bytecodeInterpreter.cpp revision 2132:850b2295a494
1/*
2 * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/vmSymbols.hpp"
27#include "gc_interface/collectedHeap.hpp"
28#include "interpreter/bytecodeHistogram.hpp"
29#include "interpreter/bytecodeInterpreter.hpp"
30#include "interpreter/bytecodeInterpreter.inline.hpp"
31#include "interpreter/interpreter.hpp"
32#include "interpreter/interpreterRuntime.hpp"
33#include "memory/cardTableModRefBS.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/objArrayKlass.hpp"
36#include "oops/oop.inline.hpp"
37#include "prims/jvmtiExport.hpp"
38#include "runtime/frame.inline.hpp"
39#include "runtime/handles.inline.hpp"
40#include "runtime/interfaceSupport.hpp"
41#include "runtime/sharedRuntime.hpp"
42#include "runtime/threadCritical.hpp"
43#include "utilities/exceptions.hpp"
44#ifdef TARGET_OS_ARCH_linux_x86
45# include "orderAccess_linux_x86.inline.hpp"
46#endif
47#ifdef TARGET_OS_ARCH_linux_sparc
48# include "orderAccess_linux_sparc.inline.hpp"
49#endif
50#ifdef TARGET_OS_ARCH_linux_zero
51# include "orderAccess_linux_zero.inline.hpp"
52#endif
53#ifdef TARGET_OS_ARCH_solaris_x86
54# include "orderAccess_solaris_x86.inline.hpp"
55#endif
56#ifdef TARGET_OS_ARCH_solaris_sparc
57# include "orderAccess_solaris_sparc.inline.hpp"
58#endif
59#ifdef TARGET_OS_ARCH_windows_x86
60# include "orderAccess_windows_x86.inline.hpp"
61#endif
62#ifdef TARGET_OS_ARCH_linux_arm
63# include "orderAccess_linux_arm.inline.hpp"
64#endif
65#ifdef TARGET_OS_ARCH_linux_ppc
66# include "orderAccess_linux_ppc.inline.hpp"
67#endif
68
69
70// no precompiled headers
71#ifdef CC_INTERP
72
73/*
74 * USELABELS - If using GCC, then use labels for the opcode dispatching
75 * rather -then a switch statement. This improves performance because it
76 * gives us the oportunity to have the instructions that calculate the
77 * next opcode to jump to be intermixed with the rest of the instructions
78 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
79 */
80#undef USELABELS
81#ifdef __GNUC__
82/*
83   ASSERT signifies debugging. It is much easier to step thru bytecodes if we
84   don't use the computed goto approach.
85*/
86#ifndef ASSERT
87#define USELABELS
88#endif
89#endif
90
91#undef CASE
92#ifdef USELABELS
93#define CASE(opcode) opc ## opcode
94#define DEFAULT opc_default
95#else
96#define CASE(opcode) case Bytecodes:: opcode
97#define DEFAULT default
98#endif
99
100/*
101 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
102 * opcode before going back to the top of the while loop, rather then having
103 * the top of the while loop handle it. This provides a better opportunity
104 * for instruction scheduling. Some compilers just do this prefetch
105 * automatically. Some actually end up with worse performance if you
106 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
107 */
108#undef PREFETCH_OPCCODE
109#define PREFETCH_OPCCODE
110
111/*
112  Interpreter safepoint: it is expected that the interpreter will have no live
113  handles of its own creation live at an interpreter safepoint. Therefore we
114  run a HandleMarkCleaner and trash all handles allocated in the call chain
115  since the JavaCalls::call_helper invocation that initiated the chain.
116  There really shouldn't be any handles remaining to trash but this is cheap
117  in relation to a safepoint.
118*/
119#define SAFEPOINT                                                                 \
120    if ( SafepointSynchronize::is_synchronizing()) {                              \
121        {                                                                         \
122          /* zap freed handles rather than GC'ing them */                         \
123          HandleMarkCleaner __hmc(THREAD);                                        \
124        }                                                                         \
125        CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
126    }
127
128/*
129 * VM_JAVA_ERROR - Macro for throwing a java exception from
130 * the interpreter loop. Should really be a CALL_VM but there
131 * is no entry point to do the transition to vm so we just
132 * do it by hand here.
