bytecodeInterpreter.cpp revision 2721:f08d439fab8c
133965Sjdp/*
2130561Sobrien * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
333965Sjdp * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
433965Sjdp *
533965Sjdp * This code is free software; you can redistribute it and/or modify it
633965Sjdp * under the terms of the GNU General Public License version 2 only, as
733965Sjdp * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/vmSymbols.hpp"
27#include "gc_interface/collectedHeap.hpp"
28#include "interpreter/bytecodeHistogram.hpp"
29#include "interpreter/bytecodeInterpreter.hpp"
30#include "interpreter/bytecodeInterpreter.inline.hpp"
31#include "interpreter/interpreter.hpp"
32#include "interpreter/interpreterRuntime.hpp"
33#include "memory/cardTableModRefBS.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/objArrayKlass.hpp"
36#include "oops/oop.inline.hpp"
37#include "prims/jvmtiExport.hpp"
38#include "runtime/frame.inline.hpp"
39#include "runtime/handles.inline.hpp"
40#include "runtime/interfaceSupport.hpp"
41#include "runtime/sharedRuntime.hpp"
42#include "runtime/threadCritical.hpp"
43#include "utilities/exceptions.hpp"
44#ifdef TARGET_OS_ARCH_linux_x86
45# include "orderAccess_linux_x86.inline.hpp"
46#endif
47#ifdef TARGET_OS_ARCH_linux_sparc
48# include "orderAccess_linux_sparc.inline.hpp"
49#endif
50#ifdef TARGET_OS_ARCH_linux_zero
51# include "orderAccess_linux_zero.inline.hpp"
52#endif
53#ifdef TARGET_OS_ARCH_solaris_x86
54# include "orderAccess_solaris_x86.inline.hpp"
55#endif
56#ifdef TARGET_OS_ARCH_solaris_sparc
57# include "orderAccess_solaris_sparc.inline.hpp"
58#endif
59#ifdef TARGET_OS_ARCH_windows_x86
60# include "orderAccess_windows_x86.inline.hpp"
61#endif
62#ifdef TARGET_OS_ARCH_linux_arm
63# include "orderAccess_linux_arm.inline.hpp"
64#endif
65#ifdef TARGET_OS_ARCH_linux_ppc
66# include "orderAccess_linux_ppc.inline.hpp"
67#endif
68#ifdef TARGET_OS_ARCH_bsd_x86
69# include "orderAccess_bsd_x86.inline.hpp"
70#endif
71#ifdef TARGET_OS_ARCH_bsd_zero
72# include "orderAccess_bsd_zero.inline.hpp"
73#endif
74
75
76// no precompiled headers
77#ifdef CC_INTERP
78
79/*
80 * USELABELS - If using GCC, then use labels for the opcode dispatching
81 * rather -then a switch statement. This improves performance because it
82 * gives us the oportunity to have the instructions that calculate the
83 * next opcode to jump to be intermixed with the rest of the instructions
84 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
85 */
86#undef USELABELS
87#ifdef __GNUC__
88/*
89   ASSERT signifies debugging. It is much easier to step thru bytecodes if we
90   don't use the computed goto approach.
91*/
92#ifndef ASSERT
93#define USELABELS
94#endif
95#endif
96
97#undef CASE
98#ifdef USELABELS
99#define CASE(opcode) opc ## opcode
100#define DEFAULT opc_default
101#else
102#define CASE(opcode) case Bytecodes:: opcode
103#define DEFAULT default
104#endif
105
106/*
107 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
108 * opcode before going back to the top of the while loop, rather then having
109 * the top of the while loop handle it. This provides a better opportunity
110 * for instruction scheduling. Some compilers just do this prefetch
111 * automatically. Some actually end up with worse performance if you
112 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
113 */
114#undef PREFETCH_OPCCODE
115#define PREFETCH_OPCCODE
116
117/*
118  Interpreter safepoint: it is expected that the interpreter will have no live
119  handles of its own creation live at an interpreter safepoint. Therefore we
120  run a HandleMarkCleaner and trash all handles allocated in the call chain
121  since the JavaCalls::call_helper invocation that initiated the chain.
122  There really shouldn't be any handles remaining to trash but this is cheap
123  in relation to a safepoint.
124*/
125#define SAFEPOINT                                                                 \
126    if ( SafepointSynchronize::is_synchronizing()) {                              \
127        {                                                                         \
128          /* zap freed handles rather than GC'ing them */                         \
129          HandleMarkCleaner __hmc(THREAD);                                        \
130        }                                                                         \
131        CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
132    }
133
134/*
135 * VM_JAVA_ERROR - Macro for throwing a java exception from
136 * the interpreter loop. Should really be a CALL_VM but there
137 * is no entry point to do the transition to vm so we just
138 * do it by hand here.
139 */
140#define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
141    DECACHE_STATE();                                                              \
142    SET_LAST_JAVA_FRAME();                                                        \
143    {                                                                             \
144       ThreadInVMfromJava trans(THREAD);                                          \
145       Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
146    }                                                                             \
147    RESET_LAST_JAVA_FRAME();                                                      \
148    CACHE_STATE();
149
150// Normal throw of a java error
151#define VM_JAVA_ERROR(name, msg)                                                  \
152    VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
153    goto handle_exception;
154
155#ifdef PRODUCT
156#define DO_UPDATE_INSTRUCTION_COUNT(opcode)
157#else
158#define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
159{                                                                                                    \
160    BytecodeCounter::_counter_value++;                                                               \
161    BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
162    if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
163    if (TraceBytecodes) {                                                                            \
164      CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
165                                   topOfStack[Interpreter::expr_index_at(1)],   \
166                                   topOfStack[Interpreter::expr_index_at(2)]),  \
167                                   handle_exception);                      \
168    }                                                                      \
169}
170#endif
171
172#undef DEBUGGER_SINGLE_STEP_NOTIFY
173#ifdef VM_JVMTI
174/* NOTE: (kbr) This macro must be called AFTER the PC has been
175   incremented. JvmtiExport::at_single_stepping_point() may cause a
176   breakpoint opcode to get inserted at the current PC to allow the
177   debugger to coalesce single-step events.
178
179   As a result if we call at_single_stepping_point() we refetch opcode
180   to get the current opcode. This will override any other prefetching
181   that might have occurred.
182*/
183#define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
184{                                                                                \
185      if (_jvmti_interp_events) {                                                \
186        if (JvmtiExport::should_post_single_step()) {                            \
187          DECACHE_STATE();                                                       \
188          SET_LAST_JAVA_FRAME();                                                 \
189          ThreadInVMfromJava trans(THREAD);                                      \
190          JvmtiExport::at_single_stepping_point(THREAD,                          \
191                                          istate->method(),                      \
192                                          pc);                                   \
193          RESET_LAST_JAVA_FRAME();                                               \
194          CACHE_STATE();                                                         \
195          if (THREAD->pop_frame_pending() &&                                     \
196              !THREAD->pop_frame_in_process()) {                                 \
197            goto handle_Pop_Frame;                                               \
198          }                                                                      \
199          opcode = *pc;                                                          \
200        }                                                                        \
201      }                                                                          \
202}
203#else
204#define DEBUGGER_SINGLE_STEP_NOTIFY()
205#endif
206
207/*
208 * CONTINUE - Macro for executing the next opcode.
209 */
210#undef CONTINUE
211#ifdef USELABELS
212// Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
213// initialization (which is is the initialization of the table pointer...)
214#define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
215#define CONTINUE {                              \
216        opcode = *pc;                           \
217        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
218        DEBUGGER_SINGLE_STEP_NOTIFY();          \
219        DISPATCH(opcode);                       \
220    }
221#else
222#ifdef PREFETCH_OPCCODE
223#define CONTINUE {                              \
224        opcode = *pc;                           \
225        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
226        DEBUGGER_SINGLE_STEP_NOTIFY();          \
227        continue;                               \
228    }
229#else
230#define CONTINUE {                              \
231        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
232        DEBUGGER_SINGLE_STEP_NOTIFY();          \
233        continue;                               \
234    }
235#endif
236#endif
237
238// JavaStack Implementation
239#define MORE_STACK(count)  \
240    (topOfStack -= ((count) * Interpreter::stackElementWords))
241
242
243#define UPDATE_PC(opsize) {pc += opsize; }
244/*
245 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
246 */
247#undef UPDATE_PC_AND_TOS
248#define UPDATE_PC_AND_TOS(opsize, stack) \
249    {pc += opsize; MORE_STACK(stack); }
250
251/*
252 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
253 * and executing the next opcode. It's somewhat similar to the combination
254 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
255 */
256#undef UPDATE_PC_AND_TOS_AND_CONTINUE
257#ifdef USELABELS
258#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
259        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
260        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
261        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
262        DISPATCH(opcode);                                       \
263    }
264
265#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
266        pc += opsize; opcode = *pc;                             \
267        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
268        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
269        DISPATCH(opcode);                                       \
270    }
271#else
272#ifdef PREFETCH_OPCCODE
273#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
274        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
275        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
276        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
277        goto do_continue;                                       \
278    }
279
280#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
281        pc += opsize; opcode = *pc;                             \
282        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
283        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
284        goto do_continue;                                       \
285    }
286#else
287#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
288        pc += opsize; MORE_STACK(stack);                \
289        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
290        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
291        goto do_continue;                               \
292    }
293
294#define UPDATE_PC_AND_CONTINUE(opsize) {                \
295        pc += opsize;                                   \
296        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
297        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
298        goto do_continue;                               \
299    }
300#endif /* PREFETCH_OPCCODE */
301#endif /* USELABELS */
302
303// About to call a new method, update the save the adjusted pc and return to frame manager
304#define UPDATE_PC_AND_RETURN(opsize)  \
305   DECACHE_TOS();                     \
306   istate->set_bcp(pc+opsize);        \
307   return;
308
309
310#define METHOD istate->method()
311#define INVOCATION_COUNT METHOD->invocation_counter()
312#define BACKEDGE_COUNT METHOD->backedge_counter()
313
314
315#define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
316#define OSR_REQUEST(res, branch_pc) \
317            CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
318/*
319 * For those opcodes that need to have a GC point on a backwards branch
320 */
321
322// Backedge counting is kind of strange. The asm interpreter will increment
323// the backedge counter as a separate counter but it does it's comparisons
324// to the sum (scaled) of invocation counter and backedge count to make
325// a decision. Seems kind of odd to sum them together like that
326
327// skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
328
329
330#define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
331    if ((skip) <= 0) {                                                                              \
332      if (UseLoopCounter) {                                                                         \
333        bool do_OSR = UseOnStackReplacement;                                                        \
334        BACKEDGE_COUNT->increment();                                                                \
335        if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
336        if (do_OSR) {                                                                               \
337          nmethod*  osr_nmethod;                                                                    \
338          OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
339          if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
340            intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
341            istate->set_msg(do_osr);                                                                \
342            istate->set_osr_buf((address)buf);                                                      \
343            istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
344            return;                                                                                 \
345          }                                                                                         \
346        }                                                                                           \
347      }  /* UseCompiler ... */                                                                      \
348      INCR_INVOCATION_COUNT;                                                                        \
349      SAFEPOINT;                                                                                    \
350    }
351
352/*
353 * For those opcodes that need to have a GC point on a backwards branch
354 */
355
356/*
357 * Macros for caching and flushing the interpreter state. Some local
358 * variables need to be flushed out to the frame before we do certain
359 * things (like pushing frames or becomming gc safe) and some need to
360 * be recached later (like after popping a frame). We could use one
361 * macro to cache or decache everything, but this would be less then
362 * optimal because we don't always need to cache or decache everything
363 * because some things we know are already cached or decached.
