allocation.cpp revision 4532:5a9fa2ba85f0
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39#ifdef TARGET_OS_FAMILY_linux
40# include "os_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "os_solaris.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_windows
46# include "os_windows.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_bsd
49# include "os_bsd.inline.hpp"
50#endif
51
52void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
53void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
54void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
55void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
56
57void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
58                                size_t word_size, bool read_only, TRAPS) {
59  // Klass has it's own operator new
60  return Metaspace::allocate(loader_data, word_size, read_only,
61                             Metaspace::NonClassType, CHECK_NULL);
62}
63
64bool MetaspaceObj::is_shared() const {
65  return MetaspaceShared::is_in_shared_space(this);
66}
67
68bool MetaspaceObj::is_metadata() const {
69  // GC Verify checks use this in guarantees.
70  // TODO: either replace them with is_metaspace_object() or remove them.
71  // is_metaspace_object() is slower than this test.  This test doesn't
72  // seem very useful for metaspace objects anymore though.
73  return !Universe::heap()->is_in_reserved(this);
74}
75
76bool MetaspaceObj::is_metaspace_object() const {
77  return Metaspace::contains((void*)this);
78}
79
80void MetaspaceObj::print_address_on(outputStream* st) const {
81  st->print(" {"INTPTR_FORMAT"}", this);
82}
83
84
85void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
86  address res;
87  switch (type) {
88   case C_HEAP:
89    res = (address)AllocateHeap(size, flags, CALLER_PC);
90    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
91    break;
92   case RESOURCE_AREA:
93    // new(size) sets allocation type RESOURCE_AREA.
94    res = (address)operator new(size);
95    break;
96   default:
97    ShouldNotReachHere();
98  }
99  return res;
100}
101
102void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
103    allocation_type type, MEMFLAGS flags) {
104  //should only call this with std::nothrow, use other operator new() otherwise
105  address res;
106  switch (type) {
107   case C_HEAP:
108    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
109    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
110    break;
111   case RESOURCE_AREA:
112    // new(size) sets allocation type RESOURCE_AREA.
113    res = (address)operator new(size, std::nothrow);
114    break;
115   default:
116    ShouldNotReachHere();
117  }
118  return res;
119}
120
121
122void ResourceObj::operator delete(void* p) {
123  assert(((ResourceObj *)p)->allocated_on_C_heap(),
124         "delete only allowed for C_HEAP objects");
125  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
126  FreeHeap(p);
127}
128
129#ifdef ASSERT
130void ResourceObj::set_allocation_type(address res, allocation_type type) {
131    // Set allocation type in the resource object
132    uintptr_t allocation = (uintptr_t)res;
133    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
134    assert(type <= allocation_mask, "incorrect allocation type");
135    ResourceObj* resobj = (ResourceObj *)res;
136    resobj->_allocation_t[0] = ~(allocation + type);
137    if (type != STACK_OR_EMBEDDED) {
138      // Called from operator new() and CollectionSetChooser(),
139      // set verification value.
140      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
141    }
142}
143
144ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
145    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
146    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
147}
148
149bool ResourceObj::is_type_set() const {
150    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
151    return get_allocation_type()  == type &&
152           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
153}
154
155ResourceObj::ResourceObj() { // default constructor
156    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
157      // Operator new() is not called for allocations
158      // on stack and for embedded objects.
159      set_allocation_type((address)this, STACK_OR_EMBEDDED);
160    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
161      // For some reason we got a value which resembles
162      // an embedded or stack object (operator new() does not
163      // set such type). Keep it since it is valid value
164      // (even if it was garbage).
165      // Ignore garbage in other fields.
166    } else if (is_type_set()) {
167      // Operator new() was called and type was set.
168      assert(!allocated_on_stack(),
169             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
170                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
171    } else {
172      // Operator new() was not called.
173      // Assume that it is embedded or stack object.
174      set_allocation_type((address)this, STACK_OR_EMBEDDED);
175    }
176    _allocation_t[1] = 0; // Zap verification value
177}
178
179ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
180    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
181    // Note: garbage may resembles valid value.
