allocation.cpp revision 4527:6f817ce50129
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/genCollectedHeap.hpp"
29#include "memory/metaspaceShared.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.hpp"
32#include "runtime/atomic.hpp"
33#include "runtime/os.hpp"
34#include "runtime/task.hpp"
35#include "runtime/threadCritical.hpp"
36#include "services/memTracker.hpp"
37#include "utilities/ostream.hpp"
38
39#ifdef TARGET_OS_FAMILY_linux
40# include "os_linux.inline.hpp"
41#endif
42#ifdef TARGET_OS_FAMILY_solaris
43# include "os_solaris.inline.hpp"
44#endif
45#ifdef TARGET_OS_FAMILY_windows
46# include "os_windows.inline.hpp"
47#endif
48#ifdef TARGET_OS_FAMILY_bsd
49# include "os_bsd.inline.hpp"
50#endif
51
52void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
53void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
54void* StackObj::operator new [](size_t size)  { ShouldNotCallThis(); return 0; };
55void  StackObj::operator delete [](void* p)   { ShouldNotCallThis(); };
56void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
57void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
58void* _ValueObj::operator new [](size_t size)  { ShouldNotCallThis(); return 0; };
59void  _ValueObj::operator delete [](void* p)   { ShouldNotCallThis(); };
60
61void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
62                                size_t word_size, bool read_only, TRAPS) {
63  // Klass has it's own operator new
64  return Metaspace::allocate(loader_data, word_size, read_only,
65                             Metaspace::NonClassType, CHECK_NULL);
66}
67
68bool MetaspaceObj::is_shared() const {
69  return MetaspaceShared::is_in_shared_space(this);
70}
71
72bool MetaspaceObj::is_metadata() const {
73  // GC Verify checks use this in guarantees.
74  // TODO: either replace them with is_metaspace_object() or remove them.
75  // is_metaspace_object() is slower than this test.  This test doesn't
76  // seem very useful for metaspace objects anymore though.
77  return !Universe::heap()->is_in_reserved(this);
78}
79
80bool MetaspaceObj::is_metaspace_object() const {
81  return Metaspace::contains((void*)this);
82}
83
84void MetaspaceObj::print_address_on(outputStream* st) const {
85  st->print(" {"INTPTR_FORMAT"}", this);
86}
87
88void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
89  address res;
90  switch (type) {
91   case C_HEAP:
92    res = (address)AllocateHeap(size, flags, CALLER_PC);
93    DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
94    break;
95   case RESOURCE_AREA:
96    // new(size) sets allocation type RESOURCE_AREA.
97    res = (address)operator new(size);
98    break;
99   default:
100    ShouldNotReachHere();
101  }
102  return res;
103}
104
105void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
106  return (address) operator new(size, type, flags);
107}
108
109void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
110    allocation_type type, MEMFLAGS flags) {
111  //should only call this with std::nothrow, use other operator new() otherwise
112  address res;
113  switch (type) {
114   case C_HEAP:
115    res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
116    DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
117    break;
118   case RESOURCE_AREA:
119    // new(size) sets allocation type RESOURCE_AREA.
120    res = (address)operator new(size, std::nothrow);
121    break;
122   default:
123    ShouldNotReachHere();
124  }
125  return res;
126}
127
128void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
129    allocation_type type, MEMFLAGS flags) {
130  return (address)operator new(size, nothrow_constant, type, flags);
131}
132
133void ResourceObj::operator delete(void* p) {
134  assert(((ResourceObj *)p)->allocated_on_C_heap(),
135         "delete only allowed for C_HEAP objects");
136  DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
137  FreeHeap(p);
138}
139
140void ResourceObj::operator delete [](void* p) {
141  operator delete(p);
142}
143
144#ifdef ASSERT
145void ResourceObj::set_allocation_type(address res, allocation_type type) {
146    // Set allocation type in the resource object
147    uintptr_t allocation = (uintptr_t)res;
148    assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
149    assert(type <= allocation_mask, "incorrect allocation type");
150    ResourceObj* resobj = (ResourceObj *)res;
151    resobj->_allocation_t[0] = ~(allocation + type);
152    if (type != STACK_OR_EMBEDDED) {
153      // Called from operator new() and CollectionSetChooser(),
154      // set verification value.
