templateInterpreter.cpp revision 9244:825cee2cd7a6
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/codeCacheExtensions.hpp"
27#include "interpreter/interpreter.hpp"
28#include "interpreter/interpreterGenerator.hpp"
29#include "interpreter/interpreterRuntime.hpp"
30#include "interpreter/interp_masm.hpp"
31#include "interpreter/templateInterpreter.hpp"
32#include "interpreter/templateTable.hpp"
33
34#ifndef CC_INTERP
35
36# define __ _masm->
37
38void TemplateInterpreter::initialize() {
39  if (_code != NULL) return;
40  // assertions
41  assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
42         "dispatch table too small");
43
44  AbstractInterpreter::initialize();
45
46  TemplateTable::initialize();
47
48  // generate interpreter
49  { ResourceMark rm;
50    TraceTime timer("Interpreter generation", TraceStartupTime);
51    int code_size = InterpreterCodeSize;
52    NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
53#if INCLUDE_JVMTI
54    if (CodeCacheExtensions::saving_generated_interpreter()) {
55      // May requires several versions of the codelets.
56      // Final size will automatically be optimized.
57      code_size *= 2;
58    }
59#endif
60    _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
61                          "Interpreter");
62    InterpreterGenerator g(_code);
63  }
64  if (PrintInterpreter) {
65    if (CodeCacheExtensions::saving_generated_interpreter() &&
66        CodeCacheExtensions::use_pregenerated_interpreter()) {
67      ResourceMark rm;
68      tty->print("Printing the newly generated interpreter first");
69      print();
70      tty->print("Printing the pregenerated interpreter next");
71    }
72  }
73
74  // Install the pregenerated interpreter code before printing it
75  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::TemplateInterpreter);
76
77  if (PrintInterpreter) {
78    ResourceMark rm;
79    print();
80  }
81
82  // initialize dispatch table
83  _active_table = _normal_table;
84}
85
86//------------------------------------------------------------------------------------------------------------------------
87// Implementation of EntryPoint
88
89EntryPoint::EntryPoint() {
90  assert(number_of_states == 9, "check the code below");
91  _entry[btos] = NULL;
92  _entry[ctos] = NULL;
93  _entry[stos] = NULL;
94  _entry[atos] = NULL;
95  _entry[itos] = NULL;
96  _entry[ltos] = NULL;
97  _entry[ftos] = NULL;
98  _entry[dtos] = NULL;
99  _entry[vtos] = NULL;
100}
101
102
103EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
104  assert(number_of_states == 9, "check the code below");
105  _entry[btos] = bentry;
106  _entry[ctos] = centry;
107  _entry[stos] = sentry;
108  _entry[atos] = aentry;
109  _entry[itos] = ientry;
110  _entry[ltos] = lentry;
111  _entry[ftos] = fentry;
112  _entry[dtos] = dentry;
113  _entry[vtos] = ventry;
114}
115
116
117void EntryPoint::set_entry(TosState state, address entry) {
118  assert(0 <= state && state < number_of_states, "state out of bounds");
119  _entry[state] = entry;
120}
121
122
123address EntryPoint::entry(TosState state) const {
124  assert(0 <= state && state < number_of_states, "state out of bounds");
125  return _entry[state];
126}
127
128
129void EntryPoint::print() {
130  tty->print("[");
131  for (int i = 0; i < number_of_states; i++) {
132    if (i > 0) tty->print(", ");
133    tty->print(INTPTR_FORMAT, p2i(_entry[i]));
134  }
135  tty->print("]");
136}
137
138
139bool EntryPoint::operator == (const EntryPoint& y) {
140  int i = number_of_states;
141  while (i-- > 0) {
142    if (_entry[i] != y._entry[i]) return false;
143  }
144  return true;
145}
146
147
148//------------------------------------------------------------------------------------------------------------------------
149// Implementation of DispatchTable
150
151EntryPoint DispatchTable::entry(int i) const {
152  assert(0 <= i && i < length, "index out of bounds");
