allocation.cpp revision 4814:ce9ecec70f99
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39#ifdef TARGET_OS_FAMILY_linux
40# include "os_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "os_solaris.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_windows
46# include "os_windows.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_bsd
49# include "os_bsd.inline.hpp"
50#endif
51
52void* StackObj::operator new(size_t size)       { ShouldNotCallThis(); return 0; }
53void  StackObj::operator delete(void* p)        { ShouldNotCallThis(); }
54void* StackObj::operator new [](size_t size)    { ShouldNotCallThis(); return 0; }
55void  StackObj::operator delete [](void* p)     { ShouldNotCallThis(); }
56
57void* _ValueObj::operator new(size_t size)      { ShouldNotCallThis(); return 0; }
58void  _ValueObj::operator delete(void* p)       { ShouldNotCallThis(); }
59void* _ValueObj::operator new [](size_t size)   { ShouldNotCallThis(); return 0; }
60void  _ValueObj::operator delete [](void* p)    { ShouldNotCallThis(); }
61
62void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
63                                size_t word_size, bool read_only, TRAPS) {
64  // Klass has it's own operator new
65  return Metaspace::allocate(loader_data, word_size, read_only,
66                             Metaspace::NonClassType, CHECK_NULL);
67}
68
69bool MetaspaceObj::is_shared() const {
70  return MetaspaceShared::is_in_shared_space(this);
71}
72
73bool MetaspaceObj::is_metadata() const {
74  // GC Verify checks use this in guarantees.
75  // TODO: either replace them with is_metaspace_object() or remove them.
76  // is_metaspace_object() is slower than this test.  This test doesn't
77  // seem very useful for metaspace objects anymore though.
78  return !Universe::heap()->is_in_reserved(this);
79}
80
81bool MetaspaceObj::is_metaspace_object() const {
82  return Metaspace::contains((void*)this);
83}
84
85void MetaspaceObj::print_address_on(outputStream* st) const {
86  st->print(" {"INTPTR_FORMAT"}", this);
87}
88
89void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
90  address res;
91  switch (type) {
92   case C_HEAP:
93    res = (address)AllocateHeap(size, flags, CALLER_PC);
94    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
95    break;
96   case RESOURCE_AREA:
97    // new(size) sets allocation type RESOURCE_AREA.
98    res = (address)operator new(size);
99    break;
100   default:
101    ShouldNotReachHere();
102  }
103  return res;
104}
105
106void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
107  return (address) operator new(size, type, flags);
108}
109
110void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
111    allocation_type type, MEMFLAGS flags) {
112  //should only call this with std::nothrow, use other operator new() otherwise
113  address res;
114  switch (type) {
115   case C_HEAP:
116    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
117    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
118    break;
119   case RESOURCE_AREA:
120    // new(size) sets allocation type RESOURCE_AREA.
121    res = (address)operator new(size, std::nothrow);
122    break;
123   default:
124    ShouldNotReachHere();
125  }
126  return res;
127}
128
129void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
130    allocation_type type, MEMFLAGS flags) {
131  return (address)operator new(size, nothrow_constant, type, flags);
132}
133
134void ResourceObj::operator delete(void* p) {
135  assert(((ResourceObj *)p)->allocated_on_C_heap(),
136         "delete only allowed for C_HEAP objects");
137  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
138  FreeHeap(p);
139}
140
141void ResourceObj::operator delete [](void* p) {
142  operator delete(p);
143}
144
145#ifdef ASSERT
146void ResourceObj::set_allocation_type(address res, allocation_type type) {
147    // Set allocation type in the resource object
148    uintptr_t allocation = (uintptr_t)res;
149    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
150    assert(type <= allocation_mask, "incorrect allocation type");
151    ResourceObj* resobj = (ResourceObj *)res;
152    resobj->_allocation_t[0] = ~(allocation + type);
153    if (type != STACK_OR_EMBEDDED) {
154      // Called from operator new() and CollectionSetChooser(),
155      // set verification value.
156      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
157    }
158}
159
160ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
161    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
162    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
163}
164
165bool ResourceObj::is_type_set() const {
166    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
167    return get_allocation_type()  == type &&
168           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
169}
170
171ResourceObj::ResourceObj() { // default constructor
172    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
173      // Operator new() is not called for allocations
174      // on stack and for embedded objects.
