interpreterRuntime.cpp revision 13054:b7ffcf7f66ef
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/javaClasses.inline.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/codeCache.hpp"
30#include "compiler/compileBroker.hpp"
31#include "compiler/disassembler.hpp"
32#include "gc/shared/collectedHeap.hpp"
33#include "interpreter/interpreter.hpp"
34#include "interpreter/interpreterRuntime.hpp"
35#include "interpreter/linkResolver.hpp"
36#include "interpreter/templateTable.hpp"
37#include "logging/log.hpp"
38#include "memory/oopFactory.hpp"
39#include "memory/resourceArea.hpp"
40#include "memory/universe.inline.hpp"
41#include "oops/constantPool.hpp"
42#include "oops/instanceKlass.hpp"
43#include "oops/methodData.hpp"
44#include "oops/objArrayKlass.hpp"
45#include "oops/objArrayOop.inline.hpp"
46#include "oops/oop.inline.hpp"
47#include "oops/symbol.hpp"
48#include "prims/jvmtiExport.hpp"
49#include "prims/nativeLookup.hpp"
50#include "runtime/atomic.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/compilationPolicy.hpp"
53#include "runtime/deoptimization.hpp"
54#include "runtime/fieldDescriptor.hpp"
55#include "runtime/handles.inline.hpp"
56#include "runtime/icache.hpp"
57#include "runtime/interfaceSupport.hpp"
58#include "runtime/java.hpp"
59#include "runtime/jfieldIDWorkaround.hpp"
60#include "runtime/osThread.hpp"
61#include "runtime/sharedRuntime.hpp"
62#include "runtime/stubRoutines.hpp"
63#include "runtime/synchronizer.hpp"
64#include "runtime/threadCritical.hpp"
65#include "utilities/events.hpp"
66#ifdef COMPILER2
67#include "opto/runtime.hpp"
68#endif
69
70class UnlockFlagSaver {
71  private:
72    JavaThread* _thread;
73    bool _do_not_unlock;
74  public:
75    UnlockFlagSaver(JavaThread* t) {
76      _thread = t;
77      _do_not_unlock = t->do_not_unlock_if_synchronized();
78      t->set_do_not_unlock_if_synchronized(false);
79    }
80    ~UnlockFlagSaver() {
81      _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
82    }
83};
84
85//------------------------------------------------------------------------------------------------------------------------
86// State accessors
87
88void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
89  last_frame(thread).interpreter_frame_set_bcp(bcp);
90  if (ProfileInterpreter) {
91    // ProfileTraps uses MDOs independently of ProfileInterpreter.
92    // That is why we must check both ProfileInterpreter and mdo != NULL.
93    MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
94    if (mdo != NULL) {
95      NEEDS_CLEANUP;
96      last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
97    }
98  }
99}
100
101//------------------------------------------------------------------------------------------------------------------------
102// Constants
103
104
105IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
106  // access constant pool
107  ConstantPool* pool = method(thread)->constants();
108  int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
109  constantTag tag = pool->tag_at(index);
110
111  assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
112  Klass* klass = pool->klass_at(index, CHECK);
113    oop java_class = klass->java_mirror();
114    thread->set_vm_result(java_class);
115IRT_END
116
117IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
118  assert(bytecode == Bytecodes::_fast_aldc ||
119         bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
120  ResourceMark rm(thread);
121  methodHandle m (thread, method(thread));
122  Bytecode_loadconstant ldc(m, bci(thread));
123  oop result = ldc.resolve_constant(CHECK);
124#ifdef ASSERT
125  {
126    // The bytecode wrappers aren't GC-safe so construct a new one
127    Bytecode_loadconstant ldc2(m, bci(thread));
128    oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
129    assert(result == coop, "expected result for assembly code");
130  }
131#endif
132  thread->set_vm_result(result);
133}
134IRT_END
135
136
137//------------------------------------------------------------------------------------------------------------------------
138// Allocation
139
140IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
141  Klass* k = pool->klass_at(index, CHECK);
142  InstanceKlass* klass = InstanceKlass::cast(k);
143
144  // Make sure we are not instantiating an abstract klass
145  klass->check_valid_for_instantiation(true, CHECK);
146
147  // Make sure klass is initialized
148  klass->initialize(CHECK);
149
150  // At this point the class may not be fully initialized
151  // because of recursive initialization. If it is fully
152  // initialized & has_finalized is not set, we rewrite
153  // it into its fast version (Note: no locking is needed
154  // here since this is an atomic byte write and can be
155  // done more than once).
156  //
157  // Note: In case of classes with has_finalized we don't
158  //       rewrite since that saves us an extra check in
159  //       the fast version which then would call the
160  //       slow version anyway (and do a call back into
161  //       Java).
162  //       If we have a breakpoint, then we don't rewrite
163  //       because the _breakpoint bytecode would be lost.
164  oop obj = klass->allocate_instance(CHECK);
165  thread->set_vm_result(obj);
166IRT_END
167
168
169IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
170  oop obj = oopFactory::new_typeArray(type, size, CHECK);
171  thread->set_vm_result(obj);
172IRT_END
173
174
175IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
176  Klass*    klass = pool->klass_at(index, CHECK);
177  objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
178  thread->set_vm_result(obj);
179IRT_END
180
181
182IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
183  // We may want to pass in more arguments - could make this slightly faster
184  ConstantPool* constants = method(thread)->constants();
185  int          i = get_index_u2(thread, Bytecodes::_multianewarray);
186  Klass* klass = constants->klass_at(i, CHECK);
187  int   nof_dims = number_of_dimensions(thread);
188  assert(klass->is_klass(), "not a class");
189  assert(nof_dims >= 1, "multianewarray rank must be nonzero");
190
191  // We must create an array of jints to pass to multi_allocate.