133 */
134#define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
135    DECACHE_STATE();                                                              \
136    SET_LAST_JAVA_FRAME();                                                        \
137    {                                                                             \
138       ThreadInVMfromJava trans(THREAD);                                          \
139       Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
140    }                                                                             \
141    RESET_LAST_JAVA_FRAME();                                                      \
142    CACHE_STATE();
143
144// Normal throw of a java error
145#define VM_JAVA_ERROR(name, msg)                                                  \
146    VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
147    goto handle_exception;
148
149#ifdef PRODUCT
150#define DO_UPDATE_INSTRUCTION_COUNT(opcode)
151#else
152#define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
153{                                                                                                    \
154    BytecodeCounter::_counter_value++;                                                               \
155    BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
156    if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
157    if (TraceBytecodes) {                                                                            \
158      CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
159                                   topOfStack[Interpreter::expr_index_at(1)],   \
160                                   topOfStack[Interpreter::expr_index_at(2)]),  \
161                                   handle_exception);                      \
162    }                                                                      \
163}
164#endif
165
166#undef DEBUGGER_SINGLE_STEP_NOTIFY
167#ifdef VM_JVMTI
168/* NOTE: (kbr) This macro must be called AFTER the PC has been
169   incremented. JvmtiExport::at_single_stepping_point() may cause a
170   breakpoint opcode to get inserted at the current PC to allow the
171   debugger to coalesce single-step events.
172
173   As a result if we call at_single_stepping_point() we refetch opcode
174   to get the current opcode. This will override any other prefetching
175   that might have occurred.
176*/
177#define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
178{                                                                                \
179      if (_jvmti_interp_events) {                                                \
180        if (JvmtiExport::should_post_single_step()) {                            \
181          DECACHE_STATE();                                                       \
182          SET_LAST_JAVA_FRAME();                                                 \
183          ThreadInVMfromJava trans(THREAD);                                      \
184          JvmtiExport::at_single_stepping_point(THREAD,                          \
185                                          istate->method(),                      \
186                                          pc);                                   \
187          RESET_LAST_JAVA_FRAME();                                               \
188          CACHE_STATE();                                                         \
189          if (THREAD->pop_frame_pending() &&                                     \
190              !THREAD->pop_frame_in_process()) {                                 \
191            goto handle_Pop_Frame;                                               \
192          }                                                                      \
193          opcode = *pc;                                                          \
194        }                                                                        \
195      }                                                                          \
196}
197#else
198#define DEBUGGER_SINGLE_STEP_NOTIFY()
199#endif
200
201/*
202 * CONTINUE - Macro for executing the next opcode.
203 */
204#undef CONTINUE
205#ifdef USELABELS
206// Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
207// initialization (which is is the initialization of the table pointer...)
208#define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
209#define CONTINUE {                              \
210        opcode = *pc;                           \
211        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
212        DEBUGGER_SINGLE_STEP_NOTIFY();          \
213        DISPATCH(opcode);                       \
214    }
215#else
216#ifdef PREFETCH_OPCCODE
217#define CONTINUE {                              \
218        opcode = *pc;                           \
219        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
220        DEBUGGER_SINGLE_STEP_NOTIFY();          \
221        continue;                               \
222    }
223#else
224#define CONTINUE {                              \
225        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
226        DEBUGGER_SINGLE_STEP_NOTIFY();          \
227        continue;                               \
228    }
229#endif
230#endif
231
232// JavaStack Implementation
233#define MORE_STACK(count)  \
234    (topOfStack -= ((count) * Interpreter::stackElementWords))
235
236
237#define UPDATE_PC(opsize) {pc += opsize; }
238/*
239 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
240 */
241#undef UPDATE_PC_AND_TOS
242#define UPDATE_PC_AND_TOS(opsize, stack) \
243    {pc += opsize; MORE_STACK(stack); }
244
245/*
246 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
247 * and executing the next opcode. It's somewhat similar to the combination
248 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
249 */
250#undef UPDATE_PC_AND_TOS_AND_CONTINUE
251#ifdef USELABELS
252#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
253        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
254        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
255        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
256        DISPATCH(opcode);                                       \
257    }
258
259#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
260        pc += opsize; opcode = *pc;                             \
261        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
262        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
263        DISPATCH(opcode);                                       \
264    }
265#else
266#ifdef PREFETCH_OPCCODE
267#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
268        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
269        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
270        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
271        goto do_continue;                                       \
272    }
273
274#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
275        pc += opsize; opcode = *pc;                             \
276        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
277        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