364 */
365#undef DECACHE_TOS
366#undef CACHE_TOS
367#undef CACHE_PREV_TOS
368#define DECACHE_TOS()    istate->set_stack(topOfStack);
369
370#define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
371
372#undef DECACHE_PC
373#undef CACHE_PC
374#define DECACHE_PC()    istate->set_bcp(pc);
375#define CACHE_PC()      pc = istate->bcp();
376#define CACHE_CP()      cp = istate->constants();
377#define CACHE_LOCALS()  locals = istate->locals();
378#undef CACHE_FRAME
379#define CACHE_FRAME()
380
381/*
382 * CHECK_NULL - Macro for throwing a NullPointerException if the object
383 * passed is a null ref.
384 * On some architectures/platforms it should be possible to do this implicitly
385 */
386#undef CHECK_NULL
387#define CHECK_NULL(obj_)                                                 \
388    if ((obj_) == NULL) {                                                \
389        VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
390    }                                                                    \
391    VERIFY_OOP(obj_)
392
393#define VMdoubleConstZero() 0.0
394#define VMdoubleConstOne() 1.0
395#define VMlongConstZero() (max_jlong-max_jlong)
396#define VMlongConstOne() ((max_jlong-max_jlong)+1)
397
398/*
399 * Alignment
400 */
401#define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
402
403// Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
404#define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
405
406// Reload interpreter state after calling the VM or a possible GC
407#define CACHE_STATE()   \
408        CACHE_TOS();    \
409        CACHE_PC();     \
410        CACHE_CP();     \
411        CACHE_LOCALS();
412
413// Call the VM don't check for pending exceptions
414#define CALL_VM_NOCHECK(func)                                     \
415          DECACHE_STATE();                                        \
416          SET_LAST_JAVA_FRAME();                                  \
417          func;                                                   \
418          RESET_LAST_JAVA_FRAME();                                \
419          CACHE_STATE();                                          \
420          if (THREAD->pop_frame_pending() &&                      \
421              !THREAD->pop_frame_in_process()) {                  \
422            goto handle_Pop_Frame;                                \
423          }
424
425// Call the VM and check for pending exceptions
426#define CALL_VM(func, label) {                                    \
427          CALL_VM_NOCHECK(func);                                  \
428          if (THREAD->has_pending_exception()) goto label;        \
429        }
430
431/*
432 * BytecodeInterpreter::run(interpreterState istate)
433 * BytecodeInterpreter::runWithChecks(interpreterState istate)
434 *
435 * The real deal. This is where byte codes actually get interpreted.
436 * Basically it's a big while loop that iterates until we return from
437 * the method passed in.
438 *
439 * The runWithChecks is used if JVMTI is enabled.
440 *
441 */
442#if defined(VM_JVMTI)
443void
444BytecodeInterpreter::runWithChecks(interpreterState istate) {
445#else
446void
447BytecodeInterpreter::run(interpreterState istate) {
448#endif
449
450  // In order to simplify some tests based on switches set at runtime
451  // we invoke the interpreter a single time after switches are enabled
452  // and set simpler to to test variables rather than method calls or complex
453  // boolean expressions.
454
455  static int initialized = 0;
456  static int checkit = 0;
457  static intptr_t* c_addr = NULL;
458  static intptr_t  c_value;
459
460  if (checkit && *c_addr != c_value) {
461    os::breakpoint();
462  }
463#ifdef VM_JVMTI
464  static bool _jvmti_interp_events = 0;
465#endif
466
467  static int _compiling;  // (UseCompiler || CountCompiledCalls)
468
469#ifdef ASSERT
470  if (istate->_msg != initialize) {
471    assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
472#ifndef SHARK
473    IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
474#endif // !SHARK
475  }
476  // Verify linkages.
477  interpreterState l = istate;
478  do {
479    assert(l == l->_self_link, "bad link");
480    l = l->_prev_link;
481  } while (l != NULL);
482  // Screwups with stack management usually cause us to overwrite istate
483  // save a copy so we can verify it.
484  interpreterState orig = istate;
485#endif
486
487  static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
488
489  register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
490  register address          pc = istate->bcp();
491  register jubyte opcode;
492  register intptr_t*        locals = istate->locals();
493  register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
494#ifdef LOTS_OF_REGS
495  register JavaThread*      THREAD = istate->thread();
496  register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
497#else
498#undef THREAD
499#define THREAD istate->thread()
500#undef BYTE_MAP_BASE
501#define BYTE_MAP_BASE _byte_map_base
502#endif
503
504#ifdef USELABELS
505  const static void* const opclabels_data[256] = {
506/* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
507/* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
508/* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
509/* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
510
511/* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
512/* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
513/* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
514/* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
515
516/* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
517/* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
518/* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
519/* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
520
521/* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
522/* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
523/* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
524/* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
525
526/* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
527/* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
528/* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
529/* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
530
531/* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
532/* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
533/* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
534/* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
535
536/* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
537/* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
538/* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
539/* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
540
541/* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
542/* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
543/* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
544/* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
545
546/* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
547/* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
548/* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
549/* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
550
551/* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
552/* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
553/* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
554/* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
555
556/* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
557/* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
558/* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
559/* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
560
561/* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
562/* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
563/* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
564/* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
565
566/* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
567/* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
568/* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
569/* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
570
571/* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
572/* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
573/* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
574/* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
575
576/* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
577/* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
578/* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
579/* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
580
581/* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
582/* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
583/* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
584/* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
585  };
586  register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
587#endif /* USELABELS */
588
589#ifdef ASSERT
590  // this will trigger a VERIFY_OOP on entry
591  if (istate->msg() != initialize && ! METHOD->is_static()) {
592    oop rcvr = LOCALS_OBJECT(0);
593    VERIFY_OOP(rcvr);
594  }
595#endif
596// #define HACK
597#ifdef HACK
598  bool interesting = false;
599#endif // HACK
600
601  /* QQQ this should be a stack method so we don't know actual direction */
602  guarantee(istate->msg() == initialize ||
603         topOfStack >= istate->stack_limit() &&
604         topOfStack < istate->stack_base(),
605         "Stack top out of range");
606
607  switch (istate->msg()) {
608    case initialize: {
609      if (initialized++) ShouldNotReachHere(); // Only one initialize call
610      _compiling = (UseCompiler || CountCompiledCalls);
611#ifdef VM_JVMTI
612      _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
613#endif
614      BarrierSet* bs = Universe::heap()->barrier_set();
615      assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
616      _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
617      return;
618    }
619    break;
620    case method_entry: {
621      THREAD->set_do_not_unlock();
622      // count invocations
623      assert(initialized, "Interpreter not initialized");
624      if (_compiling) {
625        if (ProfileInterpreter) {
626          METHOD->increment_interpreter_invocation_count();
627        }
628        INCR_INVOCATION_COUNT;
629        if (INVOCATION_COUNT->reached_InvocationLimit()) {
630            CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
631
632            // We no longer retry on a counter overflow
633
634            // istate->set_msg(retry_method);
635            // THREAD->clr_do_not_unlock();
636            // return;
637        }
638        SAFEPOINT;
639      }
640
641      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
642        // initialize
643        os::breakpoint();
644      }
645
646#ifdef HACK
647      {
648        ResourceMark rm;
649        char *method_name = istate->method()->name_and_sig_as_C_string();
650        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
651          tty->print_cr("entering: depth %d bci: %d",
652                         (istate->_stack_base - istate->_stack),
653                         istate->_bcp - istate->_method->code_base());
654          interesting = true;
655        }
656      }
657#endif // HACK
658
659
660      // lock method if synchronized
661      if (METHOD->is_synchronized()) {
662          // oop rcvr = locals[0].j.r;
663          oop rcvr;
664          if (METHOD->is_static()) {
665            rcvr = METHOD->constants()->pool_holder()->java_mirror();
666          } else {
667            rcvr = LOCALS_OBJECT(0);
668            VERIFY_OOP(rcvr);
669          }
670          // The initial monitor is ours for the taking
671          BasicObjectLock* mon = &istate->monitor_base()[-1];
672          oop monobj = mon->obj();
673          assert(mon->obj() == rcvr, "method monitor mis-initialized");
674
675          bool success = UseBiasedLocking;
676          if (UseBiasedLocking) {
677            markOop mark = rcvr->mark();
678            if (mark->has_bias_pattern()) {
679              // The bias pattern is present in the object's header. Need to check
680              // whether the bias owner and the epoch are both still current.
681              intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
682              xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
683              intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
684              if (yy != 0 ) {
685                // At this point we know that the header has the bias pattern and
686                // that we are not the bias owner in the current epoch. We need to
687                // figure out more details about the state of the header in order to
688                // know what operations can be legally performed on the object's
689                // header.
690
691                // If the low three bits in the xor result aren't clear, that means
692                // the prototype header is no longer biased and we have to revoke
693                // the bias on this object.
694
695                if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
696                  // Biasing is still enabled for this data type. See whether the
697                  // epoch of the current bias is still valid, meaning that the epoch
698                  // bits of the mark word are equal to the epoch bits of the
699                  // prototype header. (Note that the prototype header's epoch bits
700                  // only change at a safepoint.) If not, attempt to rebias the object
701                  // toward the current thread. Note that we must be absolutely sure
702                  // that the current epoch is invalid in order to do this because
703                  // otherwise the manipulations it performs on the mark word are
704                  // illegal.
705                  if (yy & markOopDesc::epoch_mask_in_place == 0) {
706                    // The epoch of the current bias is still valid but we know nothing
707                    // about the owner; it might be set or it might be clear. Try to
708                    // acquire the bias of the object using an atomic operation. If this
709                    // fails we will go in to the runtime to revoke the object's bias.
710                    // Note that we first construct the presumed unbiased header so we
711                    // don't accidentally blow away another thread's valid bias.
712                    intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
713                                                           markOopDesc::age_mask_in_place |
714                                                           markOopDesc::epoch_mask_in_place);
715                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
716                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
717                    }
718                  } else {
719                    try_rebias:
720                    // At this point we know the epoch has expired, meaning that the
721                    // current "bias owner", if any, is actually invalid. Under these
722                    // circumstances _only_, we are allowed to use the current header's
723                    // value as the comparison value when doing the cas to acquire the
724                    // bias in the current epoch. In other words, we allow transfer of
725                    // the bias from one thread to another directly in this situation.
726                    xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
727                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
728                                            (intptr_t*) rcvr->mark_addr(),
729                                            (intptr_t) mark) != (intptr_t) mark) {
730                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
731                    }
732                  }
733                } else {
734                  try_revoke_bias:
735                  // The prototype mark in the klass doesn't have the bias bit set any
736                  // more, indicating that objects of this data type are not supposed
737                  // to be biased any more. We are going to try to reset the mark of
738                  // this object to the prototype value and fall through to the
739                  // CAS-based locking scheme. Note that if our CAS fails, it means
740                  // that another thread raced us for the privilege of revoking the
741                  // bias of this particular object, so it's okay to continue in the
742                  // normal locking code.
743                  //
744                  xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
745                  if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
746                                          (intptr_t*) rcvr->mark_addr(),
747                                          mark) == mark) {
748                    // (*counters->revoked_lock_entry_count_addr())++;
749                  success = false;
750                  }
751                }
752              }
753            } else {
754              cas_label:
755              success = false;
756            }
757          }
758          if (!success) {
759            markOop displaced = rcvr->mark()->set_unlocked();
760            mon->lock()->set_displaced_header(displaced);
761            if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
762              // Is it simple recursive case?
763              if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
764                mon->lock()->set_displaced_header(NULL);
765              } else {
766                CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
767              }
768            }
769          }
770      }
771      THREAD->clr_do_not_unlock();
772
773      // Notify jvmti
774#ifdef VM_JVMTI
775      if (_jvmti_interp_events) {
776        // Whenever JVMTI puts a thread in interp_only_mode, method
777        // entry/exit events are sent for that thread to track stack depth.