153  return
154    EntryPoint(
155      _table[btos][i],
156      _table[ctos][i],
157      _table[stos][i],
158      _table[atos][i],
159      _table[itos][i],
160      _table[ltos][i],
161      _table[ftos][i],
162      _table[dtos][i],
163      _table[vtos][i]
164    );
165}
166
167
168void DispatchTable::set_entry(int i, EntryPoint& entry) {
169  assert(0 <= i && i < length, "index out of bounds");
170  assert(number_of_states == 9, "check the code below");
171  _table[btos][i] = entry.entry(btos);
172  _table[ctos][i] = entry.entry(ctos);
173  _table[stos][i] = entry.entry(stos);
174  _table[atos][i] = entry.entry(atos);
175  _table[itos][i] = entry.entry(itos);
176  _table[ltos][i] = entry.entry(ltos);
177  _table[ftos][i] = entry.entry(ftos);
178  _table[dtos][i] = entry.entry(dtos);
179  _table[vtos][i] = entry.entry(vtos);
180}
181
182
183bool DispatchTable::operator == (DispatchTable& y) {
184  int i = length;
185  while (i-- > 0) {
186    EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
187    if (!(entry(i) == t)) return false;
188  }
189  return true;
190}
191
192address    TemplateInterpreter::_remove_activation_entry                    = NULL;
193address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
194
195
196address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
197address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
198address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
199address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
200address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
201address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
202address    TemplateInterpreter::_throw_exception_entry                      = NULL;
203
204#ifndef PRODUCT
205EntryPoint TemplateInterpreter::_trace_code;
206#endif // !PRODUCT
207EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
208EntryPoint TemplateInterpreter::_earlyret_entry;
209EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
210EntryPoint TemplateInterpreter::_continuation_entry;
211EntryPoint TemplateInterpreter::_safept_entry;
212
213address TemplateInterpreter::_invoke_return_entry[TemplateInterpreter::number_of_return_addrs];
214address TemplateInterpreter::_invokeinterface_return_entry[TemplateInterpreter::number_of_return_addrs];
215address TemplateInterpreter::_invokedynamic_return_entry[TemplateInterpreter::number_of_return_addrs];
216
217DispatchTable TemplateInterpreter::_active_table;
218DispatchTable TemplateInterpreter::_normal_table;
219DispatchTable TemplateInterpreter::_safept_table;
220address    TemplateInterpreter::_wentry_point[DispatchTable::length];
221
222TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
223  _unimplemented_bytecode    = NULL;
224  _illegal_bytecode_sequence = NULL;
225}
226
227static const BasicType types[Interpreter::number_of_result_handlers] = {
228  T_BOOLEAN,
229  T_CHAR   ,
230  T_BYTE   ,
231  T_SHORT  ,
232  T_INT    ,
233  T_LONG   ,
234  T_VOID   ,
235  T_FLOAT  ,
236  T_DOUBLE ,
237  T_OBJECT
238};
239
240void TemplateInterpreterGenerator::generate_all() {
241  // Loop, in case we need several variants of the interpreter entries
242  do {
243    if (!CodeCacheExtensions::skip_code_generation()) {
244      // bypass code generation when useless
245      AbstractInterpreterGenerator::generate_all();
246
247      { CodeletMark cm(_masm, "error exits");
248        _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
249        _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
250      }
251
252#ifndef PRODUCT
253      if (TraceBytecodes) {
254        CodeletMark cm(_masm, "bytecode tracing support");
255        Interpreter::_trace_code =
256          EntryPoint(
257                     generate_trace_code(btos),
258                     generate_trace_code(ctos),
259                     generate_trace_code(stos),