278        goto do_continue;                                       \
279    }
280#else
281#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
282        pc += opsize; MORE_STACK(stack);                \
283        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
284        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
285        goto do_continue;                               \
286    }
287
288#define UPDATE_PC_AND_CONTINUE(opsize) {                \
289        pc += opsize;                                   \
290        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
291        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
292        goto do_continue;                               \
293    }
294#endif /* PREFETCH_OPCCODE */
295#endif /* USELABELS */
296
297// About to call a new method, update the save the adjusted pc and return to frame manager
298#define UPDATE_PC_AND_RETURN(opsize)  \
299   DECACHE_TOS();                     \
300   istate->set_bcp(pc+opsize);        \
301   return;
302
303
304#define METHOD istate->method()
305#define INVOCATION_COUNT METHOD->invocation_counter()
306#define BACKEDGE_COUNT METHOD->backedge_counter()
307
308
309#define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
310#define OSR_REQUEST(res, branch_pc) \
311            CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
312/*
313 * For those opcodes that need to have a GC point on a backwards branch
314 */
315
316// Backedge counting is kind of strange. The asm interpreter will increment
317// the backedge counter as a separate counter but it does it's comparisons
318// to the sum (scaled) of invocation counter and backedge count to make
319// a decision. Seems kind of odd to sum them together like that
320
321// skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
322
323
324#define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
325    if ((skip) <= 0) {                                                                              \
326      if (UseLoopCounter) {                                                                         \
327        bool do_OSR = UseOnStackReplacement;                                                        \
328        BACKEDGE_COUNT->increment();                                                                \
329        if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
330        if (do_OSR) {                                                                               \
331          nmethod*  osr_nmethod;                                                                    \
332          OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
333          if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
334            intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
335            istate->set_msg(do_osr);                                                                \
336            istate->set_osr_buf((address)buf);                                                      \
337            istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
338            return;                                                                                 \
339          }                                                                                         \
340        }                                                                                           \
341      }  /* UseCompiler ... */                                                                      \
342      INCR_INVOCATION_COUNT;                                                                        \
343      SAFEPOINT;                                                                                    \
344    }
345
346/*
347 * For those opcodes that need to have a GC point on a backwards branch
348 */
349
350/*
351 * Macros for caching and flushing the interpreter state. Some local
352 * variables need to be flushed out to the frame before we do certain
353 * things (like pushing frames or becomming gc safe) and some need to
354 * be recached later (like after popping a frame). We could use one
355 * macro to cache or decache everything, but this would be less then
356 * optimal because we don't always need to cache or decache everything
357 * because some things we know are already cached or decached.
358 */
359#undef DECACHE_TOS
360#undef CACHE_TOS
361#undef CACHE_PREV_TOS
362#define DECACHE_TOS()    istate->set_stack(topOfStack);
363
364#define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
365
366#undef DECACHE_PC
367#undef CACHE_PC
368#define DECACHE_PC()    istate->set_bcp(pc);
369#define CACHE_PC()      pc = istate->bcp();
370#define CACHE_CP()      cp = istate->constants();
371#define CACHE_LOCALS()  locals = istate->locals();
372#undef CACHE_FRAME
373#define CACHE_FRAME()
374
375/*
376 * CHECK_NULL - Macro for throwing a NullPointerException if the object
377 * passed is a null ref.
378 * On some architectures/platforms it should be possible to do this implicitly
379 */
380#undef CHECK_NULL
381#define CHECK_NULL(obj_)                                                 \
382    if ((obj_) == NULL) {                                                \
383        VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
384    }                                                                    \
385    VERIFY_OOP(obj_)
386
387#define VMdoubleConstZero() 0.0
388#define VMdoubleConstOne() 1.0
389#define VMlongConstZero() (max_jlong-max_jlong)
390#define VMlongConstOne() ((max_jlong-max_jlong)+1)
391
392/*
393 * Alignment
394 */
395#define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
396
397// Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
398#define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
399
400// Reload interpreter state after calling the VM or a possible GC
401#define CACHE_STATE()   \
402        CACHE_TOS();    \
403        CACHE_PC();     \
404        CACHE_CP();     \
405        CACHE_LOCALS();
406
407// Call the VM don't check for pending exceptions
408#define CALL_VM_NOCHECK(func)                                     \
409          DECACHE_STATE();                                        \
410          SET_LAST_JAVA_FRAME();                                  \
411          func;                                                   \
412          RESET_LAST_JAVA_FRAME();                                \
413          CACHE_STATE();                                          \
414          if (THREAD->pop_frame_pending() &&                      \
415              !THREAD->pop_frame_in_process()) {                  \
416            goto handle_Pop_Frame;                                \
417          }
418
419// Call the VM and check for pending exceptions
420#define CALL_VM(func, label) {                                    \
421          CALL_VM_NOCHECK(func);                                  \
422          if (THREAD->has_pending_exception()) goto label;        \
423        }
424
425/*
426 * BytecodeInterpreter::run(interpreterState istate)
427 * BytecodeInterpreter::runWithChecks(interpreterState istate)
428 *
429 * The real deal. This is where byte codes actually get interpreted.