182    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
183           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
184                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
185    set_allocation_type((address)this, STACK_OR_EMBEDDED);
186    _allocation_t[1] = 0; // Zap verification value
187}
188
189ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
190    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
191    assert(allocated_on_stack(),
192           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
193                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
194    // Keep current _allocation_t value;
195    return *this;
196}
197
198ResourceObj::~ResourceObj() {
199    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
200    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
201      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
202    }
203}
204#endif // ASSERT
205
206
207void trace_heap_malloc(size_t size, const char* name, void* p) {
208  // A lock is not needed here - tty uses a lock internally
209  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
210}
211
212
213void trace_heap_free(void* p) {
214  // A lock is not needed here - tty uses a lock internally
215  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
216}
217
218bool warn_new_operator = false; // see vm_main
219
220//--------------------------------------------------------------------------------------
221// ChunkPool implementation
222
223// MT-safe pool of chunks to reduce malloc/free thrashing
224// NB: not using Mutex because pools are used before Threads are initialized
225class ChunkPool: public CHeapObj<mtInternal> {
226  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
227  size_t       _num_chunks;   // number of unused chunks in pool
228  size_t       _num_used;     // number of chunks currently checked out
229  const size_t _size;         // size of each chunk (must be uniform)
230
231  // Our three static pools
232  static ChunkPool* _large_pool;
233  static ChunkPool* _medium_pool;
234  static ChunkPool* _small_pool;
235
236  // return first element or null
237  void* get_first() {
238    Chunk* c = _first;
239    if (_first) {
240      _first = _first->next();
241      _num_chunks--;
242    }
243    return c;
244  }
245
246 public:
247  // All chunks in a ChunkPool has the same size
248   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
249
250  // Allocate a new chunk from the pool (might expand the pool)
251  _NOINLINE_ void* allocate(size_t bytes) {
252    assert(bytes == _size, "bad size");
253    void* p = NULL;
254    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
255    // should be done outside ThreadCritical lock due to NMT
256    { ThreadCritical tc;
257      _num_used++;
258      p = get_first();
259    }
260    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
261    if (p == NULL)
262      vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
263
264    return p;
265  }
266
267  // Return a chunk to the pool
268  void free(Chunk* chunk) {
269    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
270    ThreadCritical tc;
271    _num_used--;
272
273    // Add chunk to list
274    chunk->set_next(_first);
275    _first = chunk;
276    _num_chunks++;
277  }
278
279  // Prune the pool
280  void free_all_but(size_t n) {
281    Chunk* cur = NULL;
282    Chunk* next;
283    {
284    // if we have more than n chunks, free all of them
285    ThreadCritical tc;
286    if (_num_chunks > n) {
287      // free chunks at end of queue, for better locality
288        cur = _first;
289      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
290
291      if (cur != NULL) {
292          next = cur->next();
293        cur->set_next(NULL);
294        cur = next;
295
296          _num_chunks = n;
297        }
298      }
299    }
300
301    // Free all remaining chunks, outside of ThreadCritical
302    // to avoid deadlock with NMT
303        while(cur != NULL) {
304          next = cur->next();
305      os::free(cur, mtChunk);
306          cur = next;
307        }
308      }
309
310  // Accessors to preallocated pool's
311  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
312  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
313  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
314
315  static void initialize() {
316    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
317    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
318    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
319  }
320
321  static void clean() {
322    enum { BlocksToKeep = 5 };
323     _small_pool->free_all_but(BlocksToKeep);
324     _medium_pool->free_all_but(BlocksToKeep);
325     _large_pool->free_all_but(BlocksToKeep);
326  }
327};
328
329ChunkPool* ChunkPool::_large_pool  = NULL;
330ChunkPool* ChunkPool::_medium_pool = NULL;
331ChunkPool* ChunkPool::_small_pool  = NULL;
332
333void chunkpool_init() {
334  ChunkPool::initialize();
335}
336
337void
338Chunk::clean_chunk_pool() {
339  ChunkPool::clean();
340}
341
342
343//--------------------------------------------------------------------------------------
344// ChunkPoolCleaner implementation
345//
346
347class ChunkPoolCleaner : public PeriodicTask {
348  enum { CleaningInterval = 5000 };      // cleaning interval in ms
349
350 public:
351   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
352   void task() {
353     ChunkPool::clean();
354   }
355};
356
357//--------------------------------------------------------------------------------------
358// Chunk implementation
359
360void* Chunk::operator new(size_t requested_size, size_t length) {
361  // requested_size is equal to sizeof(Chunk) but in order for the arena
362  // allocations to come out aligned as expected the size must be aligned
363  // to expected arean alignment.