155      resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
156    }
157}
158
159ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
160    assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
161    return (allocation_type)((~_allocation_t[0]) & allocation_mask);
162}
163
164bool ResourceObj::is_type_set() const {
165    allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
166    return get_allocation_type()  == type &&
167           (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
168}
169
170ResourceObj::ResourceObj() { // default constructor
171    if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
172      // Operator new() is not called for allocations
173      // on stack and for embedded objects.
174      set_allocation_type((address)this, STACK_OR_EMBEDDED);
175    } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
176      // For some reason we got a value which resembles
177      // an embedded or stack object (operator new() does not
178      // set such type). Keep it since it is valid value
179      // (even if it was garbage).
180      // Ignore garbage in other fields.
181    } else if (is_type_set()) {
182      // Operator new() was called and type was set.
183      assert(!allocated_on_stack(),
184             err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
185                     this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
186    } else {
187      // Operator new() was not called.
188      // Assume that it is embedded or stack object.
189      set_allocation_type((address)this, STACK_OR_EMBEDDED);
190    }
191    _allocation_t[1] = 0; // Zap verification value
192}
193
194ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
195    // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
196    // Note: garbage may resembles valid value.
197    assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
198           err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
199                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
200    set_allocation_type((address)this, STACK_OR_EMBEDDED);
201    _allocation_t[1] = 0; // Zap verification value
202}
203
204ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
205    // Used in InlineTree::ok_to_inline() for WarmCallInfo.
206    assert(allocated_on_stack(),
207           err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
208                   this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
209    // Keep current _allocation_t value;
210    return *this;
211}
212
213ResourceObj::~ResourceObj() {
214    // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
215    if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
216      _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
217    }
218}
219#endif // ASSERT
220
221
222void trace_heap_malloc(size_t size, const char* name, void* p) {
223  // A lock is not needed here - tty uses a lock internally
224  tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
225}
226
227
228void trace_heap_free(void* p) {
229  // A lock is not needed here - tty uses a lock internally
230  tty->print_cr("Heap free   " INTPTR_FORMAT, p);
231}
232
233bool warn_new_operator = false; // see vm_main
234
235//--------------------------------------------------------------------------------------
236// ChunkPool implementation
237
238// MT-safe pool of chunks to reduce malloc/free thrashing
239// NB: not using Mutex because pools are used before Threads are initialized
240class ChunkPool: public CHeapObj<mtInternal> {
241  Chunk*       _first;        // first cached Chunk; its first word points to next chunk
242  size_t       _num_chunks;   // number of unused chunks in pool
243  size_t       _num_used;     // number of chunks currently checked out
244  const size_t _size;         // size of each chunk (must be uniform)
245
246  // Our three static pools
247  static ChunkPool* _large_pool;
248  static ChunkPool* _medium_pool;
249  static ChunkPool* _small_pool;
250
251  // return first element or null
252  void* get_first() {
253    Chunk* c = _first;
254    if (_first) {
255      _first = _first->next();
256      _num_chunks--;
257    }
258    return c;
259  }
260
261 public:
262  // All chunks in a ChunkPool has the same size
263   ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
264
265  // Allocate a new chunk from the pool (might expand the pool)
266  _NOINLINE_ void* allocate(size_t bytes) {
267    assert(bytes == _size, "bad size");
268    void* p = NULL;
269    // No VM lock can be taken inside ThreadCritical lock, so os::malloc
270    // should be done outside ThreadCritical lock due to NMT
271    { ThreadCritical tc;
272      _num_used++;
273      p = get_first();
274    }
275    if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
276    if (p == NULL)
277      vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
278
279    return p;
280  }
281
282  // Return a chunk to the pool
283  void free(Chunk* chunk) {
284    assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
285    ThreadCritical tc;
286    _num_used--;
287
288    // Add chunk to list
289    chunk->set_next(_first);
290    _first = chunk;
291    _num_chunks++;
292  }
293
294  // Prune the pool