260                     generate_trace_code(atos),
261                     generate_trace_code(itos),
262                     generate_trace_code(ltos),
263                     generate_trace_code(ftos),
264                     generate_trace_code(dtos),
265                     generate_trace_code(vtos)
266                     );
267      }
268#endif // !PRODUCT
269
270      { CodeletMark cm(_masm, "return entry points");
271        const int index_size = sizeof(u2);
272        for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
273          Interpreter::_return_entry[i] =
274            EntryPoint(
275                       generate_return_entry_for(itos, i, index_size),
276                       generate_return_entry_for(itos, i, index_size),
277                       generate_return_entry_for(itos, i, index_size),
278                       generate_return_entry_for(atos, i, index_size),
279                       generate_return_entry_for(itos, i, index_size),
280                       generate_return_entry_for(ltos, i, index_size),
281                       generate_return_entry_for(ftos, i, index_size),
282                       generate_return_entry_for(dtos, i, index_size),
283                       generate_return_entry_for(vtos, i, index_size)
284                       );
285        }
286      }
287
288      { CodeletMark cm(_masm, "invoke return entry points");
289        const TosState states[] = {itos, itos, itos, itos, ltos, ftos, dtos, atos, vtos};
290        const int invoke_length = Bytecodes::length_for(Bytecodes::_invokestatic);
291        const int invokeinterface_length = Bytecodes::length_for(Bytecodes::_invokeinterface);
292        const int invokedynamic_length = Bytecodes::length_for(Bytecodes::_invokedynamic);
293
294        for (int i = 0; i < Interpreter::number_of_return_addrs; i++) {
295          TosState state = states[i];
296          Interpreter::_invoke_return_entry[i] = generate_return_entry_for(state, invoke_length, sizeof(u2));
297          Interpreter::_invokeinterface_return_entry[i] = generate_return_entry_for(state, invokeinterface_length, sizeof(u2));
298          Interpreter::_invokedynamic_return_entry[i] = generate_return_entry_for(state, invokedynamic_length, sizeof(u4));
299        }
300      }
301
302      { CodeletMark cm(_masm, "earlyret entry points");
303        Interpreter::_earlyret_entry =
304          EntryPoint(
305                     generate_earlyret_entry_for(btos),
306                     generate_earlyret_entry_for(ctos),
307                     generate_earlyret_entry_for(stos),
308                     generate_earlyret_entry_for(atos),
309                     generate_earlyret_entry_for(itos),
310                     generate_earlyret_entry_for(ltos),
311                     generate_earlyret_entry_for(ftos),
312                     generate_earlyret_entry_for(dtos),
313                     generate_earlyret_entry_for(vtos)
314                     );
315      }
316
317      { CodeletMark cm(_masm, "deoptimization entry points");
318        for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
319          Interpreter::_deopt_entry[i] =
320            EntryPoint(
321                       generate_deopt_entry_for(itos, i),
322                       generate_deopt_entry_for(itos, i),
323                       generate_deopt_entry_for(itos, i),
324                       generate_deopt_entry_for(atos, i),
325                       generate_deopt_entry_for(itos, i),
326                       generate_deopt_entry_for(ltos, i),
327                       generate_deopt_entry_for(ftos, i),
328                       generate_deopt_entry_for(dtos, i),
329                       generate_deopt_entry_for(vtos, i)
330                       );
331        }
332      }
333
334      { CodeletMark cm(_masm, "result handlers for native calls");
335        // The various result converter stublets.