364  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
365  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
366  size_t bytes = ARENA_ALIGN(requested_size) + length;
367  switch (length) {
368   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
369   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
370   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
371   default: {
372     void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
373     if (p == NULL)
374       vm_exit_out_of_memory(bytes, "Chunk::new");
375     return p;
376   }
377  }
378}
379
380void Chunk::operator delete(void* p) {
381  Chunk* c = (Chunk*)p;
382  switch (c->length()) {
383   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
384   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
385   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
386   default:                 os::free(c, mtChunk);
387  }
388}
389
390Chunk::Chunk(size_t length) : _len(length) {
391  _next = NULL;         // Chain on the linked list
392}
393
394
395void Chunk::chop() {
396  Chunk *k = this;
397  while( k ) {
398    Chunk *tmp = k->next();
399    // clear out this chunk (to detect allocation bugs)
400    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
401    delete k;                   // Free chunk (was malloc'd)
402    k = tmp;
403  }
404}
405
406void Chunk::next_chop() {
407  _next->chop();
408  _next = NULL;
409}
410
411
412void Chunk::start_chunk_pool_cleaner_task() {
413#ifdef ASSERT
414  static bool task_created = false;
415  assert(!task_created, "should not start chuck pool cleaner twice");
416  task_created = true;
417#endif
418  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
419  cleaner->enroll();
420}
421
422//------------------------------Arena------------------------------------------
423NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
424
425Arena::Arena(size_t init_size) {
426  size_t round_size = (sizeof (char *)) - 1;
427  init_size = (init_size+round_size) & ~round_size;
428  _first = _chunk = new (init_size) Chunk(init_size);
429  _hwm = _chunk->bottom();      // Save the cached hwm, max
430  _max = _chunk->top();
431  set_size_in_bytes(init_size);
432  NOT_PRODUCT(Atomic::inc(&_instance_count);)
433}
434
435Arena::Arena() {
436  _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
437  _hwm = _chunk->bottom();      // Save the cached hwm, max
438  _max = _chunk->top();
439  set_size_in_bytes(Chunk::init_size);
440  NOT_PRODUCT(Atomic::inc(&_instance_count);)
441}
442
443Arena *Arena::move_contents(Arena *copy) {
444  copy->destruct_contents();
445  copy->_chunk = _chunk;
446  copy->_hwm   = _hwm;
447  copy->_max   = _max;
448  copy->_first = _first;
449
450  // workaround rare racing condition, which could double count
451  // the arena size by native memory tracking
452  size_t size = size_in_bytes();
453  set_size_in_bytes(0);
454  copy->set_size_in_bytes(size);
455  // Destroy original arena
456  reset();
457  return copy;            // Return Arena with contents
458}
459
460Arena::~Arena() {
461  destruct_contents();
462  NOT_PRODUCT(Atomic::dec(&_instance_count);)
463}
464
465void* Arena::operator new(size_t size) {
466  assert(false, "Use dynamic memory type binding");
467  return NULL;
468}
469
470void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
471  assert(false, "Use dynamic memory type binding");
472  return NULL;
473}
474
475  // dynamic memory type binding
476void* Arena::operator new(size_t size, MEMFLAGS flags) {
477#ifdef ASSERT
478  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
479  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
480  return p;
481#else
482  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
483#endif
484}
485
486void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
487#ifdef ASSERT
488  void* p = os::malloc(size, flags|otArena, CALLER_PC);
489  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
490  return p;
491#else
492  return os::malloc(size, flags|otArena, CALLER_PC);
493#endif
494}
495
496void Arena::operator delete(void* p) {
497  FreeHeap(p);
498}
499
500// Destroy this arenas contents and reset to empty
501void Arena::destruct_contents() {
502  if (UseMallocOnly && _first != NULL) {
503    char* end = _first->next() ? _first->top() : _hwm;
504    free_malloced_objects(_first, _first->bottom(), end, _hwm);
505  }
506  // reset size before chop to avoid a rare racing condition
507  // that can have total arena memory exceed total chunk memory
508  set_size_in_bytes(0);
509  _first->chop();
510  reset();
511}
512
513// This is high traffic method, but many calls actually don't
514// change the size
515void Arena::set_size_in_bytes(size_t size) {
516  if (_size_in_bytes != size) {
517    _size_in_bytes = size;
518    MemTracker::record_arena_size((address)this, size);
519  }
520}
521
522// Total of all Chunks in arena
523size_t Arena::used() const {
524  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
525  register Chunk *k = _first;
526  while( k != _chunk) {         // Whilst have Chunks in a row
527    sum += k->length();         // Total size of this Chunk
528    k = k->next();              // Bump along to next Chunk
529  }
530  return sum;                   // Return total consumed space.