192  ResourceMark rm(thread);
193  const int small_dims = 10;
194  jint dim_array[small_dims];
195  jint *dims = &dim_array[0];
196  if (nof_dims > small_dims) {
197    dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
198  }
199  for (int index = 0; index < nof_dims; index++) {
200    // offset from first_size_address is addressed as local[index]
201    int n = Interpreter::local_offset_in_bytes(index)/jintSize;
202    dims[index] = first_size_address[n];
203  }
204  oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
205  thread->set_vm_result(obj);
206IRT_END
207
208
209IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
210  assert(obj->is_oop(), "must be a valid oop");
211  assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
212  InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
213IRT_END
214
215
216// Quicken instance-of and check-cast bytecodes
217IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
218  // Force resolving; quicken the bytecode
219  int which = get_index_u2(thread, Bytecodes::_checkcast);
220  ConstantPool* cpool = method(thread)->constants();
221  // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
222  // program we might have seen an unquick'd bytecode in the interpreter but have another
223  // thread quicken the bytecode before we get here.
224  // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
225  Klass* klass = cpool->klass_at(which, CHECK);
226  thread->set_vm_result_2(klass);
227IRT_END
228
229
230//------------------------------------------------------------------------------------------------------------------------
231// Exceptions
232
233void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
234                                         methodHandle trap_method, int trap_bci, TRAPS) {
235  if (trap_method.not_null()) {
236    MethodData* trap_mdo = trap_method->method_data();
237    if (trap_mdo == NULL) {
238      Method::build_interpreter_method_data(trap_method, THREAD);
239      if (HAS_PENDING_EXCEPTION) {
240        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
241               "we expect only an OOM error here");
242        CLEAR_PENDING_EXCEPTION;
243      }
244      trap_mdo = trap_method->method_data();
245      // and fall through...
246    }
247    if (trap_mdo != NULL) {
248      // Update per-method count of trap events.  The interpreter
249      // is updating the MDO to simulate the effect of compiler traps.
250      Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
251    }
252  }
253}
254
255// Assume the compiler is (or will be) interested in this event.
256// If necessary, create an MDO to hold the information, and record it.
257void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
258  assert(ProfileTraps, "call me only if profiling");
259  methodHandle trap_method(thread, method(thread));
260  int trap_bci = trap_method->bci_from(bcp(thread));
261  note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
262}
263
264#ifdef CC_INTERP
265// As legacy note_trap, but we have more arguments.
266IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
267  methodHandle trap_method(method);
268  note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
269IRT_END
270
271// Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
272// for each exception.
273void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
274  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
275void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
276  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
277void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
278  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
279void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
280  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
281void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
282  { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
283#endif // CC_INTERP
284
285
286static Handle get_preinitialized_exception(Klass* k, TRAPS) {
287  // get klass
288  InstanceKlass* klass = InstanceKlass::cast(k);
289  assert(klass->is_initialized(),
290         "this klass should have been initialized during VM initialization");
291  // create instance - do not call constructor since we may have no
292  // (java) stack space left (should assert constructor is empty)
293  Handle exception;
294  oop exception_oop = klass->allocate_instance(CHECK_(exception));
295  exception = Handle(THREAD, exception_oop);
296  if (StackTraceInThrowable) {
297    java_lang_Throwable::fill_in_stack_trace(exception);
298  }
299  return exception;
300}
301
302// Special handling for stack overflow: since we don't have any (java) stack
303// space left we use the pre-allocated & pre-initialized StackOverflowError
304// klass to create an stack overflow error instance.  We do not call its
305// constructor for the same reason (it is empty, anyway).
306IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
307  Handle exception = get_preinitialized_exception(
308                                 SystemDictionary::StackOverflowError_klass(),
309                                 CHECK);
310  // Increment counter for hs_err file reporting
311  Atomic::inc(&Exceptions::_stack_overflow_errors);
312  THROW_HANDLE(exception);
313IRT_END
314
315IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
316  Handle exception = get_preinitialized_exception(
317                                 SystemDictionary::StackOverflowError_klass(),
318                                 CHECK);
319  java_lang_Throwable::set_message(exception(),
320          Universe::delayed_stack_overflow_error_message());
321  // Increment counter for hs_err file reporting
322  Atomic::inc(&Exceptions::_stack_overflow_errors);
323  THROW_HANDLE(exception);
324IRT_END
325
326IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
327  // lookup exception klass
328  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
329  if (ProfileTraps) {
330    if (s == vmSymbols::java_lang_ArithmeticException()) {
331      note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
332    } else if (s == vmSymbols::java_lang_NullPointerException()) {
333      note_trap(thread, Deoptimization::Reason_null_check, CHECK);
334    }
335  }
336  // create exception
337  Handle exception = Exceptions::new_exception(thread, s, message);
338  thread->set_vm_result(exception());
339IRT_END
340
341
342IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
343  ResourceMark rm(thread);
344  const char* klass_name = obj->klass()->external_name();
345  // lookup exception klass
346  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
347  if (ProfileTraps) {
348    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
349  }
350  // create exception, with klass name as detail message
351  Handle exception = Exceptions::new_exception(thread, s, klass_name);
352  thread->set_vm_result(exception());
353IRT_END
354
355
356IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
357  char message[jintAsStringSize];
358  // lookup exception klass
359  TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
360  if (ProfileTraps) {
361    note_trap(thread, Deoptimization::Reason_range_check, CHECK);
362  }
363  // create exception
364  sprintf(message, "%d", index);
365  THROW_MSG(s, message);
366IRT_END
367
368IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
369  JavaThread* thread, oopDesc* obj))
370
371  ResourceMark rm(thread);
372  char* message = SharedRuntime::generate_class_cast_message(
373    thread, obj->klass());
374
375  if (ProfileTraps) {
376    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
377  }
378
379  // create exception
380  THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
381IRT_END
382
383// exception_handler_for_exception(...) returns the continuation address,
384// the exception oop (via TLS) and sets the bci/bcp for the continuation.