175      set_allocation_type((address)this, STACK_OR_EMBEDDED);
176    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
177      // For some reason we got a value which resembles
178      // an embedded or stack object (operator new() does not
179      // set such type). Keep it since it is valid value
180      // (even if it was garbage).
181      // Ignore garbage in other fields.
182    } else if (is_type_set()) {
183      // Operator new() was called and type was set.
184      assert(!allocated_on_stack(),
185             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
186                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
187    } else {
188      // Operator new() was not called.
189      // Assume that it is embedded or stack object.
190      set_allocation_type((address)this, STACK_OR_EMBEDDED);
191    }
192    _allocation_t[1] = 0; // Zap verification value
193}
194
195ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
196    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
197    // Note: garbage may resembles valid value.
198    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
199           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
200                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
201    set_allocation_type((address)this, STACK_OR_EMBEDDED);
202    _allocation_t[1] = 0; // Zap verification value
203}
204
205ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
206    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
207    assert(allocated_on_stack(),
208           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
209                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
210    // Keep current _allocation_t value;
211    return *this;
212}
213
214ResourceObj::~ResourceObj() {
215    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
216    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
217      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
218    }
219}
220#endif // ASSERT
221
222
223void trace_heap_malloc(size_t size, const char* name, void* p) {
224  // A lock is not needed here - tty uses a lock internally
225  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
226}
227
228
229void trace_heap_free(void* p) {
230  // A lock is not needed here - tty uses a lock internally
231  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
232}
233
234//--------------------------------------------------------------------------------------
235// ChunkPool implementation
236
237// MT-safe pool of chunks to reduce malloc/free thrashing
238// NB: not using Mutex because pools are used before Threads are initialized
239class ChunkPool: public CHeapObj<mtInternal> {
240  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
241  size_t       _num_chunks;   // number of unused chunks in pool
242  size_t       _num_used;     // number of chunks currently checked out
243  const size_t _size;         // size of each chunk (must be uniform)
244
245  // Our three static pools
246  static ChunkPool* _large_pool;
247  static ChunkPool* _medium_pool;
248  static ChunkPool* _small_pool;
249
250  // return first element or null
251  void* get_first() {
252    Chunk* c = _first;
253    if (_first) {
254      _first = _first->next();
255      _num_chunks--;
256    }
257    return c;
258  }
259
260 public:
261  // All chunks in a ChunkPool has the same size
262   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
263
264  // Allocate a new chunk from the pool (might expand the pool)
265  _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
266    assert(bytes == _size, "bad size");
267    void* p = NULL;
268    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
269    // should be done outside ThreadCritical lock due to NMT
270    { ThreadCritical tc;
271      _num_used++;
272      p = get_first();
273    }
274    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
275    if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
276      vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
277    }
278    return p;
279  }
280
281  // Return a chunk to the pool
282  void free(Chunk* chunk) {
283    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
284    ThreadCritical tc;
285    _num_used--;
286
287    // Add chunk to list
288    chunk->set_next(_first);
289    _first = chunk;
290    _num_chunks++;
291  }
292
293  // Prune the pool
294  void free_all_but(size_t n) {
295    Chunk* cur = NULL;
296    Chunk* next;
297    {
298    // if we have more than n chunks, free all of them
299    ThreadCritical tc;
300    if (_num_chunks > n) {
301      // free chunks at end of queue, for better locality
302        cur = _first;
303      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
304
305      if (cur != NULL) {
306          next = cur->next();
307        cur->set_next(NULL);
308        cur = next;
309
310          _num_chunks = n;
311        }
312      }
313    }
314
315    // Free all remaining chunks, outside of ThreadCritical
316    // to avoid deadlock with NMT
317        while(cur != NULL) {
318          next = cur->next();
319      os::free(cur, mtChunk);
320          cur = next;
321        }
322      }
323
324  // Accessors to preallocated pool's
325  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
326  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
327  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
328
329  static void initialize() {
330    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
331    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
332    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
333  }
334
335  static void clean() {
336    enum { BlocksToKeep = 5 };
337     _small_pool->free_all_but(BlocksToKeep);
338     _medium_pool->free_all_but(BlocksToKeep);
339     _large_pool->free_all_but(BlocksToKeep);
340  }
341};
342
343ChunkPool* ChunkPool::_large_pool  = NULL;
344ChunkPool* ChunkPool::_medium_pool = NULL;
345ChunkPool* ChunkPool::_small_pool  = NULL;
346
347void chunkpool_init() {
348  ChunkPool::initialize();
349}
350
351void
352Chunk::clean_chunk_pool() {
353  ChunkPool::clean();
354}
355
356
357//--------------------------------------------------------------------------------------
358// ChunkPoolCleaner implementation
359//
360
361class ChunkPoolCleaner : public PeriodicTask {
362  enum { CleaningInterval = 5000 };      // cleaning interval in ms
363
364 public:
365   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
366   void task() {
367     ChunkPool::clean();
368   }
369};
370
371//--------------------------------------------------------------------------------------
372// Chunk implementation
373
374void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) {
375  // requested_size is equal to sizeof(Chunk) but in order for the arena
376  // allocations to come out aligned as expected the size must be aligned
377  // to expected arena alignment.