531}
532
533void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
534  vm_exit_out_of_memory(sz, whence);
535}
536
537// Grow a new Chunk
538void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
539  // Get minimal required size.  Either real big, or even bigger for giant objs
540  size_t len = MAX2(x, (size_t) Chunk::size);
541
542  Chunk *k = _chunk;            // Get filled-up chunk address
543  _chunk = new (len) Chunk(len);
544
545  if (_chunk == NULL) {
546    if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
547      signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
548    }
549    return NULL;
550  }
551  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
552  else _first = _chunk;
553  _hwm  = _chunk->bottom();     // Save the cached hwm, max
554  _max =  _chunk->top();
555  set_size_in_bytes(size_in_bytes() + len);
556  void* result = _hwm;
557  _hwm += x;
558  return result;
559}
560
561
562
563// Reallocate storage in Arena.
564void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
565  assert(new_size >= 0, "bad size");
566  if (new_size == 0) return NULL;
567#ifdef ASSERT
568  if (UseMallocOnly) {
569    // always allocate a new object  (otherwise we'll free this one twice)
570    char* copy = (char*)Amalloc(new_size, alloc_failmode);
571    if (copy == NULL) {
572      return NULL;
573    }
574    size_t n = MIN2(old_size, new_size);
575    if (n > 0) memcpy(copy, old_ptr, n);
576    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
577    return copy;
578  }
579#endif
580  char *c_old = (char*)old_ptr; // Handy name
581  // Stupid fast special case
582  if( new_size <= old_size ) {  // Shrink in-place
583    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
584      _hwm = c_old+new_size;    // Adjust hwm
585    return c_old;
586  }
587
588  // make sure that new_size is legal
589  size_t corrected_new_size = ARENA_ALIGN(new_size);
590
591  // See if we can resize in-place
592  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
593      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
594    _hwm = c_old+corrected_new_size;      // Adjust hwm
595    return c_old;               // Return old pointer
596  }
597
598  // Oops, got to relocate guts
599  void *new_ptr = Amalloc(new_size, alloc_failmode);
600  if (new_ptr == NULL) {
601    return NULL;
602  }
603  memcpy( new_ptr, c_old, old_size );
604  Afree(c_old,old_size);        // Mostly done to keep stats accurate
605  return new_ptr;
606}
607
608
609// Determine if pointer belongs to this Arena or not.