385// The exception oop is returned to make sure it is preserved over GC (it
386// is only on the stack if the exception was thrown explicitly via athrow).
387// During this operation, the expression stack contains the values for the
388// bci where the exception happened. If the exception was propagated back
389// from a call, the expression stack contains the values for the bci at the
390// invoke w/o arguments (i.e., as if one were inside the call).
391IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
392
393  Handle             h_exception(thread, exception);
394  methodHandle       h_method   (thread, method(thread));
395  constantPoolHandle h_constants(thread, h_method->constants());
396  bool               should_repeat;
397  int                handler_bci;
398  int                current_bci = bci(thread);
399
400  if (thread->frames_to_pop_failed_realloc() > 0) {
401    // Allocation of scalar replaced object used in this frame
402    // failed. Unconditionally pop the frame.
403    thread->dec_frames_to_pop_failed_realloc();
404    thread->set_vm_result(h_exception());
405    // If the method is synchronized we already unlocked the monitor
406    // during deoptimization so the interpreter needs to skip it when
407    // the frame is popped.
408    thread->set_do_not_unlock_if_synchronized(true);
409#ifdef CC_INTERP
410    return (address) -1;
411#else
412    return Interpreter::remove_activation_entry();
413#endif
414  }
415
416  // Need to do this check first since when _do_not_unlock_if_synchronized
417  // is set, we don't want to trigger any classloading which may make calls
418  // into java, or surprisingly find a matching exception handler for bci 0
419  // since at this moment the method hasn't been "officially" entered yet.
420  if (thread->do_not_unlock_if_synchronized()) {
421    ResourceMark rm;
422    assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
423    thread->set_vm_result(exception);
424#ifdef CC_INTERP
425    return (address) -1;
426#else
427    return Interpreter::remove_activation_entry();
428#endif
429  }
430
431  do {
432    should_repeat = false;
433
434    // assertions
435#ifdef ASSERT
436    assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
437    assert(h_exception->is_oop(), "just checking");
438    // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
439    if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
440      if (ExitVMOnVerifyError) vm_exit(-1);
441      ShouldNotReachHere();
442    }
443#endif
444
445    // tracing
446    if (log_is_enabled(Info, exceptions)) {
447      ResourceMark rm(thread);
448      stringStream tempst;
449      tempst.print("interpreter method <%s>\n"
450                   " at bci %d for thread " INTPTR_FORMAT,
451                   h_method->print_value_string(), current_bci, p2i(thread));
452      Exceptions::log_exception(h_exception, tempst);
453    }
454// Don't go paging in something which won't be used.
455//     else if (extable->length() == 0) {
456//       // disabled for now - interpreter is not using shortcut yet
457//       // (shortcut is not to call runtime if we have no exception handlers)
458//       // warning("performance bug: should not call runtime if method has no exception handlers");
459//     }
460    // for AbortVMOnException flag
461    Exceptions::debug_check_abort(h_exception);
462
463    // exception handler lookup
464    Klass* klass = h_exception->klass();
465    handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
466    if (HAS_PENDING_EXCEPTION) {
467      // We threw an exception while trying to find the exception handler.
468      // Transfer the new exception to the exception handle which will
469      // be set into thread local storage, and do another lookup for an
470      // exception handler for this exception, this time starting at the
471      // BCI of the exception handler which caused the exception to be
472      // thrown (bug 4307310).
473      h_exception = Handle(THREAD, PENDING_EXCEPTION);
474      CLEAR_PENDING_EXCEPTION;
475      if (handler_bci >= 0) {
476        current_bci = handler_bci;
477        should_repeat = true;
478      }
479    }
480  } while (should_repeat == true);
481
482#if INCLUDE_JVMCI
483  if (EnableJVMCI && h_method->method_data() != NULL) {
484    ResourceMark rm(thread);
485    ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
486    if (pdata != NULL && pdata->is_BitData()) {
487      BitData* bit_data = (BitData*) pdata;
488      bit_data->set_exception_seen();
489    }
490  }
491#endif
492
493  // notify JVMTI of an exception throw; JVMTI will detect if this is a first
494  // time throw or a stack unwinding throw and accordingly notify the debugger
495  if (JvmtiExport::can_post_on_exceptions()) {
496    JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
497  }
498
499#ifdef CC_INTERP
500  address continuation = (address)(intptr_t) handler_bci;
501#else
502  address continuation = NULL;
503#endif
504  address handler_pc = NULL;
505  if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
506    // Forward exception to callee (leaving bci/bcp untouched) because (a) no
507    // handler in this method, or (b) after a stack overflow there is not yet
508    // enough stack space available to reprotect the stack.