336        int is_generated[Interpreter::number_of_result_handlers];
337        memset(is_generated, 0, sizeof(is_generated));
338
339        for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
340          BasicType type = types[i];
341          if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
342            Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
343          }
344        }
345      }
346
347      { CodeletMark cm(_masm, "continuation entry points");
348        Interpreter::_continuation_entry =
349          EntryPoint(
350                     generate_continuation_for(btos),
351                     generate_continuation_for(ctos),
352                     generate_continuation_for(stos),
353                     generate_continuation_for(atos),
354                     generate_continuation_for(itos),
355                     generate_continuation_for(ltos),
356                     generate_continuation_for(ftos),
357                     generate_continuation_for(dtos),
358                     generate_continuation_for(vtos)
359                     );
360      }
361
362      { CodeletMark cm(_masm, "safepoint entry points");
363        Interpreter::_safept_entry =
364          EntryPoint(
365                     generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
366                     generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
367                     generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
368                     generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
369                     generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
370                     generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
371                     generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
372                     generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
373                     generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
374                     );
375      }
376
377      { CodeletMark cm(_masm, "exception handling");
378        // (Note: this is not safepoint safe because thread may return to compiled code)
379        generate_throw_exception();
380      }
381
382      { CodeletMark cm(_masm, "throw exception entrypoints");
383        Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
384        Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
385        Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
386        Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
387        Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
388        Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
389      }
390
391
392
393#define method_entry(kind)                                              \
394      { CodeletMark cm(_masm, "method entry point (kind = " #kind ")"); \
395        Interpreter::_entry_table[Interpreter::kind] = ((InterpreterGenerator*)this)->generate_method_entry(Interpreter::kind); \
396      }
397
398      // all non-native method kinds
399      method_entry(zerolocals)
400      method_entry(zerolocals_synchronized)
401      method_entry(empty)
402      method_entry(accessor)
403      method_entry(abstract)
404      method_entry(java_lang_math_sin  )
405      method_entry(java_lang_math_cos  )
406      method_entry(java_lang_math_tan  )
407      method_entry(java_lang_math_abs  )
408      method_entry(java_lang_math_sqrt )
409      method_entry(java_lang_math_log  )
410      method_entry(java_lang_math_log10)
411      method_entry(java_lang_math_exp  )
412      method_entry(java_lang_math_pow  )
413      method_entry(java_lang_ref_reference_get)
414
415      initialize_method_handle_entries();
416
417      // all native method kinds (must be one contiguous block)
418      Interpreter::_native_entry_begin = Interpreter::code()->code_end();
419      method_entry(native)
420      method_entry(native_synchronized)
421      Interpreter::_native_entry_end = Interpreter::code()->code_end();
422
423      if (UseCRC32Intrinsics) {
424        method_entry(java_util_zip_CRC32_update)
425        method_entry(java_util_zip_CRC32_updateBytes)
426        method_entry(java_util_zip_CRC32_updateByteBuffer)
427      }
428
429      if (UseCRC32CIntrinsics) {
430        method_entry(java_util_zip_CRC32C_updateBytes)
431        method_entry(java_util_zip_CRC32C_updateDirectByteBuffer)
432      }
433
434      method_entry(java_lang_Float_intBitsToFloat);
435      method_entry(java_lang_Float_floatToRawIntBits);
436      method_entry(java_lang_Double_longBitsToDouble);
437      method_entry(java_lang_Double_doubleToRawLongBits);
438
439#undef method_entry
440
441      // Bytecodes
442      set_entry_points_for_all_bytes();
443    }
444  } while (CodeCacheExtensions::needs_other_interpreter_variant());
445
446  // installation of code in other places in the runtime
447  // (ExcutableCodeManager calls not needed to copy the entries)
448  set_safepoints_for_all_bytes();
449}
450
451//------------------------------------------------------------------------------------------------------------------------
452
453address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
454  address entry = __ pc();
455  __ stop(msg);
456  return entry;
457}
458
459
460//------------------------------------------------------------------------------------------------------------------------
461
462void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
463  for (int i = 0; i < DispatchTable::length; i++) {
464    Bytecodes::Code code = (Bytecodes::Code)i;
465    if (Bytecodes::is_defined(code)) {
466      set_entry_points(code);
467    } else {
