate
621  return new_ptr;
622}
623
624
625// Determine if pointer belongs to this Arena or not.
626bool Arena::contains( const void *ptr ) const {
627#ifdef ASSERT
628  if (UseMallocOnly) {
629    // really slow, but not easy to make fast
630    if (_chunk == NULL) return false;
631    char** bottom = (char**)_chunk->bottom();
632    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
633      if (*p == ptr) return true;
634    }
635    for (Chunk *c = _first; c != NULL; c = c->next()) {
636      if (c == _chunk) continue;  // current chunk has been processed
637      char** bottom = (char**)c->bottom();
638      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
639        if (*p == ptr) return true;
640      }
641    }
642    return false;
643  }
644#endif
645  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
646    return true;                // Check for in this chunk
647  for (Chunk *c = _first; c; c = c->next()) {
648    if (c == _chunk) continue;  // current chunk has been processed
649    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
650      return true;              // Check for every chunk in Arena
651    }
652  }
653  return false;                 // Not in any Chunk, so not in Arena
654}
655
656
657#ifdef ASSERT
658void* Arena::malloc(size_t size) {
659  assert(UseMallocOnly, "shouldn't call");
660  // use malloc, but save pointer in res. area for later freeing
661  char** save = (char**)internal_malloc_4(sizeof(char*));
662  return (*save = (char*)os::malloc(size, mtChunk));
663}
664
665// for debugging with UseMallocOnly
666void* Arena::internal_malloc_4(size_t x) {
667  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
668  check_for_overflow(x, "Arena::internal_malloc_4");
669  if (_hwm + x > _max) {
670    return grow(x);
671  } else {
672    char *old = _hwm;
673    _hwm += x;
674    return old;
675  }
676}
677#endif
678
679
680//--------------------------------------------------------------------------------------
681// Non-product code
682
683#ifndef PRODUCT
684// The global operator new should never be called since it will usually indicate
685// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
686// that they're allocated on the C heap.
687// Commented out in product version to avoid conflicts with third-party C++ native code.
688// On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
689// from jdk source and causing data corruption. Such as
690//  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
691// define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
692//
693#ifndef ALLOW_OPERATOR_NEW_USAGE
694void* operator new(size_t size){
695  assert(false, "Should not call global operator new");
696  return 0;
697}
698
699void* operator new [](size_t size){
700  assert(false, "Should not call global operator new[]");
701  return 0;
702}
703
704void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
705  assert(false, "Should not call global operator new");
706  return 0;
707}
708
709void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
710  assert(false, "Should not call global operator new[]");
711  return 0;
712}
713
714void operator delete(void* p) {
715  assert(false, "Should not call global delete");
716}
717
718void operator delete [](void* p) {
719  assert(false, "Should not call global delete []");
720}
721#endif // ALLOW_OPERATOR_NEW_USAGE
722
723void AllocatedObj::print() const       { print_on(tty); }
724void AllocatedObj::print_value() const { print_value_on(tty); }
725
726void AllocatedObj::print_on(outputStream* st) const {
727  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
728}
729
730void AllocatedObj::print_value_on(outputStream* st) const {
731  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
732}
733
734julong Arena::_bytes_allocated = 0;
735
736void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
737
738AllocStats::AllocStats() {
739  start_mallocs      = os::num_mallocs;
740  start_frees        = os::num_frees;
741  start_malloc_bytes = os::alloc_bytes;
742  start_mfree_bytes  = os::free_bytes;
743  start_res_bytes    = Arena::_bytes_allocated;
744}
745
746julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
747julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
748julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
749julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
750julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
751void    AllocStats::print() {
752  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
753                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
754                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
755}
756
757
758// debugging code
759inline void Arena::free_all(char** start, char** end) {
760  for (char** p = start; p < end; p++) if (*p) os::free(*p);
761}
762
763void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
764  assert(UseMallocOnly, "should not call");
765  // free all objects malloced since resource mark was created; resource area
766  // contains their addresses
767  if (chunk->next()) {
768    // this chunk is full, and some others too
769    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
770      char* top = c->top();
771      if (c->next() == NULL) {
772        top = hwm2;     // last junk is only used up to hwm2
773        assert(c->contains(hwm2), "bad hwm2");
774      }
775      free_all((char**)c->bottom(), (char**)top);
776    }
777    assert(chunk->contains(hwm), "bad hwm");
778    assert(chunk->contains(max), "bad max");
779    free_all((char**)hwm, (char**)max);
780  } else {
781    // this chunk was partially used
782    assert(chunk->contains(hwm), "bad hwm");
783    assert(chunk->contains(hwm2), "bad hwm2");
784    free_all((char**)hwm, (char**)hwm2);
785  }
786}
787
788
789ReallocMark::ReallocMark() {
790#ifdef ASSERT
791  Thread *thread = ThreadLocalStorage::get_thread_slow();
792  _nesting = thread->resource_area()->nesting();
793#endif
794}
795
796void ReallocMark::check() {
797#ifdef ASSERT
798  if (_nesting != Thread::current()->resource_area()->nesting()) {
799    fatal("allocation bug: array could grow within nested ResourceMark");
800  }
801#endif
802}
803
804#endif // Non-product
805