509#ifndef CC_INTERP
510    continuation = Interpreter::remove_activation_entry();
511#endif
512#if COMPILER2_OR_JVMCI
513    // Count this for compilation purposes
514    h_method->interpreter_throwout_increment(THREAD);
515#endif
516  } else {
517    // handler in this method => change bci/bcp to handler bci/bcp and continue there
518    handler_pc = h_method->code_base() + handler_bci;
519#ifndef CC_INTERP
520    set_bcp_and_mdp(handler_pc, thread);
521    continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
522#endif
523  }
524  // notify debugger of an exception catch
525  // (this is good for exceptions caught in native methods as well)
526  if (JvmtiExport::can_post_on_exceptions()) {
527    JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
528  }
529
530  thread->set_vm_result(h_exception());
531  return continuation;
532IRT_END
533
534
535IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
536  assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
537  // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
538IRT_END
539
540
541IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
542  THROW(vmSymbols::java_lang_AbstractMethodError());
543IRT_END
544
545
546IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
547  THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
548IRT_END
549
550
551//------------------------------------------------------------------------------------------------------------------------
552// Fields
553//
554
555void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
556  Thread* THREAD = thread;
557  // resolve field
558  fieldDescriptor info;
559  constantPoolHandle pool(thread, method(thread)->constants());
560  methodHandle m(thread, method(thread));
561  bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
562                    bytecode == Bytecodes::_putstatic);
563  bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
564
565  {
566    JvmtiHideSingleStepping jhss(thread);
567    LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
568                                       m, bytecode, CHECK);
569  } // end JvmtiHideSingleStepping
570
571  // check if link resolution caused cpCache to be updated
572  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
573  if (cp_cache_entry->is_resolved(bytecode)) return;
574
575  // compute auxiliary field attributes
576  TosState state  = as_TosState(info.field_type());
577
578  // Resolution of put instructions on final fields is delayed. That is required so that
579  // exceptions are thrown at the correct place (when the instruction is actually invoked).
580  // If we do not resolve an instruction in the current pass, leaving the put_code
581  // set to zero will cause the next put instruction to the same field to reresolve.
582
583  // Resolution of put instructions to final instance fields with invalid updates (i.e.,
584  // to final instance fields with updates originating from a method different than <init>)
585  // is inhibited. A putfield instruction targeting an instance final field must throw
586  // an IllegalAccessError if the instruction is not in an instance
587  // initializer method <init>. If resolution were not inhibited, a putfield
588  // in an initializer method could be resolved in the initializer. Subsequent
589  // putfield instructions to the same field would then use cached information.
590  // As a result, those instructions would not pass through the VM. That is,
591  // checks in resolve_field_access() would not be executed for those instructions
592  // and the required IllegalAccessError would not be thrown.
593  //
594  // Also, we need to delay resolving getstatic and putstatic instructions until the
595  // class is initialized.  This is required so that access to the static
596  // field will call the initialization function every time until the class
597  // is completely initialized ala. in 2.17.5 in JVM Specification.
598  InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
599  bool uninitialized_static = is_static && !klass->is_initialized();
600  bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
601                                      info.has_initialized_final_update();
602  assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
603
604  Bytecodes::Code get_code = (Bytecodes::Code)0;
605  Bytecodes::Code put_code = (Bytecodes::Code)0;
606  if (!uninitialized_static) {
607    get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
608    if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
609      put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
610    }
611  }
612
613  cp_cache_entry->set_field(
614    get_code,
615    put_code,
616    info.field_holder(),
617    info.index(),
618    info.offset(),
619    state,
620    info.access_flags().is_final(),
621    info.access_flags().is_volatile(),
622    pool->pool_holder()
623  );
624}
625
626
627//------------------------------------------------------------------------------------------------------------------------
628// Synchronization
629//
630// The interpreter's synchronization code is factored out so that it can
631// be shared by method invocation and synchronized blocks.
632//%note synchronization_3
633
634//%note monitor_1
635IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
636#ifdef ASSERT
637  thread->last_frame().interpreter_frame_verify_monitor(elem);
638#endif
639  if (PrintBiasedLockingStatistics) {
640    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
641  }
642  Handle h_obj(thread, elem->obj());
643  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
644         "must be NULL or an object");
645  if (UseBiasedLocking) {
646    // Retry fast entry if bias is revoked to avoid unnecessary inflation
647    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
648  } else {
649    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
650  }
651  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
652         "must be NULL or an object");
653#ifdef ASSERT
654  thread->last_frame().interpreter_frame_verify_monitor(elem);
655#endif
656IRT_END
657
658
659//%note monitor_1
660IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
661#ifdef ASSERT
662  thread->last_frame().interpreter_frame_verify_monitor(elem);
663#endif
664  Handle h_obj(thread, elem->obj());
665  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
666         "must be NULL or an object");
667  if (elem == NULL || h_obj()->is_unlocked()) {
668    THROW(vmSymbols::java_lang_IllegalMonitorStateException());
669  }
670  ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
671  // Free entry. This must be done here, since a pending exception might be installed on
672  // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
673  elem->set_obj(NULL);
674#ifdef ASSERT
675  thread->last_frame().interpreter_frame_verify_monitor(elem);
676#endif
677IRT_END
678
679
680IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
681  THROW(vmSymbols::java_lang_IllegalMonitorStateException());
682IRT_END
683
684
685IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
686  // Returns an illegal exception to install into the current thread. The
687  // pending_exception flag is cleared so normal exception handling does not
688  // trigger. Any current installed exception will be overwritten. This
689  // method will be called during an exception unwind.
690
691  assert(!HAS_PENDING_EXCEPTION, "no pending exception");
692  Handle exception(thread, thread->vm_result());
693  assert(exception() != NULL, "vm result should be set");
694  thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
695  if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
696    exception = get_preinitialized_exception(
697                       SystemDictionary::IllegalMonitorStateException_klass(),
698                       CATCH);
699  }
700  thread->set_vm_result(exception());
701IRT_END
702
703
704//------------------------------------------------------------------------------------------------------------------------
705// Invokes
706
707IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
708  return method->orig_bytecode_at(method->bci_from(bcp));
709IRT_END
710
711IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
712  method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
713IRT_END
714
715IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
716  JvmtiExport::post_raw_breakpoint(thread, method, bcp);
717IRT_END
718
719void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
720  Thread* THREAD = thread;
721  // extract receiver from the outgoing argument list if necessary
722  Handle receiver(thread, NULL);
723  if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
724    ResourceMark rm(thread);
725    methodHandle m (thread, method(thread));
726    Bytecode_invoke call(m, bci(thread));
727    Symbol* signature = call.signature();
728    receiver = Handle(thread,
729                  thread->last_frame().interpreter_callee_receiver(signature));
730    assert(Universe::heap()->is_in_reserved_or_null(receiver()),
731           "sanity check");
732    assert(receiver.is_null() ||
733           !Universe::heap()->is_in_reserved(receiver->klass()),
734           "sanity check");
735  }
736
737  // resolve method
738  CallInfo info;
739  constantPoolHandle pool(thread, method(thread)->constants());
740
741  {
742    JvmtiHideSingleStepping jhss(thread);
743    LinkResolver::resolve_invoke(info, receiver, pool,
744                                 get_index_u2_cpcache(thread, bytecode), bytecode,
745                                 CHECK);
746    if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
747      int retry_count = 0;
748      while (info.resolved_method()->is_old()) {
749        // It is very unlikely that method is redefined more than 100 times
750        // in the middle of resolve. If it is looping here more than 100 times
751        // means then there could be a bug here.