778        if (THREAD->is_interp_only_mode()) {
779          CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
780                  handle_exception);
781        }
782      }
783#endif /* VM_JVMTI */
784
785      goto run;
786    }
787
788    case popping_frame: {
789      // returned from a java call to pop the frame, restart the call
790      // clear the message so we don't confuse ourselves later
791      ShouldNotReachHere();  // we don't return this.
792      assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
793      istate->set_msg(no_request);
794      THREAD->clr_pop_frame_in_process();
795      goto run;
796    }
797
798    case method_resume: {
799      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
800        // resume
801        os::breakpoint();
802      }
803#ifdef HACK
804      {
805        ResourceMark rm;
806        char *method_name = istate->method()->name_and_sig_as_C_string();
807        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
808          tty->print_cr("resume: depth %d bci: %d",
809                         (istate->_stack_base - istate->_stack) ,
810                         istate->_bcp - istate->_method->code_base());
811          interesting = true;
812        }
813      }
814#endif // HACK
815      // returned from a java call, continue executing.
816      if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
817        goto handle_Pop_Frame;
818      }
819
820      if (THREAD->has_pending_exception()) goto handle_exception;
821      // Update the pc by the saved amount of the invoke bytecode size
822      UPDATE_PC(istate->bcp_advance());
823      goto run;
824    }
825
826    case deopt_resume2: {
827      // Returned from an opcode that will reexecute. Deopt was
828      // a result of a PopFrame request.
829      //
830      goto run;
831    }
832
833    case deopt_resume: {
834      // Returned from an opcode that has completed. The stack has
835      // the result all we need to do is skip across the bytecode
836      // and continue (assuming there is no exception pending)
837      //
838      // compute continuation length
839      //
840      // Note: it is possible to deopt at a return_register_finalizer opcode
841      // because this requires entering the vm to do the registering. While the
842      // opcode is complete we can't advance because there are no more opcodes
843      // much like trying to deopt at a poll return. In that has we simply
844      // get out of here
845      //
846      if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
847        // this will do the right thing even if an exception is pending.
848        goto handle_return;
849      }
850      UPDATE_PC(Bytecodes::length_at(METHOD, pc));
851      if (THREAD->has_pending_exception()) goto handle_exception;
852      goto run;
853    }
854    case got_monitors: {
855      // continue locking now that we have a monitor to use
856      // we expect to find newly allocated monitor at the "top" of the monitor stack.
857      oop lockee = STACK_OBJECT(-1);
858      VERIFY_OOP(lockee);
859      // derefing's lockee ought to provoke implicit null check
860      // find a free monitor
861      BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
862      assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
863      entry->set_obj(lockee);
864
865      markOop displaced = lockee->mark()->set_unlocked();
866      entry->lock()->set_displaced_header(displaced);
867      if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
868        // Is it simple recursive case?
869        if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
870          entry->lock()->set_displaced_header(NULL);
871        } else {
872          CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
873        }
874      }
875      UPDATE_PC_AND_TOS(1, -1);
876      goto run;
877    }
878    default: {
879      fatal("Unexpected message from frame manager");
880    }
881  }
882
883run:
884
885  DO_UPDATE_INSTRUCTION_COUNT(*pc)
886  DEBUGGER_SINGLE_STEP_NOTIFY();
887#ifdef PREFETCH_OPCCODE
888  opcode = *pc;  /* prefetch first opcode */
889#endif
890
891#ifndef USELABELS
892  while (1)
893#endif
894  {
895#ifndef PREFETCH_OPCCODE
896      opcode = *pc;
897#endif
898      // Seems like this happens twice per opcode. At worst this is only
899      // need at entry to the loop.
900      // DEBUGGER_SINGLE_STEP_NOTIFY();
901      /* Using this labels avoids double breakpoints when quickening and
902       * when returing from transition frames.
903       */
904  opcode_switch:
905      assert(istate == orig, "Corrupted istate");
906      /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
907      assert(topOfStack >= istate->stack_limit(), "Stack overrun");
908      assert(topOfStack < istate->stack_base(), "Stack underrun");
909
910#ifdef USELABELS
911      DISPATCH(opcode);
912#else
913      switch (opcode)
914#endif
915      {
916      CASE(_nop):
917          UPDATE_PC_AND_CONTINUE(1);
918
919          /* Push miscellaneous constants onto the stack. */
920
921      CASE(_aconst_null):
922          SET_STACK_OBJECT(NULL, 0);
923          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
924
925#undef  OPC_CONST_n
926#define OPC_CONST_n(opcode, const_type, value)                          \
927      CASE(opcode):                                                     \
928          SET_STACK_ ## const_type(value, 0);                           \
929          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
930
931          OPC_CONST_n(_iconst_m1,   INT,       -1);
932          OPC_CONST_n(_iconst_0,    INT,        0);
933          OPC_CONST_n(_iconst_1,    INT,        1);
934          OPC_CONST_n(_iconst_2,    INT,        2);
935          OPC_CONST_n(_iconst_3,    INT,        3);
936          OPC_CONST_n(_iconst_4,    INT,        4);
937          OPC_CONST_n(_iconst_5,    INT,        5);
938          OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
939          OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
940          OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
941
942#undef  OPC_CONST2_n
943#define OPC_CONST2_n(opcname, value, key, kind)                         \
944      CASE(_##opcname):                                                 \
945      {                                                                 \
946          SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
947          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
948      }
949         OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
950         OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
951         OPC_CONST2_n(lconst_0, Zero, long, LONG);
952         OPC_CONST2_n(lconst_1, One,  long, LONG);
953
954         /* Load constant from constant pool: */
955
956          /* Push a 1-byte signed integer value onto the stack. */
957      CASE(_bipush):
958          SET_STACK_INT((jbyte)(pc[1]), 0);
959          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
960
961          /* Push a 2-byte signed integer constant onto the stack. */
962      CASE(_sipush):
963          SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
964          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
965
966          /* load from local variable */
967
968      CASE(_aload):
969          VERIFY_OOP(LOCALS_OBJECT(pc[1]));
970          SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
971          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
972
973      CASE(_iload):
974      CASE(_fload):
975          SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
976          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
977
978      CASE(_lload):
979          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
980          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
981
982      CASE(_dload):
983          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
984          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
985
986#undef  OPC_LOAD_n
987#define OPC_LOAD_n(num)                                                 \
988      CASE(_aload_##num):                                               \
989          VERIFY_OOP(LOCALS_OBJECT(num));                               \
990          SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
991          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
992                                                                        \
993      CASE(_iload_##num):                                               \
994      CASE(_fload_##num):                                               \
995          SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
996          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
997                                                                        \
998      CASE(_lload_##num):                                               \
999          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1000          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1001      CASE(_dload_##num):                                               \
1002          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1003          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1004
1005          OPC_LOAD_n(0);
1006          OPC_LOAD_n(1);
1007          OPC_LOAD_n(2);
1008          OPC_LOAD_n(3);
1009
1010          /* store to a local variable */
1011
1012      CASE(_astore):
1013          astore(topOfStack, -1, locals, pc[1]);
1014          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1015
1016      CASE(_istore):
1017      CASE(_fstore):
1018          SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1019          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1020
1021      CASE(_lstore):
1022          SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1023          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1024
1025      CASE(_dstore):
1026          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1027          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1028
1029      CASE(_wide): {
1030          uint16_t reg = Bytes::get_Java_u2(pc + 2);
1031
1032          opcode = pc[1];
1033          switch(opcode) {
1034              case Bytecodes::_aload:
1035                  VERIFY_OOP(LOCALS_OBJECT(reg));
1036                  SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1037                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1038
1039              case Bytecodes::_iload:
1040              case Bytecodes::_fload:
1041                  SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1042                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1043
1044              case Bytecodes::_lload:
1045                  SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1046                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1047
1048              case Bytecodes::_dload:
1049                  SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1050                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1051
1052              case Bytecodes::_astore:
1053                  astore(topOfStack, -1, locals, reg);
1054                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1055
1056              case Bytecodes::_istore:
1057              case Bytecodes::_fstore:
1058                  SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1059                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1060
1061              case Bytecodes::_lstore:
1062                  SET_LOCALS_LONG(STACK_LONG(-1), reg);
1063                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1064
1065              case Bytecodes::_dstore:
1066                  SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1067                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1068
1069              case Bytecodes::_iinc: {
1070                  int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1071                  // Be nice to see what this generates.... QQQ
1072                  SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1073                  UPDATE_PC_AND_CONTINUE(6);
1074              }
1075              case Bytecodes::_ret:
1076                  pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1077                  UPDATE_PC_AND_CONTINUE(0);
1078              default:
1079                  VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1080          }
1081      }
1082
1083
1084#undef  OPC_STORE_n
1085#define OPC_STORE_n(num)                                                \
1086      CASE(_astore_##num):                                              \
1087          astore(topOfStack, -1, locals, num);                          \
1088          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1089      CASE(_istore_##num):                                              \
1090      CASE(_fstore_##num):                                              \
1091          SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1092          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1093
1094          OPC_STORE_n(0);
1095          OPC_STORE_n(1);
1096          OPC_STORE_n(2);
1097          OPC_STORE_n(3);
1098
1099#undef  OPC_DSTORE_n
1100#define OPC_DSTORE_n(num)                                               \
1101      CASE(_dstore_##num):                                              \
1102          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1103          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1104      CASE(_lstore_##num):                                              \
1105          SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1106          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1107
1108          OPC_DSTORE_n(0);
1109          OPC_DSTORE_n(1);
1110          OPC_DSTORE_n(2);
1111          OPC_DSTORE_n(3);
1112
1113          /* stack pop, dup, and insert opcodes */
1114
1115
1116      CASE(_pop):                /* Discard the top item on the stack */
1117          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1118
1119
1120      CASE(_pop2):               /* Discard the top 2 items on the stack */
1121          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1122
1123
1124      CASE(_dup):               /* Duplicate the top item on the stack */
1125          dup(topOfStack);
1126          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1127
1128      CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1129          dup2(topOfStack);
1130          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1131
1132      CASE(_dup_x1):    /* insert top word two down */
1133          dup_x1(topOfStack);
1134          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1135
1136      CASE(_dup_x2):    /* insert top word three down  */
1137          dup_x2(topOfStack);
1138          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1139
1140      CASE(_dup2_x1):   /* insert top 2 slots three down */
1141          dup2_x1(topOfStack);
1142          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1143
1144      CASE(_dup2_x2):   /* insert top 2 slots four down */
1145          dup2_x2(topOfStack);
1146          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1147
1148      CASE(_swap): {        /* swap top two elements on the stack */
1149          swap(topOfStack);
1150          UPDATE_PC_AND_CONTINUE(1);
1151      }
1152
1153          /* Perform various binary integer operations */
1154
1155#undef  OPC_INT_BINARY
1156#define OPC_INT_BINARY(opcname, opname, test)                           \
1157      CASE(_i##opcname):                                                \
1158          if (test && (STACK_INT(-1) == 0)) {                           \
1159              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1160                            "/ by zero");                               \
1161          }                                                             \
1162          SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1163                                      STACK_INT(-1)),                   \