378  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
379  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
380  size_t bytes = ARENA_ALIGN(requested_size) + length;
381  switch (length) {
382   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
383   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
384   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
385   default: {
386     void* p = os::malloc(bytes, mtChunk, CALLER_PC);
387     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
388       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
389     }
390     return p;
391   }
392  }
393}
394
395void Chunk::operator delete(void* p) {
396  Chunk* c = (Chunk*)p;
397  switch (c->length()) {
398   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
399   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
400   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
401   default:                 os::free(c, mtChunk);
402  }
403}
404
405Chunk::Chunk(size_t length) : _len(length) {
406  _next = NULL;         // Chain on the linked list
407}
408
409
410void Chunk::chop() {
411  Chunk *k = this;
412  while( k ) {
413    Chunk *tmp = k->next();
414    // clear out this chunk (to detect allocation bugs)
415    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
416    delete k;                   // Free chunk (was malloc'd)
417    k = tmp;
418  }
419}
420
421void Chunk::next_chop() {
422  _next->chop();
423  _next = NULL;
424}
425
426
427void Chunk::start_chunk_pool_cleaner_task() {
428#ifdef ASSERT
429  static bool task_created = false;
430  assert(!task_created, "should not start chuck pool cleaner twice");
431  task_created = true;
432#endif
433  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
434  cleaner->enroll();
435}
436
437//------------------------------Arena------------------------------------------
438NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
439
440Arena::Arena(size_t init_size) {
441  size_t round_size = (sizeof (char *)) - 1;
442  init_size = (init_size+round_size) & ~round_size;
443  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
444  _hwm = _chunk->bottom();      // Save the cached hwm, max
445  _max = _chunk->top();
446  set_size_in_bytes(init_size);
447  NOT_PRODUCT(Atomic::inc(&_instance_count);)
448}
449
450Arena::Arena() {
451  _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
452  _hwm = _chunk->bottom();      // Save the cached hwm, max
453  _max = _chunk->top();
454  set_size_in_bytes(Chunk::init_size);
455  NOT_PRODUCT(Atomic::inc(&_instance_count);)
456}
457
458Arena *Arena::move_contents(Arena *copy) {
459  copy->destruct_contents();
460  copy->_chunk = _chunk;
461  copy->_hwm   = _hwm;
462  copy->_max   = _max;
463  copy->_first = _first;
464
465  // workaround rare racing condition, which could double count
466  // the arena size by native memory tracking
467  size_t size = size_in_bytes();
468  set_size_in_bytes(0);
469  copy->set_size_in_bytes(size);
470  // Destroy original arena
471  reset();
472  return copy;            // Return Arena with contents
473}
474
475Arena::~Arena() {
476  destruct_contents();
477  NOT_PRODUCT(Atomic::dec(&_instance_count);)
478}
479
480void* Arena::operator new(size_t size) {
481  assert(false, "Use dynamic memory type binding");
482  return NULL;
483}
484
485void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
486  assert(false, "Use dynamic memory type binding");
487  return NULL;
488}
489
490  // dynamic memory type binding
491void* Arena::operator new(size_t size, MEMFLAGS flags) {
492#ifdef ASSERT
493  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
494  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
495  return p;
496#else
497  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
498#endif
499}
500
501void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
502#ifdef ASSERT
503  void* p = os::malloc(size, flags|otArena, CALLER_PC);
504  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
505  return p;
506#else
507  return os::malloc(size, flags|otArena, CALLER_PC);
508#endif
509}
510
511void Arena::operator delete(void* p) {
512  FreeHeap(p);
513}
514
515// Destroy this arenas contents and reset to empty
516void Arena::destruct_contents() {
517  if (UseMallocOnly && _first != NULL) {
518    char* end = _first->next() ? _first->top() : _hwm;
519    free_malloced_objects(_first, _first->bottom(), end, _hwm);
520  }
521  // reset size before chop to avoid a rare racing condition
522  // that can have total arena memory exceed total chunk memory
523  set_size_in_bytes(0);
524  _first->chop();
525  reset();
526}
527
528// This is high traffic method, but many calls actually don't
529// change the size
530void Arena::set_size_in_bytes(size_t size) {
531  if (_size_in_bytes != size) {
532    _size_in_bytes = size;
533    MemTracker::record_arena_size((address)this, size);
534  }
535}
536
537// Total of all Chunks in arena
538size_t Arena::used() const {
539  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
540  register Chunk *k = _first;
541  while( k != _chunk) {         // Whilst have Chunks in a row
542    sum += k->length();         // Total size of this Chunk
543    k = k->next();              // Bump along to next Chunk
544  }
545  return sum;                   // Return total consumed space.