295  void free_all_but(size_t n) {
296    Chunk* cur = NULL;
297    Chunk* next;
298    {
299    // if we have more than n chunks, free all of them
300    ThreadCritical tc;
301    if (_num_chunks > n) {
302      // free chunks at end of queue, for better locality
303        cur = _first;
304      for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
305
306      if (cur != NULL) {
307          next = cur->next();
308        cur->set_next(NULL);
309        cur = next;
310
311          _num_chunks = n;
312        }
313      }
314    }
315
316    // Free all remaining chunks, outside of ThreadCritical
317    // to avoid deadlock with NMT
318        while(cur != NULL) {
319          next = cur->next();
320      os::free(cur, mtChunk);
321          cur = next;
322        }
323      }
324
325  // Accessors to preallocated pool's
326  static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
327  static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
328  static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
329
330  static void initialize() {
331    _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
332    _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
333    _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
334  }
335
336  static void clean() {
337    enum { BlocksToKeep = 5 };
338     _small_pool->free_all_but(BlocksToKeep);
339     _medium_pool->free_all_but(BlocksToKeep);
340     _large_pool->free_all_but(BlocksToKeep);
341  }
342};
343
344ChunkPool* ChunkPool::_large_pool  = NULL;
345ChunkPool* ChunkPool::_medium_pool = NULL;
346ChunkPool* ChunkPool::_small_pool  = NULL;
347
348void chunkpool_init() {
349  ChunkPool::initialize();
350}
351
352void
353Chunk::clean_chunk_pool() {
354  ChunkPool::clean();
355}
356
357
358//--------------------------------------------------------------------------------------
359// ChunkPoolCleaner implementation
360//
361
362class ChunkPoolCleaner : public PeriodicTask {
363  enum { CleaningInterval = 5000 };      // cleaning interval in ms
364
365 public:
366   ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
367   void task() {
368     ChunkPool::clean();
369   }
370};
371
372//--------------------------------------------------------------------------------------
373// Chunk implementation
374
375void* Chunk::operator new(size_t requested_size, size_t length) {
376  // requested_size is equal to sizeof(Chunk) but in order for the arena
377  // allocations to come out aligned as expected the size must be aligned
378  // to expected arena alignment.
379  // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
380  assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
381  size_t bytes = ARENA_ALIGN(requested_size) + length;
382  switch (length) {
383   case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
384   case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
385   case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
386   default: {
387     void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
388     if (p == NULL)
389       vm_exit_out_of_memory(bytes, "Chunk::new");
390     return p;
391   }
392  }
393}
394
395void Chunk::operator delete(void* p) {
396  Chunk* c = (Chunk*)p;
397  switch (c->length()) {
398   case Chunk::size:        ChunkPool::large_pool()->free(c); break;
399   case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
400   case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
401   default:                 os::free(c, mtChunk);
402  }
403}
404
405Chunk::Chunk(size_t length) : _len(length) {
406  _next = NULL;         // Chain on the linked list
407}
408
409
410void Chunk::chop() {
411  Chunk *k = this;
412  while( k ) {
413    Chunk *tmp = k->next();
414    // clear out this chunk (to detect allocation bugs)
415    if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
416    delete k;                   // Free chunk (was malloc'd)
417    k = tmp;
418  }
419}
420
421void Chunk::next_chop() {
422  _next->chop();
423  _next = NULL;
424}
425
426
427void Chunk::start_chunk_pool_cleaner_task() {
428#ifdef ASSERT
429  static bool task_created = false;
430  assert(!task_created, "should not start chuck pool cleaner twice");
431  task_created = true;
432#endif
433  ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
434  cleaner->enroll();
435}
436
437//------------------------------Arena------------------------------------------
438NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
439
440Arena::Arena(size_t init_size) {
441  size_t round_size = (sizeof (char *)) - 1;
442  init_size = (init_size+round_size) & ~round_size;
443  _first = _chunk = new (init_size) Chunk(init_size);
444  _hwm = _chunk->bottom();      // Save the cached hwm, max
445  _max = _chunk->top();
446  set_size_in_bytes(init_size);
447  NOT_PRODUCT(Atomic::inc(&_instance_count);)
448}
449
450Arena::Arena() {
451  _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
452  _hwm = _chunk->bottom();      // Save the cached hwm, max
453  _max = _chunk->top();
454  set_size_in_bytes(Chunk::init_size);
455  NOT_PRODUCT(Atomic::inc(&_instance_count);)
456}
457
458Arena *Arena::move_contents(Arena *copy) {
459  copy->destruct_contents();
460  copy->_chunk = _chunk;
