dict.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Dictionaries - An Abstract Data Type
26
27#include "incls/_precompiled.incl"
28#include "incls/_dict.cpp.incl"
29
30// %%%%% includes not needed with AVM framework - Ungar
31
32// #include "port.hpp"
33//IMPLEMENTATION
34// #include "dict.hpp"
35
36#include <assert.h>
37
38// The iostream is not needed and it gets confused for gcc by the
39// define of bool.
40//
41// #include <iostream.h>
42
43//------------------------------data-----------------------------------------
44// String hash tables
45#define MAXID 20
46static byte initflag = 0;       // True after 1st initialization
47static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
48static short xsum[MAXID];
49
50//------------------------------bucket---------------------------------------
51class bucket : public ResourceObj {
52public:
53  uint _cnt, _max;              // Size of bucket
54  void **_keyvals;              // Array of keys and values
55};
56
57//------------------------------Dict-----------------------------------------
58// The dictionary is kept has a hash table.  The hash table is a even power
59// of two, for nice modulo operations.  Each bucket in the hash table points
60// to a linear list of key-value pairs; each key & value is just a (void *).
61// The list starts with a count.  A hash lookup finds the list head, then a
62// simple linear scan finds the key.  If the table gets too full, it's
63// doubled in size; the total amount of EXTRA times all hash functions are
64// computed for the doubling is no more than the current size - thus the
65// doubling in size costs no more than a constant factor in speed.
66Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp),
67  _arena(Thread::current()->resource_area()) {
68  int i;
69
70  // Precompute table of null character hashes
71  if( !initflag ) {             // Not initializated yet?
72    xsum[0] = (1<<shft[0])+1;   // Initialize
73    for(i=1; i<MAXID; i++) {
74      xsum[i] = (1<<shft[i])+1+xsum[i-1];
75    }
76    initflag = 1;               // Never again
77  }
78
79  _size = 16;                   // Size is a power of 2
80  _cnt = 0;                     // Dictionary is empty
81  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
82  memset(_bin,0,sizeof(bucket)*_size);
83}
84
85Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size)
86: _hash(inithash), _cmp(initcmp), _arena(arena) {
87  int i;
88
89  // Precompute table of null character hashes
90  if( !initflag ) {             // Not initializated yet?
91    xsum[0] = (1<<shft[0])+1;   // Initialize
92    for(i=1; i<MAXID; i++) {
93      xsum[i] = (1<<shft[i])+1+xsum[i-1];
94    }
95    initflag = 1;               // Never again
96  }
97
98  i=16;
99  while( i < size ) i <<= 1;
100  _size = i;                    // Size is a power of 2
101  _cnt = 0;                     // Dictionary is empty
102  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
103  memset(_bin,0,sizeof(bucket)*_size);
104}
105
106//------------------------------~Dict------------------------------------------
107// Delete an existing dictionary.
108Dict::~Dict() {
109  /*
110  tty->print("~Dict %d/%d: ",_cnt,_size);
111  for( uint i=0; i < _size; i++) // For complete new table do
112    tty->print("%d ",_bin[i]._cnt);
113  tty->print("\n");*/
114  /*for( uint i=0; i<_size; i++ ) {
115    FREE_FAST( _bin[i]._keyvals );
116    } */
117}
118
119//------------------------------Clear----------------------------------------
120// Zap to empty; ready for re-use
121void Dict::Clear() {
122  _cnt = 0;                     // Empty contents
123  for( uint i=0; i<_size; i++ )
124    _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
125  // Leave _size & _bin alone, under the assumption that dictionary will
126  // grow to this size again.
127}
128
129//------------------------------doubhash---------------------------------------
130// Double hash table size.  If can't do so, just suffer.  If can, then run
131// thru old hash table, moving things to new table.  Note that since hash
132// table doubled, exactly 1 new bit is exposed in the mask - so everything
133// in the old table ends up on 1 of two lists in the new table; a hi and a
134// lo list depending on the value of the bit.