430 * Basically it's a big while loop that iterates until we return from
431 * the method passed in.
432 *
433 * The runWithChecks is used if JVMTI is enabled.
434 *
435 */
436#if defined(VM_JVMTI)
437void
438BytecodeInterpreter::runWithChecks(interpreterState istate) {
439#else
440void
441BytecodeInterpreter::run(interpreterState istate) {
442#endif
443
444  // In order to simplify some tests based on switches set at runtime
445  // we invoke the interpreter a single time after switches are enabled
446  // and set simpler to to test variables rather than method calls or complex
447  // boolean expressions.
448
449  static int initialized = 0;
450  static int checkit = 0;
451  static intptr_t* c_addr = NULL;
452  static intptr_t  c_value;
453
454  if (checkit && *c_addr != c_value) {
455    os::breakpoint();
456  }
457#ifdef VM_JVMTI
458  static bool _jvmti_interp_events = 0;
459#endif
460
461  static int _compiling;  // (UseCompiler || CountCompiledCalls)
462
463#ifdef ASSERT
464  if (istate->_msg != initialize) {
465    assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
466#ifndef SHARK
467    IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
468#endif // !SHARK
469  }
470  // Verify linkages.
471  interpreterState l = istate;
472  do {
473    assert(l == l->_self_link, "bad link");
474    l = l->_prev_link;
475  } while (l != NULL);
476  // Screwups with stack management usually cause us to overwrite istate
477  // save a copy so we can verify it.
478  interpreterState orig = istate;
479#endif
480
481  static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
482
483  register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
484  register address          pc = istate->bcp();
485  register jubyte opcode;
486  register intptr_t*        locals = istate->locals();
487  register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
488#ifdef LOTS_OF_REGS
489  register JavaThread*      THREAD = istate->thread();
490  register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
491#else
492#undef THREAD
493#define THREAD istate->thread()
494#undef BYTE_MAP_BASE
495#define BYTE_MAP_BASE _byte_map_base
496#endif
497
498#ifdef USELABELS
499  const static void* const opclabels_data[256] = {
500/* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
501/* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
502/* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
503/* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
504
505/* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
506/* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
507/* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
508/* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
509
510/* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
511/* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
512/* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
513/* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
514
515/* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
516/* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
517/* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
518/* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
519
520/* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
521/* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
522/* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
523/* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
524
525/* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
526/* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
527/* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
528/* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
529
530/* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
531/* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
532/* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
533/* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
534
535/* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
536/* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
537/* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
538/* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
539
540/* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
541/* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
542/* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
543/* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
544
545/* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
546/* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
547/* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
548/* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
549
550/* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
551/* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
552/* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
553/* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
554
555/* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
556/* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
557/* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_default,      &&opc_new,
558/* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
559
560/* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
561/* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
562/* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
563/* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
564
565/* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
566/* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
567/* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
568/* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
569
570/* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
571/* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
572/* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
573/* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
574
575/* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
576/* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
577/* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
578/* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
579  };
580  register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
581#endif /* USELABELS */
582
583#ifdef ASSERT
584  // this will trigger a VERIFY_OOP on entry
585  if (istate->msg() != initialize && ! METHOD->is_static()) {
586    oop rcvr = LOCALS_OBJECT(0);
587    VERIFY_OOP(rcvr);
588  }
589#endif
590// #define HACK
591#ifdef HACK
592  bool interesting = false;
593#endif // HACK
594
595  /* QQQ this should be a stack method so we don't know actual direction */
596  guarantee(istate->msg() == initialize ||
597         topOfStack >= istate->stack_limit() &&
598         topOfStack < istate->stack_base(),
599         "Stack top out of range");
600
601  switch (istate->msg()) {
602    case initialize: {
603      if (initialized++) ShouldNotReachHere(); // Only one initialize call
604      _compiling = (UseCompiler || CountCompiledCalls);
605#ifdef VM_JVMTI