461  copy->_hwm   = _hwm;
462  copy->_max   = _max;
463  copy->_first = _first;
464
465  // workaround rare racing condition, which could double count
466  // the arena size by native memory tracking
467  size_t size = size_in_bytes();
468  set_size_in_bytes(0);
469  copy->set_size_in_bytes(size);
470  // Destroy original arena
471  reset();
472  return copy;            // Return Arena with contents
473}
474
475Arena::~Arena() {
476  destruct_contents();
477  NOT_PRODUCT(Atomic::dec(&_instance_count);)
478}
479
480void* Arena::operator new(size_t size) {
481  assert(false, "Use dynamic memory type binding");
482  return NULL;
483}
484
485void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
486  assert(false, "Use dynamic memory type binding");
487  return NULL;
488}
489
490  // dynamic memory type binding
491void* Arena::operator new(size_t size, MEMFLAGS flags) {
492#ifdef ASSERT
493  void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
494  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
495  return p;
496#else
497  return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
498#endif
499}
500
501void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
502#ifdef ASSERT
503  void* p = os::malloc(size, flags|otArena, CALLER_PC);
504  if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
505  return p;
506#else
507  return os::malloc(size, flags|otArena, CALLER_PC);
508#endif
509}
510
511void Arena::operator delete(void* p) {
512  FreeHeap(p);
513}
514
515// Destroy this arenas contents and reset to empty
516void Arena::destruct_contents() {
517  if (UseMallocOnly && _first != NULL) {
518    char* end = _first->next() ? _first->top() : _hwm;
519    free_malloced_objects(_first, _first->bottom(), end, _hwm);
520  }
521  // reset size before chop to avoid a rare racing condition
522  // that can have total arena memory exceed total chunk memory
523  set_size_in_bytes(0);
524  _first->chop();
525  reset();
526}
527
528// This is high traffic method, but many calls actually don't
529// change the size
530void Arena::set_size_in_bytes(size_t size) {
531  if (_size_in_bytes != size) {
532    _size_in_bytes = size;
533    MemTracker::record_arena_size((address)this, size);
534  }
535}
536
537// Total of all Chunks in arena
538size_t Arena::used() const {
539  size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
540  register Chunk *k = _first;
541  while( k != _chunk) {         // Whilst have Chunks in a row
542    sum += k->length();         // Total size of this Chunk
543    k = k->next();              // Bump along to next Chunk
544  }
545  return sum;                   // Return total consumed space.
546}
547
548void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
549  vm_exit_out_of_memory(sz, whence);
550}
551
552// Grow a new Chunk
553void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
554  // Get minimal required size.  Either real big, or even bigger for giant objs
555  size_t len = MAX2(x, (size_t) Chunk::size);
556
557  Chunk *k = _chunk;            // Get filled-up chunk address
558  _chunk = new (len) Chunk(len);
559
560  if (_chunk == NULL) {
561    if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
562      signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
563    }
564    return NULL;
565  }
566  if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
567  else _first = _chunk;
568  _hwm  = _chunk->bottom();     // Save the cached hwm, max
569  _max =  _chunk->top();
570  set_size_in_bytes(size_in_bytes() + len);
571  void* result = _hwm;
572  _hwm += x;
573  return result;
574}
575
576
577
578// Reallocate storage in Arena.
579void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
580  assert(new_size >= 0, "bad size");
581  if (new_size == 0) return NULL;
582#ifdef ASSERT
583  if (UseMallocOnly) {
584    // always allocate a new object  (otherwise we'll free this one twice)
585    char* copy = (char*)Amalloc(new_size, alloc_failmode);
586    if (copy == NULL) {
587      return NULL;
588    }
589    size_t n = MIN2(old_size, new_size);
590    if (n > 0) memcpy(copy, old_ptr, n);
591    Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
592    return copy;
593  }
594#endif
595  char *c_old = (char*)old_ptr; // Handy name
596  // Stupid fast special case
597  if( new_size <= old_size ) {  // Shrink in-place
598    if( c_old+old_size == _hwm) // Attempt to free the excess bytes
599      _hwm = c_old+new_size;    // Adjust hwm
600    return c_old;
601  }
602
603  // make sure that new_size is legal
604  size_t corrected_new_size = ARENA_ALIGN(new_size);
605
606  // See if we can resize in-place
607  if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
608      (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
609    _hwm = c_old+corrected_new_size;      // Adjust hwm
610    return c_old;               // Return old pointer
611  }
612
613  // Oops, got to relocate guts
614  void *new_ptr = Amalloc(new_size, alloc_failmode);
615  if (new_ptr == NULL) {
616    return NULL;
617  }
618  memcpy( new_ptr, c_old, old_size );
619  Afree(c_old,old_size);        // Mostly done to keep stats accurate
620  return new_ptr;
621}
622
623
624// Determine if pointer belongs to this Arena or not.