135void Dict::doubhash(void) {
136  uint oldsize = _size;
137  _size <<= 1;                  // Double in size
138  _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
139  memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
140  // Rehash things to spread into new table
141  for( uint i=0; i < oldsize; i++) { // For complete OLD table do
142    bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
143    if( !b->_keyvals ) continue;        // Skip empties fast
144
145    bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
146    uint j = b->_max;               // Trim new bucket to nearest power of 2
147    while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
148    if( !j ) j = 1;             // Handle zero-sized buckets
149    nb->_max = j<<1;
150    // Allocate worst case space for key-value pairs
151    nb->_keyvals = (void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
152    uint nbcnt = 0;
153
154    for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
155      void *key = b->_keyvals[j+j];
156      if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
157        nb->_keyvals[nbcnt+nbcnt] = key;
158        nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
159        nb->_cnt = nbcnt = nbcnt+1;
160        b->_cnt--;              // Remove key/value from lo bucket
161        b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
162        b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
163        j--;                    // Hash compacted element also
164      }
165    } // End of for all key-value pairs in bucket
166  } // End of for all buckets
167
168
169}
170
171//------------------------------Dict-----------------------------------------
172// Deep copy a dictionary.
173Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
174  _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
175  memcpy( _bin, d._bin, sizeof(bucket)*_size );
176  for( uint i=0; i<_size; i++ ) {
177    if( !_bin[i]._keyvals ) continue;
178    _bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
179    memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
180  }
181}
182
183//------------------------------Dict-----------------------------------------
184// Deep copy a dictionary.
185Dict &Dict::operator =( const Dict &d ) {
186  if( _size < d._size ) {       // If must have more buckets
187    _arena = d._arena;
188    _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
189    memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
190    _size = d._size;
191  }
192  uint i;
193  for( i=0; i<_size; i++ ) // All buckets are empty
194    _bin[i]._cnt = 0;           // But leave bucket allocations alone
195  _cnt = d._cnt;
196  *(Hash*)(&_hash) = d._hash;
197  *(CmpKey*)(&_cmp) = d._cmp;
198  for( i=0; i<_size; i++ ) {
199    bucket *b = &d._bin[i];     // Shortcut to source bucket
200    for( uint j=0; j<b->_cnt; j++ )
201      Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
202  }
203  return *this;
204}
205
206//------------------------------Insert----------------------------------------
207// Insert or replace a key/value pair in the given dictionary.  If the
208// dictionary is too full, it's size is doubled.  The prior value being
209// replaced is returned (NULL if this is a 1st insertion of that key).  If
210// an old value is found, it's swapped with the prior key-value pair on the
211// list.  This moves a commonly searched-for value towards the list head.
212void *Dict::Insert(void *key, void *val, bool replace) {
213  uint hash = _hash( key );     // Get hash key
214  uint i = hash & (_size-1);    // Get hash key, corrected for size
215  bucket *b = &_bin[i];         // Handy shortcut
216  for( uint j=0; j<b->_cnt; j++ ) {
217    if( !_cmp(key,b->_keyvals[j+j]) ) {
218      if (!replace) {
219        return b->_keyvals[j+j+1];
220      } else {
221        void *prior = b->_keyvals[j+j+1];
222        b->_keyvals[j+j  ] = key;       // Insert current key-value
223        b->_keyvals[j+j+1] = val;
224        return prior;           // Return prior
225      }
226    }
227  }
228  if( ++_cnt > _size ) {        // Hash table is full
229    doubhash();                 // Grow whole table if too full
230    i = hash & (_size-1);       // Rehash
231    b = &_bin[i];               // Handy shortcut
232  }
233  if( b->_cnt == b->_max ) {    // Must grow bucket?
234    if( !b->_keyvals ) {
235      b->_max = 2;              // Initial bucket size
236      b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2);
237    } else {
238      b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4);
239      b->_max <<= 1;            // Double bucket
240    }
241  }
242  b->_keyvals[b->_cnt+b->_cnt  ] = key;
243  b->_keyvals[b->_cnt+b->_cnt+1] = val;
244  b->_cnt++;
245  return NULL;                  // Nothing found prior
246}
247
248//------------------------------Delete---------------------------------------
249// Find & remove a value from dictionary. Return old value.
250void *Dict::Delete(void *key) {
251  uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
252  bucket *b = &_bin[i];         // Handy shortcut
253  for( uint j=0; j<b->_cnt; j++ )
254    if( !_cmp(key,b->_keyvals[j+j]) ) {
255      void *prior = b->_keyvals[j+j+1];
256      b->_cnt--;                // Remove key/value from lo bucket
257      b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
258      b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
259      _cnt--;                   // One less thing in table
260      return prior;
261    }
262  return NULL;
263}
264
265//------------------------------FindDict-------------------------------------
266// Find a key-value pair in the given dictionary.  If not found, return NULL.
267// If found, move key-value pair towards head of list.