752        guarantee((retry_count++ < 100),
753                  "Could not resolve to latest version of redefined method");
754        // method is redefined in the middle of resolve so re-try.
755        LinkResolver::resolve_invoke(info, receiver, pool,
756                                     get_index_u2_cpcache(thread, bytecode), bytecode,
757                                     CHECK);
758      }
759    }
760  } // end JvmtiHideSingleStepping
761
762  // check if link resolution caused cpCache to be updated
763  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
764  if (cp_cache_entry->is_resolved(bytecode)) return;
765
766#ifdef ASSERT
767  if (bytecode == Bytecodes::_invokeinterface) {
768    if (info.resolved_method()->method_holder() ==
769                                            SystemDictionary::Object_klass()) {
770      // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
771      // (see also CallInfo::set_interface for details)
772      assert(info.call_kind() == CallInfo::vtable_call ||
773             info.call_kind() == CallInfo::direct_call, "");
774      methodHandle rm = info.resolved_method();
775      assert(rm->is_final() || info.has_vtable_index(),
776             "should have been set already");
777    } else if (!info.resolved_method()->has_itable_index()) {
778      // Resolved something like CharSequence.toString.  Use vtable not itable.
779      assert(info.call_kind() != CallInfo::itable_call, "");
780    } else {
781      // Setup itable entry
782      assert(info.call_kind() == CallInfo::itable_call, "");
783      int index = info.resolved_method()->itable_index();
784      assert(info.itable_index() == index, "");
785    }
786  } else {
787    assert(info.call_kind() == CallInfo::direct_call ||
788           info.call_kind() == CallInfo::vtable_call, "");
789  }
790#endif
791  switch (info.call_kind()) {
792  case CallInfo::direct_call:
793    cp_cache_entry->set_direct_call(
794      bytecode,
795      info.resolved_method());
796    break;
797  case CallInfo::vtable_call:
798    cp_cache_entry->set_vtable_call(
799      bytecode,
800      info.resolved_method(),
801      info.vtable_index());
802    break;
803  case CallInfo::itable_call:
804    cp_cache_entry->set_itable_call(
805      bytecode,
806      info.resolved_method(),
807      info.itable_index());
808    break;
809  default:  ShouldNotReachHere();
810  }
811}
812
813
814// First time execution:  Resolve symbols, create a permanent MethodType object.
815void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
816  Thread* THREAD = thread;
817  const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
818
819  // resolve method
820  CallInfo info;
821  constantPoolHandle pool(thread, method(thread)->constants());
822  {
823    JvmtiHideSingleStepping jhss(thread);
824    LinkResolver::resolve_invoke(info, Handle(), pool,
825                                 get_index_u2_cpcache(thread, bytecode), bytecode,
826                                 CHECK);
827  } // end JvmtiHideSingleStepping
828
829  ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
830  cp_cache_entry->set_method_handle(pool, info);
831}
832
833// First time execution:  Resolve symbols, create a permanent CallSite object.
834void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
835  Thread* THREAD = thread;
836  const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
837
838  //TO DO: consider passing BCI to Java.
839  //  int caller_bci = method(thread)->bci_from(bcp(thread));
840
841  // resolve method
842  CallInfo info;
843  constantPoolHandle pool(thread, method(thread)->constants());
844  int index = get_index_u4(thread, bytecode);
845  {
846    JvmtiHideSingleStepping jhss(thread);
847    LinkResolver::resolve_invoke(info, Handle(), pool,
848                                 index, bytecode, CHECK);
849  } // end JvmtiHideSingleStepping
850
851  ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
852  cp_cache_entry->set_dynamic_call(pool, info);
853}
854
855// This function is the interface to the assembly code. It returns the resolved
856// cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
857// This function will check for redefinition!
858IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
859  switch (bytecode) {
860  case Bytecodes::_getstatic:
861  case Bytecodes::_putstatic:
862  case Bytecodes::_getfield:
863  case Bytecodes::_putfield:
864    resolve_get_put(thread, bytecode);
865    break;
866  case Bytecodes::_invokevirtual:
867  case Bytecodes::_invokespecial:
868  case Bytecodes::_invokestatic:
869  case Bytecodes::_invokeinterface:
870    resolve_invoke(thread, bytecode);
871    break;
872  case Bytecodes::_invokehandle:
873    resolve_invokehandle(thread);
874    break;
875  case Bytecodes::_invokedynamic:
876    resolve_invokedynamic(thread);
877    break;
878  default:
879    fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
880    break;
881  }
882}
883IRT_END
884
885//------------------------------------------------------------------------------------------------------------------------
886// Miscellaneous
887
888
889nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
890  nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
891  assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
892  if (branch_bcp != NULL && nm != NULL) {
893    // This was a successful request for an OSR nmethod.  Because
894    // frequency_counter_overflow_inner ends with a safepoint check,
895    // nm could have been unloaded so look it up again.  It's unsafe
896    // to examine nm directly since it might have been freed and used
897    // for something else.