610bool Arena::contains( const void *ptr ) const {
611#ifdef ASSERT
612  if (UseMallocOnly) {
613    // really slow, but not easy to make fast
614    if (_chunk == NULL) return false;
615    char** bottom = (char**)_chunk->bottom();
616    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
617      if (*p == ptr) return true;
618    }
619    for (Chunk *c = _first; c != NULL; c = c->next()) {
620      if (c == _chunk) continue;  // current chunk has been processed
621      char** bottom = (char**)c->bottom();
622      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
623        if (*p == ptr) return true;
624      }
625    }
626    return false;
627  }
628#endif
629  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
630    return true;                // Check for in this chunk
631  for (Chunk *c = _first; c; c = c->next()) {
632    if (c == _chunk) continue;  // current chunk has been processed
633    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
634      return true;              // Check for every chunk in Arena
635    }
636  }
637  return false;                 // Not in any Chunk, so not in Arena
638}
639
640
641#ifdef ASSERT
642void* Arena::malloc(size_t size) {
643  assert(UseMallocOnly, "shouldn't call");
644  // use malloc, but save pointer in res. area for later freeing
645  char** save = (char**)internal_malloc_4(sizeof(char*));
646  return (*save = (char*)os::malloc(size, mtChunk));
647}
648
649// for debugging with UseMallocOnly
650void* Arena::internal_malloc_4(size_t x) {
651  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
652  check_for_overflow(x, "Arena::internal_malloc_4");
653  if (_hwm + x > _max) {
654    return grow(x);
655  } else {
656    char *old = _hwm;
657    _hwm += x;
658    return old;
659  }
660}
661#endif
662
663
664//--------------------------------------------------------------------------------------
665// Non-product code
666
667#ifndef PRODUCT
668// The global operator new should never be called since it will usually indicate
669// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
670// that they're allocated on the C heap.
671// Commented out in product version to avoid conflicts with third-party C++ native code.
672// %% note this is causing a problem on solaris debug build. the global
673// new is being called from jdk source and causing data corruption.
674// src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
675// define CATCH_OPERATOR_NEW_USAGE if you want to use this.
676#ifdef CATCH_OPERATOR_NEW_USAGE
677void* operator new(size_t size){
678  static bool warned = false;
679  if (!warned && warn_new_operator)
680    warning("should not call global (default) operator new");
681  warned = true;
682  return (void *) AllocateHeap(size, "global operator new");
683}
684#endif
685
686void AllocatedObj::print() const       { print_on(tty); }
687void AllocatedObj::print_value() const { print_value_on(tty); }
688
689void AllocatedObj::print_on(outputStream* st) const {
690  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
691}
692
693void AllocatedObj::print_value_on(outputStream* st) const {
694  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
695}
696
697julong Arena::_bytes_allocated = 0;
698
699void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
700
701AllocStats::AllocStats() {
702  start_mallocs      = os::num_mallocs;
703  start_frees        = os::num_frees;
704  start_malloc_bytes = os::alloc_bytes;
705  start_mfree_bytes  = os::free_bytes;
706  start_res_bytes    = Arena::_bytes_allocated;
707}
708
709julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
710julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
711julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
712julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
713julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
714void    AllocStats::print() {
715  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
716                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
717                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
718}
719
720
721// debugging code
722inline void Arena::free_all(char** start, char** end) {
723  for (char** p = start; p < end; p++) if (*p) os::free(*p);
724}
725
726void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
727  assert(UseMallocOnly, "should not call");
728  // free all objects malloced since resource mark was created; resource area
729  // contains their addresses
730  if (chunk->next()) {
731    // this chunk is full, and some others too
732    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
733      char* top = c->top();
734      if (c->next() == NULL) {
735        top = hwm2;     // last junk is only used up to hwm2
736        assert(c->contains(hwm2), "bad hwm2");
737      }
738      free_all((char**)c->bottom(), (char**)top);
739    }
740    assert(chunk->contains(hwm), "bad hwm");
741    assert(chunk->contains(max), "bad max");
742    free_all((char**)hwm, (char**)max);
743  } else {
744    // this chunk was partially used
745    assert(chunk->contains(hwm), "bad hwm");
746    assert(chunk->contains(hwm2), "bad hwm2");
747    free_all((char**)hwm, (char**)hwm2);
748  }
749}
750
751
752ReallocMark::ReallocMark() {
753#ifdef ASSERT
754  Thread *thread = ThreadLocalStorage::get_thread_slow();
755  _nesting = thread->resource_area()->nesting();
756#endif
757}
758
759void ReallocMark::check() {
760#ifdef ASSERT
761  if (_nesting != Thread::current()->resource_area()->nesting()) {
762    fatal("allocation bug: array could grow within nested ResourceMark");
763  }
764#endif
765}
766
767#endif // Non-product
768