468      set_unimplemented(i);
469    }
470  }
471}
472
473
474void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
475  for (int i = 0; i < DispatchTable::length; i++) {
476    Bytecodes::Code code = (Bytecodes::Code)i;
477    if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
478  }
479}
480
481
482void TemplateInterpreterGenerator::set_unimplemented(int i) {
483  address e = _unimplemented_bytecode;
484  EntryPoint entry(e, e, e, e, e, e, e, e, e);
485  Interpreter::_normal_table.set_entry(i, entry);
486  Interpreter::_wentry_point[i] = _unimplemented_bytecode;
487}
488
489
490void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
491  if (CodeCacheExtensions::skip_template_interpreter_entries(code)) {
492    return;
493  }
494  CodeletMark cm(_masm, Bytecodes::name(code), code);
495  // initialize entry points
496  assert(_unimplemented_bytecode    != NULL, "should have been generated before");
497  assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
498  address bep = _illegal_bytecode_sequence;
499  address cep = _illegal_bytecode_sequence;
500  address sep = _illegal_bytecode_sequence;
501  address aep = _illegal_bytecode_sequence;
502  address iep = _illegal_bytecode_sequence;
503  address lep = _illegal_bytecode_sequence;
504  address fep = _illegal_bytecode_sequence;
505  address dep = _illegal_bytecode_sequence;
506  address vep = _unimplemented_bytecode;
507  address wep = _unimplemented_bytecode;
508  // code for short & wide version of bytecode
509  if (Bytecodes::is_defined(code)) {
510    Template* t = TemplateTable::template_for(code);
511    assert(t->is_valid(), "just checking");
512    set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
513  }
514  if (Bytecodes::wide_is_defined(code)) {
515    Template* t = TemplateTable::template_for_wide(code);
516    assert(t->is_valid(), "just checking");
517    set_wide_entry_point(t, wep);
518  }
519  // set entry points
520  EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
521  Interpreter::_normal_table.set_entry(code, entry);
522  Interpreter::_wentry_point[code] = wep;
523  CodeCacheExtensions::completed_template_interpreter_entries(_masm, code);
524}
525
526
527void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
528  assert(t->is_valid(), "template must exist");
529  assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions");
530  wep = __ pc(); generate_and_dispatch(t);
531}
532
533
534void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
535  assert(t->is_valid(), "template must exist");
536  switch (t->tos_in()) {
537    case btos:
538    case ctos:
539    case stos:
540      ShouldNotReachHere();  // btos/ctos/stos should use itos.
541      break;
542    case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
543    case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
544    case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
545    case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
546    case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
547    case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
548    default  : ShouldNotReachHere();                                                 break;
549  }
550}
551
552
553//------------------------------------------------------------------------------------------------------------------------
554
555void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
556  if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
557#ifndef PRODUCT
558  // debugging code
559  if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
560  if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
561  if (TraceBytecodes)                                            trace_bytecode(t);
562  if (StopInterpreterAt > 0)                                     stop_interpreter_at();
563  __ verify_FPU(1, t->tos_in());
564#endif // !PRODUCT
565  int step = 0;
566  if (!t->does_dispatch()) {
567    step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
568    if (tos_out == ilgl) tos_out = t->tos_out();
569    // compute bytecode size
570    assert(step > 0, "just checkin'");
571    // setup stuff for dispatching next bytecode
572    if (ProfileInterpreter && VerifyDataPointer
573        && MethodData::bytecode_has_profile(t->bytecode())) {
574      __ verify_method_data_pointer();
575    }
576    __ dispatch_prolog(tos_out, step);
577  }
578  // generate template
579  t->generate(_masm);
580  // advance
581  if (t->does_dispatch()) {
582#ifdef ASSERT
583    // make sure execution doesn't go beyond this point if code is broken
584    __ should_not_reach_here();
585#endif // ASSERT
586  } else {
587    // dispatch to next bytecode
588    __ dispatch_epilog(tos_out, step);
589  }
590}
591
592//------------------------------------------------------------------------------------------------------------------------
593// Entry points
594
595/**
596 * Returns the return entry table for the given invoke bytecode.
597 */
598address* TemplateInterpreter::invoke_return_entry_table_for(Bytecodes::Code code) {
599  switch (code) {
600  case Bytecodes::_invokestatic:
601  case Bytecodes::_invokespecial:
602  case Bytecodes::_invokevirtual:
603  case Bytecodes::_invokehandle:
604    return Interpreter::invoke_return_entry_table();
605  case Bytecodes::_invokeinterface:
606    return Interpreter::invokeinterface_return_entry_table();
607  case Bytecodes::_invokedynamic:
608    return Interpreter::invokedynamic_return_entry_table();
609  default:
610    fatal("invalid bytecode: %s", Bytecodes::name(code));
611    return NULL;
612  }
613}
614
615/**
616 * Returns the return entry address for the given top-of-stack state and bytecode.