606      _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
607#endif
608      BarrierSet* bs = Universe::heap()->barrier_set();
609      assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
610      _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
611      return;
612    }
613    break;
614    case method_entry: {
615      THREAD->set_do_not_unlock();
616      // count invocations
617      assert(initialized, "Interpreter not initialized");
618      if (_compiling) {
619        if (ProfileInterpreter) {
620          METHOD->increment_interpreter_invocation_count();
621        }
622        INCR_INVOCATION_COUNT;
623        if (INVOCATION_COUNT->reached_InvocationLimit()) {
624            CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
625
626            // We no longer retry on a counter overflow
627
628            // istate->set_msg(retry_method);
629            // THREAD->clr_do_not_unlock();
630            // return;
631        }
632        SAFEPOINT;
633      }
634
635      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
636        // initialize
637        os::breakpoint();
638      }
639
640#ifdef HACK
641      {
642        ResourceMark rm;
643        char *method_name = istate->method()->name_and_sig_as_C_string();
644        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
645          tty->print_cr("entering: depth %d bci: %d",
646                         (istate->_stack_base - istate->_stack),
647                         istate->_bcp - istate->_method->code_base());
648          interesting = true;
649        }
650      }
651#endif // HACK
652
653
654      // lock method if synchronized
655      if (METHOD->is_synchronized()) {
656          // oop rcvr = locals[0].j.r;
657          oop rcvr;
658          if (METHOD->is_static()) {
659            rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
660          } else {
661            rcvr = LOCALS_OBJECT(0);
662            VERIFY_OOP(rcvr);
663          }
664          // The initial monitor is ours for the taking
665          BasicObjectLock* mon = &istate->monitor_base()[-1];
666          oop monobj = mon->obj();
667          assert(mon->obj() == rcvr, "method monitor mis-initialized");
668
669          bool success = UseBiasedLocking;
670          if (UseBiasedLocking) {
671            markOop mark = rcvr->mark();
672            if (mark->has_bias_pattern()) {
673              // The bias pattern is present in the object's header. Need to check
674              // whether the bias owner and the epoch are both still current.
675              intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
676              xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
677              intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
678              if (yy != 0 ) {
679                // At this point we know that the header has the bias pattern and
680                // that we are not the bias owner in the current epoch. We need to
681                // figure out more details about the state of the header in order to
682                // know what operations can be legally performed on the object's
683                // header.
684
685                // If the low three bits in the xor result aren't clear, that means
686                // the prototype header is no longer biased and we have to revoke
687                // the bias on this object.
688
689                if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
690                  // Biasing is still enabled for this data type. See whether the
691                  // epoch of the current bias is still valid, meaning that the epoch
692                  // bits of the mark word are equal to the epoch bits of the
693                  // prototype header. (Note that the prototype header's epoch bits
694                  // only change at a safepoint.) If not, attempt to rebias the object
695                  // toward the current thread. Note that we must be absolutely sure
696                  // that the current epoch is invalid in order to do this because
697                  // otherwise the manipulations it performs on the mark word are
698                  // illegal.
699                  if (yy & markOopDesc::epoch_mask_in_place == 0) {
700                    // The epoch of the current bias is still valid but we know nothing
701                    // about the owner; it might be set or it might be clear. Try to
702                    // acquire the bias of the object using an atomic operation. If this
703                    // fails we will go in to the runtime to revoke the object's bias.
704                    // Note that we first construct the presumed unbiased header so we
705                    // don't accidentally blow away another thread's valid bias.
706                    intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
707                                                           markOopDesc::age_mask_in_place |
708                                                           markOopDesc::epoch_mask_in_place);
709                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
710                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
711                    }
712                  } else {
713                    try_rebias:
714                    // At this point we know the epoch has expired, meaning that the
715                    // current "bias owner", if any, is actually invalid. Under these
716                    // circumstances _only_, we are allowed to use the current header's
717                    // value as the comparison value when doing the cas to acquire the
718                    // bias in the current epoch. In other words, we allow transfer of
719                    // the bias from one thread to another directly in this situation.
720                    xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
721                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
722                                            (intptr_t*) rcvr->mark_addr(),
723                                            (intptr_t) mark) != (intptr_t) mark) {
724                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
725                    }
726                  }
727                } else {
728                  try_revoke_bias:
729                  // The prototype mark in the klass doesn't have the bias bit set any
730                  // more, indicating that objects of this data type are not supposed
731                  // to be biased any more. We are going to try to reset the mark of
732                  // this object to the prototype value and fall through to the
733                  // CAS-based locking scheme. Note that if our CAS fails, it means
734                  // that another thread raced us for the privilege of revoking the
735                  // bias of this particular object, so it's okay to continue in the
736                  // normal locking code.