898    frame fr = thread->last_frame();
899    Method* method =  fr.interpreter_frame_method();
900    int bci = method->bci_from(fr.interpreter_frame_bcp());
901    nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
902  }
903#ifndef PRODUCT
904  if (TraceOnStackReplacement) {
905    if (nm != NULL) {
906      tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
907      nm->print();
908    }
909  }
910#endif
911  return nm;
912}
913
914IRT_ENTRY(nmethod*,
915          InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
916  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
917  // flag, in case this method triggers classloading which will call into Java.
918  UnlockFlagSaver fs(thread);
919
920  frame fr = thread->last_frame();
921  assert(fr.is_interpreted_frame(), "must come from interpreter");
922  methodHandle method(thread, fr.interpreter_frame_method());
923  const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
924  const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
925
926  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
927  nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
928  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
929
930  if (osr_nm != NULL) {
931    // We may need to do on-stack replacement which requires that no
932    // monitors in the activation are biased because their
933    // BasicObjectLocks will need to migrate during OSR. Force
934    // unbiasing of all monitors in the activation now (even though
935    // the OSR nmethod might be invalidated) because we don't have a
936    // safepoint opportunity later once the migration begins.
937    if (UseBiasedLocking) {
938      ResourceMark rm;
939      GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
940      for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
941           kptr < fr.interpreter_frame_monitor_begin();
942           kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
943        if( kptr->obj() != NULL ) {
944          objects_to_revoke->append(Handle(THREAD, kptr->obj()));
945        }
946      }
947      BiasedLocking::revoke(objects_to_revoke);
948    }
949  }
950  return osr_nm;
951IRT_END
952
953IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
954  assert(ProfileInterpreter, "must be profiling interpreter");
955  int bci = method->bci_from(cur_bcp);
956  MethodData* mdo = method->method_data();
957  if (mdo == NULL)  return 0;
958  return mdo->bci_to_di(bci);
959IRT_END
960
961IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
962  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
963  // flag, in case this method triggers classloading which will call into Java.
964  UnlockFlagSaver fs(thread);
965
966  assert(ProfileInterpreter, "must be profiling interpreter");
967  frame fr = thread->last_frame();
968  assert(fr.is_interpreted_frame(), "must come from interpreter");
969  methodHandle method(thread, fr.interpreter_frame_method());
970  Method::build_interpreter_method_data(method, THREAD);
971  if (HAS_PENDING_EXCEPTION) {
972    assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
973    CLEAR_PENDING_EXCEPTION;
974    // and fall through...
975  }
976IRT_END
977
978
979#ifdef ASSERT
980IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
981  assert(ProfileInterpreter, "must be profiling interpreter");
982
983  MethodData* mdo = method->method_data();
984  assert(mdo != NULL, "must not be null");
985
986  int bci = method->bci_from(bcp);
987
988  address mdp2 = mdo->bci_to_dp(bci);
989  if (mdp != mdp2) {
990    ResourceMark rm;
991    ResetNoHandleMark rnm; // In a LEAF entry.
992    HandleMark hm;
993    tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
994    int current_di = mdo->dp_to_di(mdp);
995    int expected_di  = mdo->dp_to_di(mdp2);
996    tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
997    int expected_approx_bci = mdo->data_at(expected_di)->bci();
998    int approx_bci = -1;
999    if (current_di >= 0) {
1000      approx_bci = mdo->data_at(current_di)->bci();
1001    }
1002    tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1003    mdo->print_on(tty);
1004    method->print_codes();
1005  }
1006  assert(mdp == mdp2, "wrong mdp");
1007IRT_END
1008#endif // ASSERT
1009
1010IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1011  assert(ProfileInterpreter, "must be profiling interpreter");
1012  ResourceMark rm(thread);
1013  HandleMark hm(thread);
1014  frame fr = thread->last_frame();
1015  assert(fr.is_interpreted_frame(), "must come from interpreter");
1016  MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1017
1018  // Grab a lock to ensure atomic access to setting the return bci and
1019  // the displacement.  This can block and GC, invalidating all naked oops.
1020  MutexLocker ml(RetData_lock);
1021
1022  // ProfileData is essentially a wrapper around a derived oop, so we
1023  // need to take the lock before making any ProfileData structures.
1024  ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1025  RetData* rdata = data->as_RetData();
1026  address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1027  fr.interpreter_frame_set_mdp(new_mdp);
1028IRT_END
1029
1030IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1031  MethodCounters* mcs = Method::build_method_counters(m, thread);
1032  if (HAS_PENDING_EXCEPTION) {
1033    assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1034    CLEAR_PENDING_EXCEPTION;
1035  }
1036  return mcs;
1037IRT_END
1038
1039
1040IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1041  // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1042  // stack traversal automatically takes care of preserving arguments for invoke, so
1043  // this is no longer needed.
1044
1045  // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1046  // if this is called during a safepoint
1047
1048  if (JvmtiExport::should_post_single_step()) {
1049    // We are called during regular safepoints and when the VM is
1050    // single stepping. If any thread is marked for single stepping,
1051    // then we may have JVMTI work to do.