617 */
618address TemplateInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
619  guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
620  const int index = TosState_as_index(state);
621  switch (code) {
622  case Bytecodes::_invokestatic:
623  case Bytecodes::_invokespecial:
624  case Bytecodes::_invokevirtual:
625  case Bytecodes::_invokehandle:
626    return _invoke_return_entry[index];
627  case Bytecodes::_invokeinterface:
628    return _invokeinterface_return_entry[index];
629  case Bytecodes::_invokedynamic:
630    return _invokedynamic_return_entry[index];
631  default:
632    assert(!Bytecodes::is_invoke(code), "invoke instructions should be handled separately: %s", Bytecodes::name(code));
633    return _return_entry[length].entry(state);
634  }
635}
636
637
638address TemplateInterpreter::deopt_entry(TosState state, int length) {
639  guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
640  return _deopt_entry[length].entry(state);
641}
642
643//------------------------------------------------------------------------------------------------------------------------
644// Suport for invokes
645
646int TemplateInterpreter::TosState_as_index(TosState state) {
647  assert( state < number_of_states , "Invalid state in TosState_as_index");
648  assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
649  return (int)state;
650}
651
652
653//------------------------------------------------------------------------------------------------------------------------
654// Safepoint suppport
655
656static inline void copy_table(address* from, address* to, int size) {
657  // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
658  while (size-- > 0) *to++ = *from++;
659}
660
661void TemplateInterpreter::notice_safepoints() {
662  if (!_notice_safepoints) {
663    // switch to safepoint dispatch table
664    _notice_safepoints = true;
665    copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
666  }
667}
668
669// switch from the dispatch table which notices safepoints back to the
670// normal dispatch table.  So that we can notice single stepping points,
671// keep the safepoint dispatch table if we are single stepping in JVMTI.
672// Note that the should_post_single_step test is exactly as fast as the
673// JvmtiExport::_enabled test and covers both cases.
674void TemplateInterpreter::ignore_safepoints() {
675  if (_notice_safepoints) {
676    if (!JvmtiExport::should_post_single_step()) {
677      // switch to normal dispatch table
678      _notice_safepoints = false;
679      copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
680    }
681  }
682}
683
684//------------------------------------------------------------------------------------------------------------------------
685// Deoptimization support
686
687// If deoptimization happens, this function returns the point of next bytecode to continue execution
688address TemplateInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) {
689  return AbstractInterpreter::deopt_continue_after_entry(method, bcp, callee_parameters, is_top_frame);
690}
691
692// If deoptimization happens, this function returns the point where the interpreter reexecutes
693// the bytecode.
694// Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
695//       that do not return "Interpreter::deopt_entry(vtos, 0)"
696address TemplateInterpreter::deopt_reexecute_entry(Method* method, address bcp) {
697  assert(method->contains(bcp), "just checkin'");
698  Bytecodes::Code code   = Bytecodes::java_code_at(method, bcp);
699  if (code == Bytecodes::_return) {
700    // This is used for deopt during registration of finalizers
701    // during Object.<init>.  We simply need to resume execution at
702    // the standard return vtos bytecode to pop the frame normally.
703    // reexecuting the real bytecode would cause double registration
704    // of the finalizable object.
705    return _normal_table.entry(Bytecodes::_return).entry(vtos);
706  } else {
707    return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
708  }
709}
710
711// If deoptimization happens, the interpreter should reexecute this bytecode.
712// This function mainly helps the compilers to set up the reexecute bit.
713bool TemplateInterpreter::bytecode_should_reexecute(Bytecodes::Code code) {
714  if (code == Bytecodes::_return) {
715    //Yes, we consider Bytecodes::_return as a special case of reexecution
716    return true;
717  } else {
718    return AbstractInterpreter::bytecode_should_reexecute(code);
719  }
720}
721
722#endif // !CC_INTERP
723