737                  //
738                  xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
739                  if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
740                                          (intptr_t*) rcvr->mark_addr(),
741                                          mark) == mark) {
742                    // (*counters->revoked_lock_entry_count_addr())++;
743                  success = false;
744                  }
745                }
746              }
747            } else {
748              cas_label:
749              success = false;
750            }
751          }
752          if (!success) {
753            markOop displaced = rcvr->mark()->set_unlocked();
754            mon->lock()->set_displaced_header(displaced);
755            if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
756              // Is it simple recursive case?
757              if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
758                mon->lock()->set_displaced_header(NULL);
759              } else {
760                CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
761              }
762            }
763          }
764      }
765      THREAD->clr_do_not_unlock();
766
767      // Notify jvmti
768#ifdef VM_JVMTI
769      if (_jvmti_interp_events) {
770        // Whenever JVMTI puts a thread in interp_only_mode, method
771        // entry/exit events are sent for that thread to track stack depth.
772        if (THREAD->is_interp_only_mode()) {
773          CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
774                  handle_exception);
775        }
776      }
777#endif /* VM_JVMTI */
778
779      goto run;
780    }
781
782    case popping_frame: {
783      // returned from a java call to pop the frame, restart the call
784      // clear the message so we don't confuse ourselves later
785      ShouldNotReachHere();  // we don't return this.
786      assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
787      istate->set_msg(no_request);
788      THREAD->clr_pop_frame_in_process();
789      goto run;
790    }
791
792    case method_resume: {
793      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
794        // resume
795        os::breakpoint();
796      }
797#ifdef HACK
798      {
799        ResourceMark rm;
800        char *method_name = istate->method()->name_and_sig_as_C_string();
801        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
802          tty->print_cr("resume: depth %d bci: %d",
803                         (istate->_stack_base - istate->_stack) ,
804                         istate->_bcp - istate->_method->code_base());
805          interesting = true;
806        }
807      }
808#endif // HACK
809      // returned from a java call, continue executing.
810      if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
811        goto handle_Pop_Frame;
812      }
813
814      if (THREAD->has_pending_exception()) goto handle_exception;
815      // Update the pc by the saved amount of the invoke bytecode size
816      UPDATE_PC(istate->bcp_advance());
817      goto run;
818    }
819
820    case deopt_resume2: {
821      // Returned from an opcode that will reexecute. Deopt was
822      // a result of a PopFrame request.
823      //
824      goto run;
825    }
826
827    case deopt_resume: {
828      // Returned from an opcode that has completed. The stack has
829      // the result all we need to do is skip across the bytecode
830      // and continue (assuming there is no exception pending)
831      //
832      // compute continuation length
833      //
834      // Note: it is possible to deopt at a return_register_finalizer opcode
835      // because this requires entering the vm to do the registering. While the
836      // opcode is complete we can't advance because there are no more opcodes
837      // much like trying to deopt at a poll return. In that has we simply
838      // get out of here
839      //
840      if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
841        // this will do the right thing even if an exception is pending.
842        goto handle_return;
843      }
844      UPDATE_PC(Bytecodes::length_at(METHOD, pc));
845      if (THREAD->has_pending_exception()) goto handle_exception;
846      goto run;
847    }
848    case got_monitors: {
849      // continue locking now that we have a monitor to use
850      // we expect to find newly allocated monitor at the "top" of the monitor stack.
851      oop lockee = STACK_OBJECT(-1);
852      VERIFY_OOP(lockee);
853      // derefing's lockee ought to provoke implicit null check
854      // find a free monitor
855      BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
856      assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
857      entry->set_obj(lockee);
858
859      markOop displaced = lockee->mark()->set_unlocked();
860      entry->lock()->set_displaced_header(displaced);
861      if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
862        // Is it simple recursive case?
863        if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
864          entry->lock()->set_displaced_header(NULL);
865        } else {
866          CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
867        }
868      }
869      UPDATE_PC_AND_TOS(1, -1);
870      goto run;
871    }
872    default: {
873      fatal("Unexpected message from frame manager");
874    }
875  }
876
877run:
878
879  DO_UPDATE_INSTRUCTION_COUNT(*pc)
880  DEBUGGER_SINGLE_STEP_NOTIFY();
881#ifdef PREFETCH_OPCCODE
882  opcode = *pc;  /* prefetch first opcode */
883#endif
884
885#ifndef USELABELS
886  while (1)
887#endif
888  {
889#ifndef PREFETCH_OPCCODE
890      opcode = *pc;
891#endif
892      // Seems like this happens twice per opcode. At worst this is only
893      // need at entry to the loop.