546}
547
548void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
549  vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
550}
551
552// Grow a new Chunk
553void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
554  // Get minimal required size.  Either real big, or even bigger for giant objs
555  size_t len = MAX2(x, (size_t) Chunk::size);
556
557  Chunk *k = _chunk;            // Get filled-up chunk address
558  _chunk = new (alloc_failmode, len) Chunk(len);
559
560  if (_chunk == NULL) {
561    return NULL;
562  }
563  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
564  else _first = _chunk;
565  _hwm  = _chunk->bottom();     // Save the cached hwm, max
566  _max =  _chunk->top();
567  set_size_in_bytes(size_in_bytes() + len);
568  void* result = _hwm;
569  _hwm += x;
570  return result;
571}
572
573
574
575// Reallocate storage in Arena.
576void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
577  assert(new_size >= 0, "bad size");
578  if (new_size == 0) return NULL;
579#ifdef ASSERT
580  if (UseMallocOnly) {
581    // always allocate a new object  (otherwise we'll free this one twice)
582    char* copy = (char*)Amalloc(new_size, alloc_failmode);
583    if (copy == NULL) {
584      return NULL;
585    }
586    size_t n = MIN2(old_size, new_size);
587    if (n > 0) memcpy(copy, old_ptr, n);
588    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
589    return copy;
590  }
591#endif
592  char *c_old = (char*)old_ptr; // Handy name
593  // Stupid fast special case
594  if( new_size <= old_size ) {  // Shrink in-place
595    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
596      _hwm = c_old+new_size;    // Adjust hwm
597    return c_old;
598  }
599
600  // make sure that new_size is legal
601  size_t corrected_new_size = ARENA_ALIGN(new_size);
602
603  // See if we can resize in-place
604  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
605      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
606    _hwm = c_old+corrected_new_size;      // Adjust hwm
607    return c_old;               // Return old pointer
608  }
609
610  // Oops, got to relocate guts
611  void *new_ptr = Amalloc(new_size, alloc_failmode);
612  if (new_ptr == NULL) {
613    return NULL;
614  }
615  memcpy( new_ptr, c_old, old_size );
616  Afree(c_old,old_size);        // Mostly done to keep stats accurate
617  return new_ptr;
618}
619
620
621// Determine if pointer belongs to this Arena or not.