1164                                      -2);                              \
1165          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1166      CASE(_l##opcname):                                                \
1167      {                                                                 \
1168          if (test) {                                                   \
1169            jlong l1 = STACK_LONG(-1);                                  \
1170            if (VMlongEqz(l1)) {                                        \
1171              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1172                            "/ by long zero");                          \
1173            }                                                           \
1174          }                                                             \
1175          /* First long at (-1,-2) next long at (-3,-4) */              \
1176          SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1177                                        STACK_LONG(-1)),                \
1178                                        -3);                            \
1179          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1180      }
1181
1182      OPC_INT_BINARY(add, Add, 0);
1183      OPC_INT_BINARY(sub, Sub, 0);
1184      OPC_INT_BINARY(mul, Mul, 0);
1185      OPC_INT_BINARY(and, And, 0);
1186      OPC_INT_BINARY(or,  Or,  0);
1187      OPC_INT_BINARY(xor, Xor, 0);
1188      OPC_INT_BINARY(div, Div, 1);
1189      OPC_INT_BINARY(rem, Rem, 1);
1190
1191
1192      /* Perform various binary floating number operations */
1193      /* On some machine/platforms/compilers div zero check can be implicit */
1194
1195#undef  OPC_FLOAT_BINARY
1196#define OPC_FLOAT_BINARY(opcname, opname)                                  \
1197      CASE(_d##opcname): {                                                 \
1198          SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1199                                            STACK_DOUBLE(-1)),             \
1200                                            -3);                           \
1201          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1202      }                                                                    \
1203      CASE(_f##opcname):                                                   \
1204          SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1205                                          STACK_FLOAT(-1)),                \
1206                                          -2);                             \
1207          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1208
1209
1210     OPC_FLOAT_BINARY(add, Add);
1211     OPC_FLOAT_BINARY(sub, Sub);
1212     OPC_FLOAT_BINARY(mul, Mul);
1213     OPC_FLOAT_BINARY(div, Div);
1214     OPC_FLOAT_BINARY(rem, Rem);
1215
1216      /* Shift operations
1217       * Shift left int and long: ishl, lshl
1218       * Logical shift right int and long w/zero extension: iushr, lushr
1219       * Arithmetic shift right int and long w/sign extension: ishr, lshr
1220       */
1221
1222#undef  OPC_SHIFT_BINARY
1223#define OPC_SHIFT_BINARY(opcname, opname)                               \
1224      CASE(_i##opcname):                                                \
1225         SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1226                                     STACK_INT(-1)),                    \
1227                                     -2);                               \
1228         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1229      CASE(_l##opcname):                                                \
1230      {                                                                 \
1231         SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1232                                       STACK_INT(-1)),                  \
1233                                       -2);                             \
1234         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1235      }
1236
1237      OPC_SHIFT_BINARY(shl, Shl);
1238      OPC_SHIFT_BINARY(shr, Shr);
1239      OPC_SHIFT_BINARY(ushr, Ushr);
1240
1241     /* Increment local variable by constant */
1242      CASE(_iinc):
1243      {
1244          // locals[pc[1]].j.i += (jbyte)(pc[2]);
1245          SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1246          UPDATE_PC_AND_CONTINUE(3);
1247      }
1248
1249     /* negate the value on the top of the stack */
1250
1251      CASE(_ineg):
1252         SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1253         UPDATE_PC_AND_CONTINUE(1);
1254
1255      CASE(_fneg):
1256         SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1257         UPDATE_PC_AND_CONTINUE(1);
1258
1259      CASE(_lneg):
1260      {
1261         SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1262         UPDATE_PC_AND_CONTINUE(1);
1263      }
1264
1265      CASE(_dneg):
1266      {
1267         SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1268         UPDATE_PC_AND_CONTINUE(1);
1269      }
1270
1271      /* Conversion operations */
1272
1273      CASE(_i2f):       /* convert top of stack int to float */
1274         SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1275         UPDATE_PC_AND_CONTINUE(1);
1276
1277      CASE(_i2l):       /* convert top of stack int to long */
1278      {
1279          // this is ugly QQQ
1280          jlong r = VMint2Long(STACK_INT(-1));
1281          MORE_STACK(-1); // Pop
1282          SET_STACK_LONG(r, 1);
1283
1284          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1285      }
1286
1287      CASE(_i2d):       /* convert top of stack int to double */
1288      {
1289          // this is ugly QQQ (why cast to jlong?? )
1290          jdouble r = (jlong)STACK_INT(-1);
1291          MORE_STACK(-1); // Pop
1292          SET_STACK_DOUBLE(r, 1);
1293
1294          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1295      }
1296
1297      CASE(_l2i):       /* convert top of stack long to int */
1298      {
1299          jint r = VMlong2Int(STACK_LONG(-1));
1300          MORE_STACK(-2); // Pop
1301          SET_STACK_INT(r, 0);
1302          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1303      }
1304
1305      CASE(_l2f):   /* convert top of stack long to float */
1306      {
1307          jlong r = STACK_LONG(-1);
1308          MORE_STACK(-2); // Pop
1309          SET_STACK_FLOAT(VMlong2Float(r), 0);
1310          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1311      }
1312
1313      CASE(_l2d):       /* convert top of stack long to double */
1314      {
1315          jlong r = STACK_LONG(-1);
1316          MORE_STACK(-2); // Pop
1317          SET_STACK_DOUBLE(VMlong2Double(r), 1);
1318          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1319      }
1320
1321      CASE(_f2i):  /* Convert top of stack float to int */
1322          SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1323          UPDATE_PC_AND_CONTINUE(1);
1324
1325      CASE(_f2l):  /* convert top of stack float to long */
1326      {
1327          jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1328          MORE_STACK(-1); // POP
1329          SET_STACK_LONG(r, 1);
1330          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1331      }
1332
1333      CASE(_f2d):  /* convert top of stack float to double */
1334      {
1335          jfloat f;
1336          jdouble r;
1337          f = STACK_FLOAT(-1);
1338          r = (jdouble) f;
1339          MORE_STACK(-1); // POP
1340          SET_STACK_DOUBLE(r, 1);
1341          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1342      }
1343
1344      CASE(_d2i): /* convert top of stack double to int */
1345      {
1346          jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1347          MORE_STACK(-2);
1348          SET_STACK_INT(r1, 0);
1349          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1350      }
1351
1352      CASE(_d2f): /* convert top of stack double to float */
1353      {
1354          jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1355          MORE_STACK(-2);
1356          SET_STACK_FLOAT(r1, 0);
1357          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1358      }
1359
1360      CASE(_d2l): /* convert top of stack double to long */
1361      {
1362          jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1363          MORE_STACK(-2);
1364          SET_STACK_LONG(r1, 1);
1365          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1366      }
1367
1368      CASE(_i2b):
1369          SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1370          UPDATE_PC_AND_CONTINUE(1);
1371
1372      CASE(_i2c):
1373          SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1374          UPDATE_PC_AND_CONTINUE(1);
1375
1376      CASE(_i2s):
1377          SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1378          UPDATE_PC_AND_CONTINUE(1);
1379
1380      /* comparison operators */
1381
1382
1383#define COMPARISON_OP(name, comparison)                                      \
1384      CASE(_if_icmp##name): {                                                \
1385          int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1386                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1387          address branch_pc = pc;                                            \
1388          UPDATE_PC_AND_TOS(skip, -2);                                       \
1389          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1390          CONTINUE;                                                          \
1391      }                                                                      \
1392      CASE(_if##name): {                                                     \
1393          int skip = (STACK_INT(-1) comparison 0)                            \
1394                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1395          address branch_pc = pc;                                            \
1396          UPDATE_PC_AND_TOS(skip, -1);                                       \
1397          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1398          CONTINUE;                                                          \
1399      }
1400
1401#define COMPARISON_OP2(name, comparison)                                     \
1402      COMPARISON_OP(name, comparison)                                        \
1403      CASE(_if_acmp##name): {                                                \
1404          int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1405                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1406          address branch_pc = pc;                                            \
1407          UPDATE_PC_AND_TOS(skip, -2);                                       \
1408          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1409          CONTINUE;                                                          \
1410      }
1411
1412#define NULL_COMPARISON_NOT_OP(name)                                         \
1413      CASE(_if##name): {                                                     \
1414          int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1415                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1416          address branch_pc = pc;                                            \
1417          UPDATE_PC_AND_TOS(skip, -1);                                       \
1418          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1419          CONTINUE;                                                          \
1420      }
1421
1422#define NULL_COMPARISON_OP(name)                                             \
1423      CASE(_if##name): {                                                     \
1424          int skip = ((STACK_OBJECT(-1) == NULL))                            \
1425                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1426          address branch_pc = pc;                                            \
1427          UPDATE_PC_AND_TOS(skip, -1);                                       \
1428          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1429          CONTINUE;                                                          \
1430      }
1431      COMPARISON_OP(lt, <);
1432      COMPARISON_OP(gt, >);
1433      COMPARISON_OP(le, <=);
1434      COMPARISON_OP(ge, >=);
1435      COMPARISON_OP2(eq, ==);  /* include ref comparison */
1436      COMPARISON_OP2(ne, !=);  /* include ref comparison */
1437      NULL_COMPARISON_OP(null);
1438      NULL_COMPARISON_NOT_OP(nonnull);
1439
1440      /* Goto pc at specified offset in switch table. */
1441
1442      CASE(_tableswitch): {
1443          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1444          int32_t  key  = STACK_INT(-1);
1445          int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1446          int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1447          int32_t  skip;
1448          key -= low;
1449          skip = ((uint32_t) key > (uint32_t)(high - low))
1450                      ? Bytes::get_Java_u4((address)&lpc[0])
1451                      : Bytes::get_Java_u4((address)&lpc[key + 3]);
1452          // Does this really need a full backedge check (osr?)
1453          address branch_pc = pc;
1454          UPDATE_PC_AND_TOS(skip, -1);
1455          DO_BACKEDGE_CHECKS(skip, branch_pc);
1456          CONTINUE;
1457      }
1458
1459      /* Goto pc whose table entry matches specified key */
1460
1461      CASE(_lookupswitch): {
1462          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1463          int32_t  key  = STACK_INT(-1);
1464          int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1465          int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1466          while (--npairs >= 0) {
1467              lpc += 2;
1468              if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1469                  skip = Bytes::get_Java_u4((address)&lpc[1]);
1470                  break;
1471              }
1472          }
1473          address branch_pc = pc;
1474          UPDATE_PC_AND_TOS(skip, -1);
1475          DO_BACKEDGE_CHECKS(skip, branch_pc);
1476          CONTINUE;
1477      }
1478
1479      CASE(_fcmpl):
1480      CASE(_fcmpg):
1481      {
1482          SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1483                                        STACK_FLOAT(-1),
1484                                        (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1485                        -2);
1486          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1487      }
1488
1489      CASE(_dcmpl):
1490      CASE(_dcmpg):
1491      {
1492          int r = VMdoubleCompare(STACK_DOUBLE(-3),
1493                                  STACK_DOUBLE(-1),
1494                                  (opcode == Bytecodes::_dcmpl ? -1 : 1));
1495          MORE_STACK(-4); // Pop
1496          SET_STACK_INT(r, 0);
1497          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1498      }
1499
1500      CASE(_lcmp):
1501      {
1502          int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1503          MORE_STACK(-4);
1504          SET_STACK_INT(r, 0);
1505          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1506      }
1507
1508
1509      /* Return from a method */
1510
1511      CASE(_areturn):
1512      CASE(_ireturn):
1513      CASE(_freturn):
1514      {
1515          // Allow a safepoint before returning to frame manager.
1516          SAFEPOINT;
1517
1518          goto handle_return;
1519      }
1520
1521      CASE(_lreturn):
1522      CASE(_dreturn):
1523      {
1524          // Allow a safepoint before returning to frame manager.
1525          SAFEPOINT;
1526          goto handle_return;
1527      }
1528
1529      CASE(_return_register_finalizer): {
1530
1531          oop rcvr = LOCALS_OBJECT(0);
1532          VERIFY_OOP(rcvr);
1533          if (rcvr->klass()->klass_part()->has_finalizer()) {
1534            CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1535          }
1536          goto handle_return;
1537      }
1538      CASE(_return): {
1539
1540          // Allow a safepoint before returning to frame manager.