625bool Arena::contains( const void *ptr ) const {
626#ifdef ASSERT
627  if (UseMallocOnly) {
628    // really slow, but not easy to make fast
629    if (_chunk == NULL) return false;
630    char** bottom = (char**)_chunk->bottom();
631    for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
632      if (*p == ptr) return true;
633    }
634    for (Chunk *c = _first; c != NULL; c = c->next()) {
635      if (c == _chunk) continue;  // current chunk has been processed
636      char** bottom = (char**)c->bottom();
637      for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
638        if (*p == ptr) return true;
639      }
640    }
641    return false;
642  }
643#endif
644  if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
645    return true;                // Check for in this chunk
646  for (Chunk *c = _first; c; c = c->next()) {
647    if (c == _chunk) continue;  // current chunk has been processed
648    if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
649      return true;              // Check for every chunk in Arena
650    }
651  }
652  return false;                 // Not in any Chunk, so not in Arena
653}
654
655
656#ifdef ASSERT
657void* Arena::malloc(size_t size) {
658  assert(UseMallocOnly, "shouldn't call");
659  // use malloc, but save pointer in res. area for later freeing
660  char** save = (char**)internal_malloc_4(sizeof(char*));
661  return (*save = (char*)os::malloc(size, mtChunk));
662}
663
664// for debugging with UseMallocOnly
665void* Arena::internal_malloc_4(size_t x) {
666  assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
667  check_for_overflow(x, "Arena::internal_malloc_4");
668  if (_hwm + x > _max) {
669    return grow(x);
670  } else {
671    char *old = _hwm;
672    _hwm += x;
673    return old;
674  }
675}
676#endif
677
678
679//--------------------------------------------------------------------------------------
680// Non-product code
681
682#ifndef PRODUCT
683// The global operator new should never be called since it will usually indicate
684// a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
685// that they're allocated on the C heap.
686// Commented out in product version to avoid conflicts with third-party C++ native code.
687void* operator new(size_t size){
688  ShouldNotReachHere(); return 0;
689}
690
691void* operator new [](size_t size){
692  ShouldNotReachHere(); return 0;
693}
694
695void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
696  ShouldNotReachHere(); return 0;
697}
698
699void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
700  ShouldNotReachHere(); return 0;
701}
702
703void AllocatedObj::print() const       { print_on(tty); }
704void AllocatedObj::print_value() const { print_value_on(tty); }
705
706void AllocatedObj::print_on(outputStream* st) const {
707  st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
708}
709
710void AllocatedObj::print_value_on(outputStream* st) const {
711  st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
712}
713
714julong Arena::_bytes_allocated = 0;
715
716void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
717
718AllocStats::AllocStats() {
719  start_mallocs      = os::num_mallocs;
720  start_frees        = os::num_frees;
721  start_malloc_bytes = os::alloc_bytes;
722  start_mfree_bytes  = os::free_bytes;
723  start_res_bytes    = Arena::_bytes_allocated;
724}
725
726julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
727julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
728julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
729julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
730julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
731void    AllocStats::print() {
732  tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
733                UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
734                num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
735}
736
737
738// debugging code
739inline void Arena::free_all(char** start, char** end) {
740  for (char** p = start; p < end; p++) if (*p) os::free(*p);
741}
742
743void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
744  assert(UseMallocOnly, "should not call");
745  // free all objects malloced since resource mark was created; resource area
746  // contains their addresses
747  if (chunk->next()) {
748    // this chunk is full, and some others too
749    for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
750      char* top = c->top();
751      if (c->next() == NULL) {
752        top = hwm2;     // last junk is only used up to hwm2
753        assert(c->contains(hwm2), "bad hwm2");
754      }
755      free_all((char**)c->bottom(), (char**)top);
756    }
757    assert(chunk->contains(hwm), "bad hwm");
758    assert(chunk->contains(max), "bad max");
759    free_all((char**)hwm, (char**)max);
760  } else {
761    // this chunk was partially used
762    assert(chunk->contains(hwm), "bad hwm");
763    assert(chunk->contains(hwm2), "bad hwm2");
764    free_all((char**)hwm, (char**)hwm2);
765  }
766}
767
768
769ReallocMark::ReallocMark() {
770#ifdef ASSERT
771  Thread *thread = ThreadLocalStorage::get_thread_slow();
772  _nesting = thread->resource_area()->nesting();
773#endif
774}
775
776void ReallocMark::check() {
777#ifdef ASSERT
778  if (_nesting != Thread::current()->resource_area()->nesting()) {
779    fatal("allocation bug: array could grow within nested ResourceMark");
780  }
781#endif
782}
783
784#endif // Non-product
785