268void *Dict::operator [](const void *key) const {
269  uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
270  bucket *b = &_bin[i];         // Handy shortcut
271  for( uint j=0; j<b->_cnt; j++ )
272    if( !_cmp(key,b->_keyvals[j+j]) )
273      return b->_keyvals[j+j+1];
274  return NULL;
275}
276
277//------------------------------CmpDict--------------------------------------
278// CmpDict compares two dictionaries; they must have the same keys (their
279// keys must match using CmpKey) and they must have the same values (pointer
280// comparison).  If so 1 is returned, if not 0 is returned.
281int32 Dict::operator ==(const Dict &d2) const {
282  if( _cnt != d2._cnt ) return 0;
283  if( _hash != d2._hash ) return 0;
284  if( _cmp != d2._cmp ) return 0;
285  for( uint i=0; i < _size; i++) {      // For complete hash table do
286    bucket *b = &_bin[i];       // Handy shortcut
287    if( b->_cnt != d2._bin[i]._cnt ) return 0;
288    if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
289      return 0;                 // Key-value pairs must match
290  }
291  return 1;                     // All match, is OK
292}
293
294//------------------------------print------------------------------------------
295// Handier print routine
296void Dict::print() {
297  DictI i(this); // Moved definition in iterator here because of g++.
298  tty->print("Dict@0x%lx[%d] = {", this, _cnt);
299  for( ; i.test(); ++i ) {
300    tty->print("(0x%lx,0x%lx),", i._key, i._value);
301  }
302  tty->print_cr("}");
303}
304
305//------------------------------Hashing Functions----------------------------
306// Convert string to hash key.  This algorithm implements a universal hash
307// function with the multipliers frozen (ok, so it's not universal).  The
308// multipliers (and allowable characters) are all odd, so the resultant sum
309// is odd - guaranteed not divisible by any power of two, so the hash tables
310// can be any power of two with good results.  Also, I choose multipliers
311// that have only 2 bits set (the low is always set to be odd) so
312// multiplication requires only shifts and adds.  Characters are required to
313// be in the range 0-127 (I double & add 1 to force oddness).  Keys are
314// limited to MAXID characters in length.  Experimental evidence on 150K of
315// C text shows excellent spreading of values for any size hash table.
316int hashstr(const void *t) {
317  register char c, k = 0;
318  register int32 sum = 0;
319  register const char *s = (const char *)t;
320
321  while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1
322    c = (c<<1)+1;               // Characters are always odd!
323    sum += c + (c<<shft[k++]);  // Universal hash function
324  }
325  return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
326}
327
328//------------------------------hashptr--------------------------------------
329// Slimey cheap hash function; no guaranteed performance.  Better than the
330// default for pointers, especially on MS-DOS machines.
331int hashptr(const void *key) {
332#ifdef __TURBOC__
333    return ((intptr_t)key >> 16);
334#else  // __TURBOC__
335    return ((intptr_t)key >> 2);
336#endif
337}
338
339// Slimey cheap hash function; no guaranteed performance.
340int hashkey(const void *key) {
341  return (intptr_t)key;
342}
343
344//------------------------------Key Comparator Functions---------------------
345int32 cmpstr(const void *k1, const void *k2) {
346  return strcmp((const char *)k1,(const char *)k2);
347}
348
349// Cheap key comparator.
350int32 cmpkey(const void *key1, const void *key2) {
351  if (key1 == key2) return 0;
352  intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
353  if (delta > 0) return 1;
354  return -1;
355}
356
357//=============================================================================
358//------------------------------reset------------------------------------------
359// Create an iterator and initialize the first variables.
360void DictI::reset( const Dict *dict ) {
361  _d = dict;                    // The dictionary
362  _i = (uint)-1;                // Before the first bin
363  _j = 0;                       // Nothing left in the current bin
364  ++(*this);                    // Step to first real value
365}
366
367//------------------------------next-------------------------------------------
368// Find the next key-value pair in the dictionary, or return a NULL key and
369// value.
370void DictI::operator ++(void) {
371  if( _j-- ) {                  // Still working in current bin?
372    _key   = _d->_bin[_i]._keyvals[_j+_j];
373    _value = _d->_bin[_i]._keyvals[_j+_j+1];
374    return;
375  }
376
377  while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
378    _j = _d->_bin[_i]._cnt;
379    if( !_j ) continue;
380    _j--;
381    _key   = _d->_bin[_i]._keyvals[_j+_j];
382    _value = _d->_bin[_i]._keyvals[_j+_j+1];
383    return;
384  }
385  _key = _value = NULL;
386}
387