1541          SAFEPOINT;
1542          goto handle_return;
1543      }
1544
1545      /* Array access byte-codes */
1546
1547      /* Every array access byte-code starts out like this */
1548//        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1549#define ARRAY_INTRO(arrayOff)                                                  \
1550      arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1551      jint     index  = STACK_INT(arrayOff + 1);                               \
1552      char message[jintAsStringSize];                                          \
1553      CHECK_NULL(arrObj);                                                      \
1554      if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1555          sprintf(message, "%d", index);                                       \
1556          VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1557                        message);                                              \
1558      }
1559
1560      /* 32-bit loads. These handle conversion from < 32-bit types */
1561#define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1562      {                                                                               \
1563          ARRAY_INTRO(-2);                                                            \
1564          extra;                                                                      \
1565          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1566                           -2);                                                       \
1567          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1568      }
1569
1570      /* 64-bit loads */
1571#define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1572      {                                                                                    \
1573          ARRAY_INTRO(-2);                                                                 \
1574          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1575          extra;                                                                           \
1576          UPDATE_PC_AND_CONTINUE(1);                                            \
1577      }
1578
1579      CASE(_iaload):
1580          ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1581      CASE(_faload):
1582          ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1583      CASE(_aaload):
1584          ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1585      CASE(_baload):
1586          ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1587      CASE(_caload):
1588          ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1589      CASE(_saload):
1590          ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1591      CASE(_laload):
1592          ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1593      CASE(_daload):
1594          ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1595
1596      /* 32-bit stores. These handle conversion to < 32-bit types */
1597#define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1598      {                                                                              \
1599          ARRAY_INTRO(-3);                                                           \
1600          extra;                                                                     \
1601          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1602          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1603      }
1604
1605      /* 64-bit stores */
1606#define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1607      {                                                                              \
1608          ARRAY_INTRO(-4);                                                           \
1609          extra;                                                                     \
1610          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1611          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1612      }
1613
1614      CASE(_iastore):
1615          ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1616      CASE(_fastore):
1617          ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1618      /*
1619       * This one looks different because of the assignability check
1620       */
1621      CASE(_aastore): {
1622          oop rhsObject = STACK_OBJECT(-1);
1623          VERIFY_OOP(rhsObject);
1624          ARRAY_INTRO( -3);
1625          // arrObj, index are set
1626          if (rhsObject != NULL) {
1627            /* Check assignability of rhsObject into arrObj */
1628            klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1629            assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1630            klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1631            //
1632            // Check for compatibilty. This check must not GC!!
1633            // Seems way more expensive now that we must dispatch
1634            //
1635            if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1636              VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1637            }
1638          }
1639          oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1640          // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1641          *elem_loc = rhsObject;
1642          // Mark the card
1643          OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1644          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1645      }
1646      CASE(_bastore):
1647          ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1648      CASE(_castore):
1649          ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1650      CASE(_sastore):
1651          ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1652      CASE(_lastore):
1653          ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1654      CASE(_dastore):
1655          ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1656
1657      CASE(_arraylength):
1658      {
1659          arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1660          CHECK_NULL(ary);
1661          SET_STACK_INT(ary->length(), -1);
1662          UPDATE_PC_AND_CONTINUE(1);
1663      }
1664
1665      /* monitorenter and monitorexit for locking/unlocking an object */
1666
1667      CASE(_monitorenter): {
1668        oop lockee = STACK_OBJECT(-1);
1669        // derefing's lockee ought to provoke implicit null check
1670        CHECK_NULL(lockee);
1671        // find a free monitor or one already allocated for this object
1672        // if we find a matching object then we need a new monitor
1673        // since this is recursive enter
1674        BasicObjectLock* limit = istate->monitor_base();
1675        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1676        BasicObjectLock* entry = NULL;
1677        while (most_recent != limit ) {
1678          if (most_recent->obj() == NULL) entry = most_recent;
1679          else if (most_recent->obj() == lockee) break;
1680          most_recent++;
1681        }
1682        if (entry != NULL) {
1683          entry->set_obj(lockee);
1684          markOop displaced = lockee->mark()->set_unlocked();
1685          entry->lock()->set_displaced_header(displaced);
1686          if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1687            // Is it simple recursive case?
1688            if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1689              entry->lock()->set_displaced_header(NULL);
1690            } else {
1691              CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1692            }
1693          }
1694          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1695        } else {
1696          istate->set_msg(more_monitors);
1697          UPDATE_PC_AND_RETURN(0); // Re-execute
1698        }
1699      }
1700
1701      CASE(_monitorexit): {
1702        oop lockee = STACK_OBJECT(-1);
1703        CHECK_NULL(lockee);
1704        // derefing's lockee ought to provoke implicit null check
1705        // find our monitor slot
1706        BasicObjectLock* limit = istate->monitor_base();
1707        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1708        while (most_recent != limit ) {
1709          if ((most_recent)->obj() == lockee) {
1710            BasicLock* lock = most_recent->lock();
1711            markOop header = lock->displaced_header();
1712            most_recent->set_obj(NULL);
1713            // If it isn't recursive we either must swap old header or call the runtime
1714            if (header != NULL) {
1715              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1716                // restore object for the slow case
1717                most_recent->set_obj(lockee);
1718                CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1719              }
1720            }
1721            UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1722          }
1723          most_recent++;
1724        }
1725        // Need to throw illegal monitor state exception
1726        CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1727        ShouldNotReachHere();
1728      }
1729
1730      /* All of the non-quick opcodes. */
1731
1732      /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1733       *  constant pool index in the instruction.
1734       */
1735      CASE(_getfield):
1736      CASE(_getstatic):
1737        {
1738          u2 index;
1739          ConstantPoolCacheEntry* cache;
1740          index = Bytes::get_native_u2(pc+1);
1741
1742          // QQQ Need to make this as inlined as possible. Probably need to
1743          // split all the bytecode cases out so c++ compiler has a chance
1744          // for constant prop to fold everything possible away.
1745
1746          cache = cp->entry_at(index);
1747          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1748            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1749                    handle_exception);
1750            cache = cp->entry_at(index);
1751          }
1752
1753#ifdef VM_JVMTI
1754          if (_jvmti_interp_events) {
1755            int *count_addr;
1756            oop obj;
1757            // Check to see if a field modification watch has been set
1758            // before we take the time to call into the VM.
1759            count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1760            if ( *count_addr > 0 ) {
1761              if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1762                obj = (oop)NULL;
1763              } else {
1764                obj = (oop) STACK_OBJECT(-1);
1765                VERIFY_OOP(obj);
1766              }
1767              CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1768                                          obj,
1769                                          cache),
1770                                          handle_exception);
1771            }
1772          }
1773#endif /* VM_JVMTI */
1774
1775          oop obj;
1776          if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1777            obj = (oop) cache->f1();
1778            MORE_STACK(1);  // Assume single slot push
1779          } else {
1780            obj = (oop) STACK_OBJECT(-1);
1781            CHECK_NULL(obj);
1782          }
1783
1784          //
1785          // Now store the result on the stack
1786          //
1787          TosState tos_type = cache->flag_state();
1788          int field_offset = cache->f2();
1789          if (cache->is_volatile()) {
1790            if (tos_type == atos) {
1791              VERIFY_OOP(obj->obj_field_acquire(field_offset));
1792              SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1793            } else if (tos_type == itos) {
1794              SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1795            } else if (tos_type == ltos) {
1796              SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1797              MORE_STACK(1);
1798            } else if (tos_type == btos) {
1799              SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1800            } else if (tos_type == ctos) {
1801              SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1802            } else if (tos_type == stos) {
1803              SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1804            } else if (tos_type == ftos) {
1805              SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1806            } else {
1807              SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1808              MORE_STACK(1);
1809            }
1810          } else {
1811            if (tos_type == atos) {
1812              VERIFY_OOP(obj->obj_field(field_offset));
1813              SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1814            } else if (tos_type == itos) {
1815              SET_STACK_INT(obj->int_field(field_offset), -1);
1816            } else if (tos_type == ltos) {
1817              SET_STACK_LONG(obj->long_field(field_offset), 0);
1818              MORE_STACK(1);
1819            } else if (tos_type == btos) {
1820              SET_STACK_INT(obj->byte_field(field_offset), -1);
1821            } else if (tos_type == ctos) {
1822              SET_STACK_INT(obj->char_field(field_offset), -1);
1823            } else if (tos_type == stos) {
1824              SET_STACK_INT(obj->short_field(field_offset), -1);
1825            } else if (tos_type == ftos) {
1826              SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1827            } else {
1828              SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1829              MORE_STACK(1);
1830            }
1831          }
1832
1833          UPDATE_PC_AND_CONTINUE(3);
1834         }
1835
1836      CASE(_putfield):
1837      CASE(_putstatic):
1838        {
1839          u2 index = Bytes::get_native_u2(pc+1);
1840          ConstantPoolCacheEntry* cache = cp->entry_at(index);
1841          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1842            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1843                    handle_exception);
1844            cache = cp->entry_at(index);
1845          }
1846
1847#ifdef VM_JVMTI
1848          if (_jvmti_interp_events) {
1849            int *count_addr;
1850            oop obj;
1851            // Check to see if a field modification watch has been set
1852            // before we take the time to call into the VM.
1853            count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1854            if ( *count_addr > 0 ) {
1855              if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1856                obj = (oop)NULL;
1857              }
1858              else {
1859                if (cache->is_long() || cache->is_double()) {
1860                  obj = (oop) STACK_OBJECT(-3);
1861                } else {
1862                  obj = (oop) STACK_OBJECT(-2);
1863                }
1864                VERIFY_OOP(obj);
1865              }
1866
1867              CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1868                                          obj,
1869                                          cache,
1870                                          (jvalue *)STACK_SLOT(-1)),
1871                                          handle_exception);
1872            }
1873          }
1874#endif /* VM_JVMTI */
1875
1876          // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1877          // out so c++ compiler has a chance for constant prop to fold everything possible away.