622bool Arena::contains( const void *ptr ) const {
623#ifdef ASSERT
624  if (UseMallocOnly) {
625    // really slow, but not easy to make fast
626    if (_chunk == NULL) return false;
627    char** bottom = (char**)_chunk->bottom();
628    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
629      if (*p == ptr) return true;
630    }
631    for (Chunk *c = _first; c != NULL; c = c->next()) {
632      if (c == _chunk) continue;  // current chunk has been processed
633      char** bottom = (char**)c->bottom();
634      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
635        if (*p == ptr) return true;
636      }
637    }
638    return false;
639  }
640#endif
641  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
642    return true;                // Check for in this chunk
643  for (Chunk *c = _first; c; c = c->next()) {
644    if (c == _chunk) continue;  // current chunk has been processed
645    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
646      return true;              // Check for every chunk in Arena
647    }
648  }
649  return false;                 // Not in any Chunk, so not in Arena
650}
651
652
653#ifdef ASSERT
654void* Arena::malloc(size_t size) {
655  assert(UseMallocOnly, "shouldn't call");
656  // use malloc, but save pointer in res. area for later freeing
657  char** save = (char**)internal_malloc_4(sizeof(char*));
658  return (*save = (char*)os::malloc(size, mtChunk));
659}
660
661// for debugging with UseMallocOnly
662void* Arena::internal_malloc_4(size_t x) {
663  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
664  check_for_overflow(x, "Arena::internal_malloc_4");
665  if (_hwm + x > _max) {
666    return grow(x);
667  } else {
668    char *old = _hwm;
669    _hwm += x;
670    return old;
671  }
672}
673#endif
674
675
676//--------------------------------------------------------------------------------------
677// Non-product code
678
679#ifndef PRODUCT
680// The global operator new should never be called since it will usually indicate
681// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
682// that they're allocated on the C heap.
683// Commented out in product version to avoid conflicts with third-party C++ native code.
684// On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
685// from jdk source and causing data corruption. Such as
686//  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
687// define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
688//
689#ifndef ALLOW_OPERATOR_NEW_USAGE
690void* operator new(size_t size){
691  assert(false, "Should not call global operator new");
692  return 0;
693}
694
695void* operator new [](size_t size){
696  assert(false, "Should not call global operator new[]");
697  return 0;
698}
699
700void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
701  assert(false, "Should not call global operator new");
702  return 0;
703}
704
705void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
706  assert(false, "Should not call global operator new[]");
707  return 0;
708}
709
710void operator delete(void* p) {
711  assert(false, "Should not call global delete");
712}
713
714void operator delete [](void* p) {
715  assert(false, "Should not call global delete []");
716}
717#endif // ALLOW_OPERATOR_NEW_USAGE
718
719void AllocatedObj::print() const       { print_on(tty); }
720void AllocatedObj::print_value() const { print_value_on(tty); }
721
722void AllocatedObj::print_on(outputStream* st) const {
723  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
724}
725
726void AllocatedObj::print_value_on(outputStream* st) const {
727  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
728}
729
730julong Arena::_bytes_allocated = 0;
731
732void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
733
734AllocStats::AllocStats() {
735  start_mallocs      = os::num_mallocs;
736  start_frees        = os::num_frees;
737  start_malloc_bytes = os::alloc_bytes;
738  start_mfree_bytes  = os::free_bytes;
739  start_res_bytes    = Arena::_bytes_allocated;
740}
741
742julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
743julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
744julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
745julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
746julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
747void    AllocStats::print() {
748  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
749                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
750                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
751}
752
753
754// debugging code
755inline void Arena::free_all(char** start, char** end) {
756  for (char** p = start; p < end; p++) if (*p) os::free(*p);
757}
758
759void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
760  assert(UseMallocOnly, "should not call");
761  // free all objects malloced since resource mark was created; resource area
762  // contains their addresses
763  if (chunk->next()) {
764    // this chunk is full, and some others too
765    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
766      char* top = c->top();
767      if (c->next() == NULL) {
768        top = hwm2;     // last junk is only used up to hwm2
769        assert(c->contains(hwm2), "bad hwm2");
770      }
771      free_all((char**)c->bottom(), (char**)top);
772    }
773    assert(chunk->contains(hwm), "bad hwm");
774    assert(chunk->contains(max), "bad max");
775    free_all((char**)hwm, (char**)max);
776  } else {
777    // this chunk was partially used
778    assert(chunk->contains(hwm), "bad hwm");
779    assert(chunk->contains(hwm2), "bad hwm2");
780    free_all((char**)hwm, (char**)hwm2);
781  }
782}
783
784
785ReallocMark::ReallocMark() {
786#ifdef ASSERT
787  Thread *thread = ThreadLocalStorage::get_thread_slow();
788  _nesting = thread->resource_area()->nesting();
789#endif
790}
791
792void ReallocMark::check() {
793#ifdef ASSERT
794  if (_nesting != Thread::current()->resource_area()->nesting()) {
795    fatal("allocation bug: array could grow within nested ResourceMark");
796  }
797#endif
798}
799
800#endif // Non-product
801