1052    JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1053  }
1054IRT_END
1055
1056IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1057ConstantPoolCacheEntry *cp_entry))
1058
1059  // check the access_flags for the field in the klass
1060
1061  InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1062  int index = cp_entry->field_index();
1063  if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1064
1065  bool is_static = (obj == NULL);
1066  HandleMark hm(thread);
1067
1068  Handle h_obj;
1069  if (!is_static) {
1070    // non-static field accessors have an object, but we need a handle
1071    h_obj = Handle(thread, obj);
1072  }
1073  InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1074  jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1075  JvmtiExport::post_field_access(thread, method(thread), bcp(thread), cp_entry_f1, h_obj, fid);
1076IRT_END
1077
1078IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1079  oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1080
1081  Klass* k = cp_entry->f1_as_klass();
1082
1083  // check the access_flags for the field in the klass
1084  InstanceKlass* ik = InstanceKlass::cast(k);
1085  int index = cp_entry->field_index();
1086  // bail out if field modifications are not watched
1087  if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1088
1089  char sig_type = '\0';
1090
1091  switch(cp_entry->flag_state()) {
1092    case btos: sig_type = 'B'; break;
1093    case ztos: sig_type = 'Z'; break;
1094    case ctos: sig_type = 'C'; break;
1095    case stos: sig_type = 'S'; break;
1096    case itos: sig_type = 'I'; break;
1097    case ftos: sig_type = 'F'; break;
1098    case atos: sig_type = 'L'; break;
1099    case ltos: sig_type = 'J'; break;
1100    case dtos: sig_type = 'D'; break;
1101    default:  ShouldNotReachHere(); return;
1102  }
1103  bool is_static = (obj == NULL);
1104
1105  HandleMark hm(thread);
1106  jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1107  jvalue fvalue;
1108#ifdef _LP64
1109  fvalue = *value;
1110#else
1111  // Long/double values are stored unaligned and also noncontiguously with
1112  // tagged stacks.  We can't just do a simple assignment even in the non-
1113  // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1114  // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1115  // We assume that the two halves of longs/doubles are stored in interpreter
1116  // stack slots in platform-endian order.
1117  jlong_accessor u;
1118  jint* newval = (jint*)value;
1119  u.words[0] = newval[0];
1120  u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1121  fvalue.j = u.long_value;
1122#endif // _LP64
1123
1124  Handle h_obj;
1125  if (!is_static) {
1126    // non-static field accessors have an object, but we need a handle
1127    h_obj = Handle(thread, obj);
1128  }
1129
1130  JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), ik, h_obj,
1131                                           fid, sig_type, &fvalue);
1132IRT_END
1133
1134IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1135  JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1136IRT_END
1137
1138
1139IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1140  JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1141IRT_END
1142
1143IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1144{
1145  return (Interpreter::contains(pc) ? 1 : 0);
1146}
1147IRT_END
1148
1149
1150// Implementation of SignatureHandlerLibrary
1151
1152#ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1153// Dummy definition (else normalization method is defined in CPU
1154// dependant code)
1155uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1156  return fingerprint;
1157}
1158#endif
1159
1160address SignatureHandlerLibrary::set_handler_blob() {
1161  BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1162  if (handler_blob == NULL) {
1163    return NULL;
1164  }
1165  address handler = handler_blob->code_begin();
1166  _handler_blob = handler_blob;
1167  _handler = handler;
1168  return handler;
1169}
1170
1171void SignatureHandlerLibrary::initialize() {
1172  if (_fingerprints != NULL) {
1173    return;
1174  }
1175  if (set_handler_blob() == NULL) {
1176    vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1177  }
1178
1179  BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1180                                      SignatureHandlerLibrary::buffer_size);
1181  _buffer = bb->code_begin();
1182
1183  _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1184  _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1185}
1186
1187address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1188  address handler   = _handler;
1189  int     insts_size = buffer->pure_insts_size();
1190  if (handler + insts_size > _handler_blob->code_end()) {
1191    // get a new handler blob
1192    handler = set_handler_blob();
1193  }
1194  if (handler != NULL) {
1195    memcpy(handler, buffer->insts_begin(), insts_size);
1196    pd_set_handler(handler);
1197    ICache::invalidate_range(handler, insts_size);
1198    _handler = handler + insts_size;
1199  }
1200  return handler;
1201}
1202
1203void SignatureHandlerLibrary::add(const methodHandle& method) {
1204  if (method->signature_handler() == NULL) {
1205    // use slow signature handler if we can't do better
1206    int handler_index = -1;
1207    // check if we can use customized (fast) signature handler
1208    if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1209      // use customized signature handler
1210      MutexLocker mu(SignatureHandlerLibrary_lock);
1211      // make sure data structure is initialized
1212      initialize();
1213      // lookup method signature's fingerprint
1214      uint64_t fingerprint = Fingerprinter(method).fingerprint();
1215      // allow CPU dependant code to optimize the fingerprints for the fast handler
1216      fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1217      handler_index = _fingerprints->find(fingerprint);
1218      // create handler if necessary
1219      if (handler_index < 0) {
1220        ResourceMark rm;
1221        ptrdiff_t align_offset = (address)
1222          round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1223        CodeBuffer buffer((address)(_buffer + align_offset),
1224                          SignatureHandlerLibrary::buffer_size - align_offset);
1225        InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1226        // copy into code heap
1227        address handler = set_handler(&buffer);
1228        if (handler == NULL) {
1229          // use slow signature handler (without memorizing it in the fingerprints)
1230        } else {
1231          // debugging suppport
1232          if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1233            ttyLocker ttyl;
1234            tty->cr();
1235            tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1236                          _handlers->length(),
1237                          (method->is_static() ? "static" : "receiver"),
1238                          method->name_and_sig_as_C_string(),
1239                          fingerprint,
1240                          buffer.insts_size());
1241            if (buffer.insts_size() > 0) {
1242              Disassembler::decode(handler, handler + buffer.insts_size());
1243            }
1244#ifndef PRODUCT
1245            address rh_begin = Interpreter::result_handler(method()->result_type());
1246            if (CodeCache::contains(rh_begin)) {
1247              // else it might be special platform dependent values
1248              tty->print_cr(" --- associated result handler ---");
1249              address rh_end = rh_begin;
1250              while (*(int*)rh_end != 0) {
1251                rh_end += sizeof(int);
1252              }
1253              Disassembler::decode(rh_begin, rh_end);
1254            } else {
1255              tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1256            }
1257#endif
1258          }
1259          // add handler to library
1260          _fingerprints->append(fingerprint);
1261          _handlers->append(handler);
1262          // set handler index
1263          assert(_fingerprints->length() == _handlers->length(), "sanity check");
1264          handler_index = _fingerprints->length() - 1;
1265        }
1266      }
1267      // Set handler under SignatureHandlerLibrary_lock
1268      if (handler_index < 0) {
1269        // use generic signature handler
1270        method->set_signature_handler(Interpreter::slow_signature_handler());
1271      } else {
1272        // set handler
1273        method->set_signature_handler(_handlers->at(handler_index));
1274      }
1275    } else {
1276      CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1277      // use generic signature handler
1278      method->set_signature_handler(Interpreter::slow_signature_handler());
1279    }
1280  }
1281#ifdef ASSERT
1282  int handler_index = -1;
1283  int fingerprint_index = -2;
1284  {
1285    // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1286    // in any way if accessed from multiple threads. To avoid races with another
1287    // thread which may change the arrays in the above, mutex protected block, we
1288    // have to protect this read access here with the same mutex as well!