1878
1879          oop obj;
1880          int count;
1881          TosState tos_type = cache->flag_state();
1882
1883          count = -1;
1884          if (tos_type == ltos || tos_type == dtos) {
1885            --count;
1886          }
1887          if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1888            obj = (oop) cache->f1();
1889          } else {
1890            --count;
1891            obj = (oop) STACK_OBJECT(count);
1892            CHECK_NULL(obj);
1893          }
1894
1895          //
1896          // Now store the result
1897          //
1898          int field_offset = cache->f2();
1899          if (cache->is_volatile()) {
1900            if (tos_type == itos) {
1901              obj->release_int_field_put(field_offset, STACK_INT(-1));
1902            } else if (tos_type == atos) {
1903              VERIFY_OOP(STACK_OBJECT(-1));
1904              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1905              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1906            } else if (tos_type == btos) {
1907              obj->release_byte_field_put(field_offset, STACK_INT(-1));
1908            } else if (tos_type == ltos) {
1909              obj->release_long_field_put(field_offset, STACK_LONG(-1));
1910            } else if (tos_type == ctos) {
1911              obj->release_char_field_put(field_offset, STACK_INT(-1));
1912            } else if (tos_type == stos) {
1913              obj->release_short_field_put(field_offset, STACK_INT(-1));
1914            } else if (tos_type == ftos) {
1915              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1916            } else {
1917              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1918            }
1919            OrderAccess::storeload();
1920          } else {
1921            if (tos_type == itos) {
1922              obj->int_field_put(field_offset, STACK_INT(-1));
1923            } else if (tos_type == atos) {
1924              VERIFY_OOP(STACK_OBJECT(-1));
1925              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1926              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1927            } else if (tos_type == btos) {
1928              obj->byte_field_put(field_offset, STACK_INT(-1));
1929            } else if (tos_type == ltos) {
1930              obj->long_field_put(field_offset, STACK_LONG(-1));
1931            } else if (tos_type == ctos) {
1932              obj->char_field_put(field_offset, STACK_INT(-1));
1933            } else if (tos_type == stos) {
1934              obj->short_field_put(field_offset, STACK_INT(-1));
1935            } else if (tos_type == ftos) {
1936              obj->float_field_put(field_offset, STACK_FLOAT(-1));
1937            } else {
1938              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1939            }
1940          }
1941
1942          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1943        }
1944
1945      CASE(_new): {
1946        u2 index = Bytes::get_Java_u2(pc+1);
1947        constantPoolOop constants = istate->method()->constants();
1948        if (!constants->tag_at(index).is_unresolved_klass()) {
1949          // Make sure klass is initialized and doesn't have a finalizer
1950          oop entry = constants->slot_at(index).get_oop();
1951          assert(entry->is_klass(), "Should be resolved klass");
1952          klassOop k_entry = (klassOop) entry;
1953          assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1954          instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1955          if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1956            size_t obj_size = ik->size_helper();
1957            oop result = NULL;
1958            // If the TLAB isn't pre-zeroed then we'll have to do it
1959            bool need_zero = !ZeroTLAB;
1960            if (UseTLAB) {
1961              result = (oop) THREAD->tlab().allocate(obj_size);
1962            }
1963            if (result == NULL) {
1964              need_zero = true;
1965              // Try allocate in shared eden
1966        retry:
1967              HeapWord* compare_to = *Universe::heap()->top_addr();
1968              HeapWord* new_top = compare_to + obj_size;
1969              if (new_top <= *Universe::heap()->end_addr()) {
1970                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1971                  goto retry;
1972                }
1973                result = (oop) compare_to;
1974              }
1975            }
1976            if (result != NULL) {
1977              // Initialize object (if nonzero size and need) and then the header
1978              if (need_zero ) {
1979                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1980                obj_size -= sizeof(oopDesc) / oopSize;
1981                if (obj_size > 0 ) {
1982                  memset(to_zero, 0, obj_size * HeapWordSize);
1983                }
1984              }
1985              if (UseBiasedLocking) {
1986                result->set_mark(ik->prototype_header());
1987              } else {
1988                result->set_mark(markOopDesc::prototype());
1989              }
1990              result->set_klass_gap(0);
1991              result->set_klass(k_entry);
1992              SET_STACK_OBJECT(result, 0);
1993              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1994            }
1995          }
1996        }
1997        // Slow case allocation
1998        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1999                handle_exception);
2000        SET_STACK_OBJECT(THREAD->vm_result(), 0);
2001        THREAD->set_vm_result(NULL);
2002        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2003      }
2004      CASE(_anewarray): {
2005        u2 index = Bytes::get_Java_u2(pc+1);
2006        jint size = STACK_INT(-1);
2007        CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2008                handle_exception);
2009        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2010        THREAD->set_vm_result(NULL);
2011        UPDATE_PC_AND_CONTINUE(3);
2012      }
2013      CASE(_multianewarray): {
2014        jint dims = *(pc+3);
2015        jint size = STACK_INT(-1);
2016        // stack grows down, dimensions are up!
2017        jint *dimarray =
2018                   (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2019                                      Interpreter::stackElementWords-1];
2020        //adjust pointer to start of stack element
2021        CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2022                handle_exception);
2023        SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2024        THREAD->set_vm_result(NULL);
2025        UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2026      }
2027      CASE(_checkcast):
2028          if (STACK_OBJECT(-1) != NULL) {
2029            VERIFY_OOP(STACK_OBJECT(-1));
2030            u2 index = Bytes::get_Java_u2(pc+1);
2031            if (ProfileInterpreter) {
2032              // needs Profile_checkcast QQQ
2033              ShouldNotReachHere();
2034            }
2035            // Constant pool may have actual klass or unresolved klass. If it is
2036            // unresolved we must resolve it
2037            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2038              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2039            }
2040            klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2041            klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2042            //
2043            // Check for compatibilty. This check must not GC!!
2044            // Seems way more expensive now that we must dispatch
2045            //
2046            if (objKlassOop != klassOf &&
2047                !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2048              ResourceMark rm(THREAD);
2049              const char* objName = Klass::cast(objKlassOop)->external_name();
2050              const char* klassName = Klass::cast(klassOf)->external_name();
2051              char* message = SharedRuntime::generate_class_cast_message(
2052                objName, klassName);
2053              VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2054            }
2055          } else {
2056            if (UncommonNullCast) {
2057//              istate->method()->set_null_cast_seen();
2058// [RGV] Not sure what to do here!
2059
2060            }
2061          }
2062          UPDATE_PC_AND_CONTINUE(3);
2063
2064      CASE(_instanceof):
2065          if (STACK_OBJECT(-1) == NULL) {
2066            SET_STACK_INT(0, -1);
2067          } else {
2068            VERIFY_OOP(STACK_OBJECT(-1));
2069            u2 index = Bytes::get_Java_u2(pc+1);
2070            // Constant pool may have actual klass or unresolved klass. If it is
2071            // unresolved we must resolve it
2072            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2073              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2074            }
2075            klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2076            klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2077            //
2078            // Check for compatibilty. This check must not GC!!
2079            // Seems way more expensive now that we must dispatch
2080            //
2081            if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2082              SET_STACK_INT(1, -1);
2083            } else {
2084              SET_STACK_INT(0, -1);
2085            }
2086          }
2087          UPDATE_PC_AND_CONTINUE(3);
2088
2089      CASE(_ldc_w):
2090      CASE(_ldc):
2091        {
2092          u2 index;
2093          bool wide = false;
2094          int incr = 2; // frequent case
2095          if (opcode == Bytecodes::_ldc) {
2096            index = pc[1];
2097          } else {
2098            index = Bytes::get_Java_u2(pc+1);
2099            incr = 3;
2100            wide = true;
2101          }
2102
2103          constantPoolOop constants = METHOD->constants();
2104          switch (constants->tag_at(index).value()) {
2105          case JVM_CONSTANT_Integer:
2106            SET_STACK_INT(constants->int_at(index), 0);
2107            break;
2108
2109          case JVM_CONSTANT_Float:
2110            SET_STACK_FLOAT(constants->float_at(index), 0);
2111            break;
2112
2113          case JVM_CONSTANT_String:
2114            VERIFY_OOP(constants->resolved_string_at(index));
2115            SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2116            break;
2117
2118          case JVM_CONSTANT_Class:
2119            VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2120            SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2121            break;
2122
2123          case JVM_CONSTANT_UnresolvedString:
2124          case JVM_CONSTANT_UnresolvedClass:
2125          case JVM_CONSTANT_UnresolvedClassInError:
2126            CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2127            SET_STACK_OBJECT(THREAD->vm_result(), 0);
2128            THREAD->set_vm_result(NULL);
2129            break;
2130
2131          default:  ShouldNotReachHere();
2132          }
2133          UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2134        }
2135
2136      CASE(_ldc2_w):
2137        {
2138          u2 index = Bytes::get_Java_u2(pc+1);
2139
2140          constantPoolOop constants = METHOD->constants();
2141          switch (constants->tag_at(index).value()) {
2142
2143          case JVM_CONSTANT_Long:
2144             SET_STACK_LONG(constants->long_at(index), 1);
2145            break;
2146
2147          case JVM_CONSTANT_Double:
2148             SET_STACK_DOUBLE(constants->double_at(index), 1);
2149            break;
2150          default:  ShouldNotReachHere();
2151          }
2152          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2153        }
2154
2155      CASE(_fast_aldc_w):
2156      CASE(_fast_aldc): {
2157        if (!EnableInvokeDynamic) {
2158          // We should not encounter this bytecode if !EnableInvokeDynamic.
2159          // The verifier will stop it.  However, if we get past the verifier,
2160          // this will stop the thread in a reasonable way, without crashing the JVM.
2161          CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2162                  handle_exception);
2163          ShouldNotReachHere();
2164        }
2165
2166        u2 index;
2167        int incr;
2168        if (opcode == Bytecodes::_fast_aldc) {
2169          index = pc[1];
2170          incr = 2;
2171        } else {
2172          index = Bytes::get_native_u2(pc+1);
2173          incr = 3;
2174        }
2175
2176        // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2177        // This kind of CP cache entry does not need to match the flags byte, because
2178        // there is a 1-1 relation between bytecode type and CP entry type.
2179        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2180        if (cache->is_f1_null()) {
2181          CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2182                  handle_exception);
2183        }
2184
2185        VERIFY_OOP(cache->f1());
2186        SET_STACK_OBJECT(cache->f1(), 0);
2187        UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2188      }
2189
2190      CASE(_invokedynamic): {
2191        if (!EnableInvokeDynamic) {
2192          // We should not encounter this bytecode if !EnableInvokeDynamic.
2193          // The verifier will stop it.  However, if we get past the verifier,
2194          // this will stop the thread in a reasonable way, without crashing the JVM.
2195          CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2196                  handle_exception);
2197          ShouldNotReachHere();
2198        }
2199
2200        int index = Bytes::get_native_u4(pc+1);
2201
2202        // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2203        // This kind of CP cache entry does not need to match the flags byte, because
2204        // there is a 1-1 relation between bytecode type and CP entry type.
2205        assert(constantPoolCacheOopDesc::is_secondary_index(index), "incorrect format");
2206        ConstantPoolCacheEntry* cache = cp->secondary_entry_at(index);
2207        if (cache->is_f1_null()) {
2208          CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2209                  handle_exception);
2210        }
2211
2212        VERIFY_OOP(cache->f1());
2213        oop method_handle = java_lang_invoke_CallSite::target(cache->f1());
2214        CHECK_NULL(method_handle);
2215
2216        istate->set_msg(call_method_handle);
2217        istate->set_callee((methodOop) method_handle);
2218        istate->set_bcp_advance(5);
2219
2220        UPDATE_PC_AND_RETURN(0); // I'll be back...
2221      }
2222
2223      CASE(_invokeinterface): {
2224        u2 index = Bytes::get_native_u2(pc+1);
2225
2226        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2227        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2228
2229        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2230        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2231          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2232                  handle_exception);
2233          cache = cp->entry_at(index);
2234        }
2235
2236        istate->set_msg(call_method);
2237
2238        // Special case of invokeinterface called for virtual method of
2239        // java.lang.Object.  See cpCacheOop.cpp for details.
2240        // This code isn't produced by javac, but could be produced by
2241        // another compliant java compiler.
2242        if (cache->is_methodInterface()) {
2243          methodOop callee;
2244          CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2245          if (cache->is_vfinal()) {
2246            callee = (methodOop) cache->f2();
2247          } else {
2248            // get receiver
2249            int parms = cache->parameter_size();
2250            // Same comments as invokevirtual apply here
2251            VERIFY_OOP(STACK_OBJECT(-parms));
2252            instanceKlass* rcvrKlass = (instanceKlass*)
2253                                 STACK_OBJECT(-parms)->klass()->klass_part();
2254            callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2255          }
2256          istate->set_callee(callee);
2257          istate->set_callee_entry_point(callee->from_interpreted_entry());
2258#ifdef VM_JVMTI
2259          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2260            istate->set_callee_entry_point(callee->interpreter_entry());
2261          }
2262#endif /* VM_JVMTI */
2263          istate->set_bcp_advance(5);
2264          UPDATE_PC_AND_RETURN(0); // I'll be back...
2265        }
2266
2267        // this could definitely be cleaned up QQQ
2268        methodOop callee;
2269        klassOop iclass = (klassOop)cache->f1();
2270        // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2271        // get receiver
2272        int parms = cache->parameter_size();
2273        oop rcvr = STACK_OBJECT(-parms);
2274        CHECK_NULL(rcvr);
2275        instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2276        itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2277        int i;
2278        for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2279          if (ki->interface_klass() == iclass) break;
2280        }
2281        // If the interface isn't found, this class doesn't implement this
2282        // interface.  The link resolver checks this but only for the first
2283        // time this interface is called.
2284        if (i == int2->itable_length()) {
2285          VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2286        }
2287        int mindex = cache->f2();
2288        itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2289        callee = im[mindex].method();
2290        if (callee == NULL) {
2291          VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2292        }
2293
2294        istate->set_callee(callee);
2295        istate->set_callee_entry_point(callee->from_interpreted_entry());
2296#ifdef VM_JVMTI
2297        if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2298          istate->set_callee_entry_point(callee->interpreter_entry());
2299        }
2300#endif /* VM_JVMTI */
2301        istate->set_bcp_advance(5);
2302        UPDATE_PC_AND_RETURN(0); // I'll be back...
2303      }
2304
2305      CASE(_invokevirtual):
2306      CASE(_invokespecial):
2307      CASE(_invokestatic): {
2308        u2 index = Bytes::get_native_u2(pc+1);
2309
2310        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2311        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2312        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2313
2314        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2315          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2316                  handle_exception);
2317          cache = cp->entry_at(index);
2318        }
2319
2320        istate->set_msg(call_method);
2321        {
2322          methodOop callee;
2323          if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2324            CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2325            if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2326            else {
2327              // get receiver
2328              int parms = cache->parameter_size();
2329              // this works but needs a resourcemark and seems to create a vtable on every call:
2330              // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2331              //
2332              // this fails with an assert
2333              // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2334              // but this works
2335              VERIFY_OOP(STACK_OBJECT(-parms));
2336              instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2337              /*
2338                Executing this code in java.lang.String:
2339                    public String(char value[]) {
2340                          this.count = value.length;
2341                          this.value = (char[])value.clone();
2342                     }
2343
2344                 a find on rcvr->klass()->klass_part() reports:
2345                 {type array char}{type array class}
2346                  - klass: {other class}
2347
2348                  but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2349                  because rcvr->klass()->klass_part()->oop_is_instance() == 0
2350                  However it seems to have a vtable in the right location. Huh?
2351
2352              */
2353              callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2354            }
2355          } else {
2356            if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2357              CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2358            }
2359            callee = (methodOop) cache->f1();
2360          }
2361
2362          istate->set_callee(callee);
2363          istate->set_callee_entry_point(callee->from_interpreted_entry());
2364#ifdef VM_JVMTI
2365          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2366            istate->set_callee_entry_point(callee->interpreter_entry());
2367          }
2368#endif /* VM_JVMTI */
2369          istate->set_bcp_advance(3);
2370          UPDATE_PC_AND_RETURN(0); // I'll be back...
2371        }
2372      }
2373
2374      /* Allocate memory for a new java object. */
2375
2376      CASE(_newarray): {
2377        BasicType atype = (BasicType) *(pc+1);
2378        jint size = STACK_INT(-1);
2379        CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2380                handle_exception);
2381        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2382        THREAD->set_vm_result(NULL);
2383
2384        UPDATE_PC_AND_CONTINUE(2);
2385      }
2386
2387      /* Throw an exception. */
2388
2389      CASE(_athrow): {
2390          oop except_oop = STACK_OBJECT(-1);
2391          CHECK_NULL(except_oop);
2392          // set pending_exception so we use common code
2393          THREAD->set_pending_exception(except_oop, NULL, 0);
2394          goto handle_exception;
2395      }
2396
2397      /* goto and jsr. They are exactly the same except jsr pushes
2398       * the address of the next instruction first.
2399       */
2400
2401      CASE(_jsr): {
2402          /* push bytecode index on stack */
2403          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2404          MORE_STACK(1);
2405          /* FALL THROUGH */
2406      }
2407
2408      CASE(_goto):
2409      {
2410          int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2411          address branch_pc = pc;
2412          UPDATE_PC(offset);
2413          DO_BACKEDGE_CHECKS(offset, branch_pc);
2414          CONTINUE;
2415      }
2416
2417      CASE(_jsr_w): {
2418          /* push return address on the stack */
2419          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2420          MORE_STACK(1);
2421          /* FALL THROUGH */
2422      }
2423
2424      CASE(_goto_w):
2425      {
2426          int32_t offset = Bytes::get_Java_u4(pc + 1);
2427          address branch_pc = pc;
2428          UPDATE_PC(offset);
2429          DO_BACKEDGE_CHECKS(offset, branch_pc);
2430          CONTINUE;
2431      }
2432
2433      /* return from a jsr or jsr_w */
2434
2435      CASE(_ret): {
2436          pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2437          UPDATE_PC_AND_CONTINUE(0);
2438      }
2439
2440      /* debugger breakpoint */
2441
2442      CASE(_breakpoint): {
2443          Bytecodes::Code original_bytecode;
2444          DECACHE_STATE();
2445          SET_LAST_JAVA_FRAME();
2446          original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2447                              METHOD, pc);
2448          RESET_LAST_JAVA_FRAME();
2449          CACHE_STATE();
2450          if (THREAD->has_pending_exception()) goto handle_exception;
2451            CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2452                                                    handle_exception);
2453
2454          opcode = (jubyte)original_bytecode;
2455          goto opcode_switch;
2456      }
2457
2458      DEFAULT:
2459          fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2460                        Bytecodes::name((Bytecodes::Code)opcode)));
2461          goto finish;
2462
2463      } /* switch(opc) */
2464
2465
2466#ifdef USELABELS
2467    check_for_exception:
2468#endif
2469    {
2470      if (!THREAD->has_pending_exception()) {
2471        CONTINUE;
2472      }
2473      /* We will be gcsafe soon, so flush our state. */
2474      DECACHE_PC();
2475      goto handle_exception;
2476    }
2477  do_continue: ;
2478
2479  } /* while (1) interpreter loop */
2480
2481
2482  // An exception exists in the thread state see whether this activation can handle it
2483  handle_exception: {
2484
2485    HandleMarkCleaner __hmc(THREAD);
2486    Handle except_oop(THREAD, THREAD->pending_exception());
2487    // Prevent any subsequent HandleMarkCleaner in the VM
2488    // from freeing the except_oop handle.
2489    HandleMark __hm(THREAD);
2490
2491    THREAD->clear_pending_exception();
2492    assert(except_oop(), "No exception to process");
2493    intptr_t continuation_bci;
2494    // expression stack is emptied
2495    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2496    CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2497            handle_exception);
2498
2499    except_oop = (oop) THREAD->vm_result();
2500    THREAD->set_vm_result(NULL);
2501    if (continuation_bci >= 0) {
2502      // Place exception on top of stack
2503      SET_STACK_OBJECT(except_oop(), 0);
2504      MORE_STACK(1);
2505      pc = METHOD->code_base() + continuation_bci;
2506      if (TraceExceptions) {
2507        ttyLocker ttyl;
2508        ResourceMark rm;
2509        tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2510        tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2511        tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2512                      pc - (intptr_t)METHOD->code_base(),
2513                      continuation_bci, THREAD);
2514      }
2515      // for AbortVMOnException flag
2516      NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2517      goto run;
2518    }
2519    if (TraceExceptions) {
2520      ttyLocker ttyl;
2521      ResourceMark rm;
2522      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2523      tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2524      tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2525                    pc  - (intptr_t) METHOD->code_base(),
2526                    THREAD);
2527    }
2528    // for AbortVMOnException flag
2529    NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2530    // No handler in this activation, unwind and try again
2531    THREAD->set_pending_exception(except_oop(), NULL, 0);
2532    goto handle_return;
2533  }  /* handle_exception: */
2534
2535
2536
2537  // Return from an interpreter invocation with the result of the interpretation
2538  // on the top of the Java Stack (or a pending exception)
2539
2540handle_Pop_Frame:
2541
2542  // We don't really do anything special here except we must be aware
2543  // that we can get here without ever locking the method (if sync).
2544  // Also we skip the notification of the exit.
2545
2546  istate->set_msg(popping_frame);
2547  // Clear pending so while the pop is in process
2548  // we don't start another one if a call_vm is done.
2549  THREAD->clr_pop_frame_pending();
2550  // Let interpreter (only) see the we're in the process of popping a frame
2551  THREAD->set_pop_frame_in_process();
2552
2553handle_return:
2554  {
2555    DECACHE_STATE();
2556
2557    bool suppress_error = istate->msg() == popping_frame;
2558    bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2559    Handle original_exception(THREAD, THREAD->pending_exception());
2560    Handle illegal_state_oop(THREAD, NULL);
2561
2562    // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2563    // in any following VM entries from freeing our live handles, but illegal_state_oop
2564    // isn't really allocated yet and so doesn't become live until later and
2565    // in unpredicatable places. Instead we must protect the places where we enter the
2566    // VM. It would be much simpler (and safer) if we could allocate a real handle with
2567    // a NULL oop in it and then overwrite the oop later as needed. This isn't
2568    // unfortunately isn't possible.
2569
2570    THREAD->clear_pending_exception();
2571
2572    //
2573    // As far as we are concerned we have returned. If we have a pending exception
2574    // that will be returned as this invocation's result. However if we get any
2575    // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2576    // will be our final result (i.e. monitor exception trumps a pending exception).
2577    //
2578
2579    // If we never locked the method (or really passed the point where we would have),
2580    // there is no need to unlock it (or look for other monitors), since that
2581    // could not have happened.
2582
2583    if (THREAD->do_not_unlock()) {
2584
2585      // Never locked, reset the flag now because obviously any caller must
2586      // have passed their point of locking for us to have gotten here.
2587
2588      THREAD->clr_do_not_unlock();
2589    } else {
2590      // At this point we consider that we have returned. We now check that the
2591      // locks were properly block structured. If we find that they were not
2592      // used properly we will return with an illegal monitor exception.
2593      // The exception is checked by the caller not the callee since this
2594      // checking is considered to be part of the invocation and therefore
2595      // in the callers scope (JVM spec 8.13).
2596      //
2597      // Another weird thing to watch for is if the method was locked
2598      // recursively and then not exited properly. This means we must
2599      // examine all the entries in reverse time(and stack) order and
2600      // unlock as we find them. If we find the method monitor before
2601      // we are at the initial entry then we should throw an exception.
2602      // It is not clear the template based interpreter does this
2603      // correctly
2604
2605      BasicObjectLock* base = istate->monitor_base();
2606      BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2607      bool method_unlock_needed = METHOD->is_synchronized();
2608      // We know the initial monitor was used for the method don't check that
2609      // slot in the loop
2610      if (method_unlock_needed) base--;
2611
2612      // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2613      while (end < base) {
2614        oop lockee = end->obj();
2615        if (lockee != NULL) {
2616          BasicLock* lock = end->lock();
2617          markOop header = lock->displaced_header();
2618          end->set_obj(NULL);
2619          // If it isn't recursive we either must swap old header or call the runtime
2620          if (header != NULL) {
2621            if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2622              // restore object for the slow case
2623              end->set_obj(lockee);
2624              {
2625                // Prevent any HandleMarkCleaner from freeing our live handles
2626                HandleMark __hm(THREAD);
2627                CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2628              }
2629            }
2630          }
2631          // One error is plenty
2632          if (illegal_state_oop() == NULL && !suppress_error) {
2633            {
2634              // Prevent any HandleMarkCleaner from freeing our live handles
2635              HandleMark __hm(THREAD);
2636              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2637            }
2638            assert(THREAD->has_pending_exception(), "Lost our exception!");
2639            illegal_state_oop = THREAD->pending_exception();
2640            THREAD->clear_pending_exception();
2641          }
2642        }
2643        end++;
2644      }
2645      // Unlock the method if needed
2646      if (method_unlock_needed) {
2647        if (base->obj() == NULL) {
2648          // The method is already unlocked this is not good.