1289    MutexLocker mu(SignatureHandlerLibrary_lock);
1290    if (_handlers != NULL) {
1291      handler_index = _handlers->find(method->signature_handler());
1292      uint64_t fingerprint = Fingerprinter(method).fingerprint();
1293      fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1294      fingerprint_index = _fingerprints->find(fingerprint);
1295    }
1296  }
1297  assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1298         handler_index == fingerprint_index, "sanity check");
1299#endif // ASSERT
1300}
1301
1302void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1303  int handler_index = -1;
1304  // use customized signature handler
1305  MutexLocker mu(SignatureHandlerLibrary_lock);
1306  // make sure data structure is initialized
1307  initialize();
1308  fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1309  handler_index = _fingerprints->find(fingerprint);
1310  // create handler if necessary
1311  if (handler_index < 0) {
1312    if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1313      tty->cr();
1314      tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1315                    _handlers->length(),
1316                    p2i(handler),
1317                    fingerprint);
1318    }
1319    _fingerprints->append(fingerprint);
1320    _handlers->append(handler);
1321  } else {
1322    if (PrintSignatureHandlers) {
1323      tty->cr();
1324      tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1325                    _handlers->length(),
1326                    fingerprint,
1327                    p2i(_handlers->at(handler_index)),
1328                    p2i(handler));
1329    }
1330  }
1331}
1332
1333
1334BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1335address                  SignatureHandlerLibrary::_handler      = NULL;
1336GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1337GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1338address                  SignatureHandlerLibrary::_buffer       = NULL;
1339
1340
1341IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1342  methodHandle m(thread, method);
1343  assert(m->is_native(), "sanity check");
1344  // lookup native function entry point if it doesn't exist
1345  bool in_base_library;
1346  if (!m->has_native_function()) {
1347    NativeLookup::lookup(m, in_base_library, CHECK);
1348  }
1349  // make sure signature handler is installed
1350  SignatureHandlerLibrary::add(m);
1351  // The interpreter entry point checks the signature handler first,
1352  // before trying to fetch the native entry point and klass mirror.
1353  // We must set the signature handler last, so that multiple processors
1354  // preparing the same method will be sure to see non-null entry & mirror.
1355IRT_END
1356
1357#if defined(IA32) || defined(AMD64) || defined(ARM)
1358IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1359  if (src_address == dest_address) {
1360    return;
1361  }
1362  ResetNoHandleMark rnm; // In a LEAF entry.
1363  HandleMark hm;
1364  ResourceMark rm;
1365  frame fr = thread->last_frame();
1366  assert(fr.is_interpreted_frame(), "");
1367  jint bci = fr.interpreter_frame_bci();
1368  methodHandle mh(thread, fr.interpreter_frame_method());
1369  Bytecode_invoke invoke(mh, bci);
1370  ArgumentSizeComputer asc(invoke.signature());
1371  int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1372  Copy::conjoint_jbytes(src_address, dest_address,
1373                       size_of_arguments * Interpreter::stackElementSize);
1374IRT_END
1375#endif
1376
1377#if INCLUDE_JVMTI
1378// This is a support of the JVMTI PopFrame interface.
1379// Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1380// and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1381// The member_name argument is a saved reference (in local#0) to the member_name.
1382// For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1383// FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1384IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1385                                                            Method* method, address bcp))
1386  Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1387  if (code != Bytecodes::_invokestatic) {
1388    return;
1389  }
1390  ConstantPool* cpool = method->constants();
1391  int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1392  Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1393  Symbol* mname = cpool->name_ref_at(cp_index);
1394
1395  if (MethodHandles::has_member_arg(cname, mname)) {
1396    oop member_name_oop = (oop) member_name;
1397    if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1398      // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1399      member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1400    }
1401    thread->set_vm_result(member_name_oop);
1402  } else {
1403    thread->set_vm_result(NULL);
1404  }
1405IRT_END
1406#endif // INCLUDE_JVMTI
1407
1408#ifndef PRODUCT
1409// This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1410// call this, which changes rsp and makes the interpreter's expression stack not walkable.
1411// The generated code still uses call_VM because that will set up the frame pointer for
1412// bcp and method.
1413IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1414  const frame f = thread->last_frame();
1415  assert(f.is_interpreted_frame(), "must be an interpreted frame");
1416  methodHandle mh(thread, f.interpreter_frame_method());
1417  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1418  return preserve_this_value;
1419IRT_END
1420#endif // !PRODUCT
1421