2649          if (illegal_state_oop() == NULL && !suppress_error) {
2650            {
2651              // Prevent any HandleMarkCleaner from freeing our live handles
2652              HandleMark __hm(THREAD);
2653              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2654            }
2655            assert(THREAD->has_pending_exception(), "Lost our exception!");
2656            illegal_state_oop = THREAD->pending_exception();
2657            THREAD->clear_pending_exception();
2658          }
2659        } else {
2660          //
2661          // The initial monitor is always used for the method
2662          // However if that slot is no longer the oop for the method it was unlocked
2663          // and reused by something that wasn't unlocked!
2664          //
2665          // deopt can come in with rcvr dead because c2 knows
2666          // its value is preserved in the monitor. So we can't use locals[0] at all
2667          // and must use first monitor slot.
2668          //
2669          oop rcvr = base->obj();
2670          if (rcvr == NULL) {
2671            if (!suppress_error) {
2672              VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2673              illegal_state_oop = THREAD->pending_exception();
2674              THREAD->clear_pending_exception();
2675            }
2676          } else {
2677            BasicLock* lock = base->lock();
2678            markOop header = lock->displaced_header();
2679            base->set_obj(NULL);
2680            // If it isn't recursive we either must swap old header or call the runtime
2681            if (header != NULL) {
2682              if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2683                // restore object for the slow case
2684                base->set_obj(rcvr);
2685                {
2686                  // Prevent any HandleMarkCleaner from freeing our live handles
2687                  HandleMark __hm(THREAD);
2688                  CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2689                }
2690                if (THREAD->has_pending_exception()) {
2691                  if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2692                  THREAD->clear_pending_exception();
2693                }
2694              }
2695            }
2696          }
2697        }
2698      }
2699    }
2700
2701    //
2702    // Notify jvmti/jvmdi
2703    //
2704    // NOTE: we do not notify a method_exit if we have a pending exception,
2705    // including an exception we generate for unlocking checks.  In the former
2706    // case, JVMDI has already been notified by our call for the exception handler
2707    // and in both cases as far as JVMDI is concerned we have already returned.
2708    // If we notify it again JVMDI will be all confused about how many frames
2709    // are still on the stack (4340444).
2710    //
2711    // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2712    // method_exit events whenever we leave an activation unless it was done
2713    // for popframe. This is nothing like jvmdi. However we are passing the
2714    // tests at the moment (apparently because they are jvmdi based) so rather
2715    // than change this code and possibly fail tests we will leave it alone
2716    // (with this note) in anticipation of changing the vm and the tests
2717    // simultaneously.
2718
2719
2720    //
2721    suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2722
2723
2724
2725#ifdef VM_JVMTI
2726      if (_jvmti_interp_events) {
2727        // Whenever JVMTI puts a thread in interp_only_mode, method
2728        // entry/exit events are sent for that thread to track stack depth.
2729        if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2730          {
2731            // Prevent any HandleMarkCleaner from freeing our live handles
2732            HandleMark __hm(THREAD);
2733            CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2734          }
2735        }
2736      }
2737#endif /* VM_JVMTI */
2738
2739    //
2740    // See if we are returning any exception
2741    // A pending exception that was pending prior to a possible popping frame
2742    // overrides the popping frame.
2743    //
2744    assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2745    if (illegal_state_oop() != NULL || original_exception() != NULL) {
2746      // inform the frame manager we have no result
2747      istate->set_msg(throwing_exception);
2748      if (illegal_state_oop() != NULL)
2749        THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2750      else
2751        THREAD->set_pending_exception(original_exception(), NULL, 0);
2752      istate->set_return_kind((Bytecodes::Code)opcode);
2753      UPDATE_PC_AND_RETURN(0);
2754    }
2755
2756    if (istate->msg() == popping_frame) {
2757      // Make it simpler on the assembly code and set the message for the frame pop.
2758      // returns
2759      if (istate->prev() == NULL) {
2760        // We must be returning to a deoptimized frame (because popframe only happens between
2761        // two interpreted frames). We need to save the current arguments in C heap so that
2762        // the deoptimized frame when it restarts can copy the arguments to its expression
2763        // stack and re-execute the call. We also have to notify deoptimization that this
2764        // has occurred and to pick the preserved args copy them to the deoptimized frame's
2765        // java expression stack. Yuck.
2766        //
2767        THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2768                                LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2769        THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2770      }
2771      THREAD->clr_pop_frame_in_process();
2772    }
2773
2774    // Normal return
2775    // Advance the pc and return to frame manager
2776    istate->set_msg(return_from_method);
2777    istate->set_return_kind((Bytecodes::Code)opcode);
2778    UPDATE_PC_AND_RETURN(1);
2779  } /* handle_return: */
2780
2781// This is really a fatal error return
2782
2783finish:
2784  DECACHE_TOS();
2785  DECACHE_PC();
2786
2787  return;
2788}
2789
2790/*
2791 * All the code following this point is only produced once and is not present
2792 * in the JVMTI version of the interpreter
2793*/
2794
2795#ifndef VM_JVMTI
2796
2797// This constructor should only be used to contruct the object to signal
2798// interpreter initialization. All other instances should be created by
2799// the frame manager.
2800BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2801  if (msg != initialize) ShouldNotReachHere();
2802  _msg = msg;
2803  _self_link = this;
2804  _prev_link = NULL;
2805}
2806
2807// Inline static functions for Java Stack and Local manipulation
2808
2809// The implementations are platform dependent. We have to worry about alignment
2810// issues on some machines which can change on the same platform depending on
2811// whether it is an LP64 machine also.
2812address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2813  return (address) tos[Interpreter::expr_index_at(-offset)];
2814}
2815
2816jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2817  return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2818}
2819
2820jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2821  return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2822}
2823
2824oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2825  return (oop)tos [Interpreter::expr_index_at(-offset)];
2826}
2827
2828jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2829  return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2830}
2831
2832jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2833  return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2834}
2835
2836// only used for value types
2837void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2838                                                        int offset) {
2839  *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2840}
2841
2842void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2843                                                       int offset) {
2844  *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2845}
2846
2847void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2848                                                         int offset) {
2849  *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2850}
2851
2852void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2853                                                          int offset) {
2854  *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2855}
2856
2857// needs to be platform dep for the 32 bit platforms.
2858void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2859                                                          int offset) {
2860  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2861}
2862
2863void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2864                                              address addr, int offset) {
2865  (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2866                        ((VMJavaVal64*)addr)->d);
2867}
2868
2869void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2870                                                        int offset) {
2871  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2872  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2873}
2874
2875void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2876                                            address addr, int offset) {
2877  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2878  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2879                        ((VMJavaVal64*)addr)->l;
2880}
2881
2882// Locals
2883
2884address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2885  return (address)locals[Interpreter::local_index_at(-offset)];
2886}
2887jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2888  return (jint)locals[Interpreter::local_index_at(-offset)];
2889}
2890jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2891  return (jfloat)locals[Interpreter::local_index_at(-offset)];
2892}
2893oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2894  return (oop)locals[Interpreter::local_index_at(-offset)];
2895}
2896jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2897  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2898}
2899jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2900  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2901}
2902
2903// Returns the address of locals value.
2904address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2905  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2906}
2907address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2908  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2909}
2910
2911// Used for local value or returnAddress
2912void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2913                                   address value, int offset) {
2914  *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2915}
2916void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2917                                   jint value, int offset) {
2918  *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2919}
2920void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2921                                   jfloat value, int offset) {
2922  *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2923}
2924void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2925                                   oop value, int offset) {
2926  *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2927}
2928void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2929                                   jdouble value, int offset) {
2930  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2931}
2932void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2933                                   jlong value, int offset) {
2934  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2935}
2936void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2937                                   address addr, int offset) {
2938  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2939}
2940void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2941                                   address addr, int offset) {
2942  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2943}
2944
2945void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2946                          intptr_t* locals, int locals_offset) {
2947  intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2948  locals[Interpreter::local_index_at(-locals_offset)] = value;
2949}
2950
2951
2952void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2953                                   int to_offset) {
2954  tos[Interpreter::expr_index_at(-to_offset)] =
2955                      (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2956}
2957
2958void BytecodeInterpreter::dup(intptr_t *tos) {
2959  copy_stack_slot(tos, -1, 0);
2960}
2961void BytecodeInterpreter::dup2(intptr_t *tos) {
2962  copy_stack_slot(tos, -2, 0);
2963  copy_stack_slot(tos, -1, 1);
2964}
2965
2966void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2967  /* insert top word two down */
2968  copy_stack_slot(tos, -1, 0);
2969  copy_stack_slot(tos, -2, -1);
2970  copy_stack_slot(tos, 0, -2);
2971}
2972
2973void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2974  /* insert top word three down  */
2975  copy_stack_slot(tos, -1, 0);
2976  copy_stack_slot(tos, -2, -1);
2977  copy_stack_slot(tos, -3, -2);
2978  copy_stack_slot(tos, 0, -3);
2979}
2980void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2981  /* insert top 2 slots three down */
2982  copy_stack_slot(tos, -1, 1);
2983  copy_stack_slot(tos, -2, 0);
2984  copy_stack_slot(tos, -3, -1);
2985  copy_stack_slot(tos, 1, -2);
2986  copy_stack_slot(tos, 0, -3);
2987}
2988void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2989  /* insert top 2 slots four down */
2990  copy_stack_slot(tos, -1, 1);
2991  copy_stack_slot(tos, -2, 0);
2992  copy_stack_slot(tos, -3, -1);
2993  copy_stack_slot(tos, -4, -2);
2994  copy_stack_slot(tos, 1, -3);
2995  copy_stack_slot(tos, 0, -4);
2996}
2997
2998
2999void BytecodeInterpreter::swap(intptr_t *tos) {
3000  // swap top two elements
3001  intptr_t val = tos[Interpreter::expr_index_at(1)];
3002  // Copy -2 entry to -1
3003  copy_stack_slot(tos, -2, -1);
3004  // Store saved -1 entry into -2
3005  tos[Interpreter::expr_index_at(2)] = val;
3006}
3007// --------------------------------------------------------------------------------
3008// Non-product code
3009#ifndef PRODUCT
3010
3011const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3012  switch (msg) {
3013     case BytecodeInterpreter::no_request:  return("no_request");
3014     case BytecodeInterpreter::initialize:  return("initialize");
3015     // status message to C++ interpreter
3016     case BytecodeInterpreter::method_entry:  return("method_entry");
3017     case BytecodeInterpreter::method_resume:  return("method_resume");
3018     case BytecodeInterpreter::got_monitors:  return("got_monitors");
3019     case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3020     // requests to frame manager from C++ interpreter
3021     case BytecodeInterpreter::call_method:  return("call_method");
3022     case BytecodeInterpreter::return_from_method:  return("return_from_method");
3023     case BytecodeInterpreter::more_monitors:  return("more_monitors");
3024     case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3025     case BytecodeInterpreter::popping_frame:  return("popping_frame");
3026     case BytecodeInterpreter::do_osr:  return("do_osr");
3027     // deopt
3028     case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3029     case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3030     default: return("BAD MSG");
3031  }
3032}
3033void
3034BytecodeInterpreter::print() {
3035  tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3036  tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3037  tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3038  tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3039  {
3040    ResourceMark rm;
3041    char *method_name = _method->name_and_sig_as_C_string();
3042    tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3043  }
3044  tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3045  tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3046  tty->print_cr("msg: %s", C_msg(this->_msg));
3047  tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3048  tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3049  tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3050  tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3051  tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3052  tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
3053  tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3054  tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3055  tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3056  tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3057  tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3058#ifdef SPARC
3059  tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3060  tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3061  tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3062  tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3063#endif
3064#if defined(IA64) && !defined(ZERO)
3065  tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3066#endif // IA64 && !ZERO
3067  tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3068}
3069
3070extern "C" {
3071    void PI(uintptr_t arg) {
3072        ((BytecodeInterpreter*)arg)->print();
3073    }
3074}
3075#endif // PRODUCT
3076
3077#endif // JVMTI
3078#endif // CC_INTERP
3079