894      // DEBUGGER_SINGLE_STEP_NOTIFY();
895      /* Using this labels avoids double breakpoints when quickening and
896       * when returing from transition frames.
897       */
898  opcode_switch:
899      assert(istate == orig, "Corrupted istate");
900      /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
901      assert(topOfStack >= istate->stack_limit(), "Stack overrun");
902      assert(topOfStack < istate->stack_base(), "Stack underrun");
903
904#ifdef USELABELS
905      DISPATCH(opcode);
906#else
907      switch (opcode)
908#endif
909      {
910      CASE(_nop):
911          UPDATE_PC_AND_CONTINUE(1);
912
913          /* Push miscellaneous constants onto the stack. */
914
915      CASE(_aconst_null):
916          SET_STACK_OBJECT(NULL, 0);
917          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
918
919#undef  OPC_CONST_n
920#define OPC_CONST_n(opcode, const_type, value)                          \
921      CASE(opcode):                                                     \
922          SET_STACK_ ## const_type(value, 0);                           \
923          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
924
925          OPC_CONST_n(_iconst_m1,   INT,       -1);
926          OPC_CONST_n(_iconst_0,    INT,        0);
927          OPC_CONST_n(_iconst_1,    INT,        1);
928          OPC_CONST_n(_iconst_2,    INT,        2);
929          OPC_CONST_n(_iconst_3,    INT,        3);
930          OPC_CONST_n(_iconst_4,    INT,        4);
931          OPC_CONST_n(_iconst_5,    INT,        5);
932          OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
933          OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
934          OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
935
936#undef  OPC_CONST2_n
937#define OPC_CONST2_n(opcname, value, key, kind)                         \
938      CASE(_##opcname):                                                 \
939      {                                                                 \
940          SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
941          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
942      }
943         OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
944         OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
945         OPC_CONST2_n(lconst_0, Zero, long, LONG);
946         OPC_CONST2_n(lconst_1, One,  long, LONG);
947
948         /* Load constant from constant pool: */
949
950          /* Push a 1-byte signed integer value onto the stack. */
951      CASE(_bipush):
952          SET_STACK_INT((jbyte)(pc[1]), 0);
953          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
954
955          /* Push a 2-byte signed integer constant onto the stack. */
956      CASE(_sipush):
957          SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
958          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
959
960          /* load from local variable */
961
962      CASE(_aload):
963          VERIFY_OOP(LOCALS_OBJECT(pc[1]));
964          SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
965          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
966
967      CASE(_iload):
968      CASE(_fload):
969          SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
970          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
971
972      CASE(_lload):
973          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
974          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
975
976      CASE(_dload):
977          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
978          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
979
980#undef  OPC_LOAD_n
981#define OPC_LOAD_n(num)                                                 \
982      CASE(_aload_##num):                                               \
983          VERIFY_OOP(LOCALS_OBJECT(num));                               \
984          SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
985          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
986                                                                        \
987      CASE(_iload_##num):                                               \
988      CASE(_fload_##num):                                               \
989          SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
990          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
991                                                                        \
992      CASE(_lload_##num):                                               \
993          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
994          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
995      CASE(_dload_##num):                                               \
996          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
997          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
998
999          OPC_LOAD_n(0);
1000          OPC_LOAD_n(1);
1001          OPC_LOAD_n(2);
1002          OPC_LOAD_n(3);
1003
1004          /* store to a local variable */
1005
1006      CASE(_astore):
1007          astore(topOfStack, -1, locals, pc[1]);
1008          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1009
1010      CASE(_istore):
1011      CASE(_fstore):
1012          SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1013          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1014
1015      CASE(_lstore):
1016          SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1017          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1018
1019      CASE(_dstore):
1020          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1021          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1022
1023      CASE(_wide): {
1024          uint16_t reg = Bytes::get_Java_u2(pc + 2);
1025
1026          opcode = pc[1];
1027          switch(opcode) {
1028              case Bytecodes::_aload:
1029                  VERIFY_OOP(LOCALS_OBJECT(reg));
1030                  SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1031                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1032
1033              case Bytecodes::_iload:
1034              case Bytecodes::_fload:
1035                  SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1036                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1037
1038              case Bytecodes::_lload:
1039                  SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1040                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1041
1042              case Bytecodes::_dload:
1043                  SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1044                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1045
1046              case Bytecodes::_astore:
1047                  astore(topOfStack, -1, locals, reg);
1048                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1049
1050              case Bytecodes::_istore:
1051              case Bytecodes::_fstore:
1052                  SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1053                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1054
1055              case Bytecodes::_lstore:
1056                  SET_LOCALS_LONG(STACK_LONG(-1), reg);
1057                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1058
1059              case Bytecodes::_dstore:
1060                  SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1061                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1062
1063              case Bytecodes::_iinc: {
1064                  int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1065                  // Be nice to see what this generates.... QQQ
1066                  SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1067                  UPDATE_PC_AND_CONTINUE(6);
1068              }
1069              case Bytecodes::_ret:
1070                  pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1071                  UPDATE_PC_AND_CONTINUE(0);
1072              default:
1073                  VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1074          }
1075      }
1076
1077
1078#undef  OPC_STORE_n
1079#define OPC_STORE_n(num)                                                \
1080      CASE(_astore_##num):                                              \
1081          astore(topOfStack, -1, locals, num);                          \
1082          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1083      CASE(_istore_##num):                                              \
1084      CASE(_fstore_##num):                                              \
1085          SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1086          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1087
1088          OPC_STORE_n(0);
1089          OPC_STORE_n(1);
1090          OPC_STORE_n(2);
1091          OPC_STORE_n(3);
1092
1093#undef  OPC_DSTORE_n
1094#define OPC_DSTORE_n(num)                                               \
1095      CASE(_dstore_##num):                                              \
1096          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1097          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1098      CASE(_lstore_##num):                                              \
1099          SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1100          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1101
1102          OPC_DSTORE_n(0);
1103          OPC_DSTORE_n(1);
1104          OPC_DSTORE_n(2);
1105          OPC_DSTORE_n(3);
1106
1107          /* stack pop, dup, and insert opcodes */
1108
1109
1110      CASE(_pop):                /* Discard the top item on the stack */
1111          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1112
1113
1114      CASE(_pop2):               /* Discard the top 2 items on the stack */
1115          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1116
1117
1118      CASE(_dup):               /* Duplicate the top item on the stack */
1119          dup(topOfStack);
1120          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1121
1122      CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1123          dup2(topOfStack);
1124          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1125
1126      CASE(_dup_x1):    /* insert top word two down */
1127          dup_x1(topOfStack);
1128          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1129
1130      CASE(_dup_x2):    /* insert top word three down  */
1131          dup_x2(topOfStack);
1132          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1133
1134      CASE(_dup2_x1):   /* insert top 2 slots three down */
1135          dup2_x1(topOfStack);
1136          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1137
1138      CASE(_dup2_x2):   /* insert top 2 slots four down */
1139          dup2_x2(topOfStack);
1140          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1141
1142      CASE(_swap): {        /* swap top two elements on the stack */
1143          swap(topOfStack);
1144          UPDATE_PC_AND_CONTINUE(1);
1145      }
1146
1147          /* Perform various binary integer operations */
1148
1149#undef  OPC_INT_BINARY
1150#define OPC_INT_BINARY(opcname, opname, test)                           \
1151      CASE(_i##opcname):                                                \
1152          if (test && (STACK_INT(-1) == 0)) {                           \
1153              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1154                            "/ by zero");                               \
1155          }                                                             \
1156          SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1157                                      STACK_INT(-1)),                   \
1158                                      -2);                              \
1159          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1160      CASE(_l##opcname):                                                \
1161      {                                                                 \
1162          if (test) {                                                   \
1163            jlong l1 = STACK_LONG(-1);                                  \
1164            if (VMlongEqz(l1)) {                                        \
1165              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1166                            "/ by long zero");                          \
1167            }                                                           \
1168          }                                                             \
1169          /* First long at (-1,-2) next long at (-3,-4) */              \
1170          SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1171                                        STACK_LONG(-1)),                \
1172                                        -3);                            \
1173          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1174      }
1175
1176      OPC_INT_BINARY(add, Add, 0);
1177      OPC_INT_BINARY(sub, Sub, 0);
1178      OPC_INT_BINARY(mul, Mul, 0);
1179      OPC_INT_BINARY(and, And, 0);
1180      OPC_INT_BINARY(or,  Or,  0);
1181      OPC_INT_BINARY(xor, Xor, 0);
1182      OPC_INT_BINARY(div, Div, 1);
1183      OPC_INT_BINARY(rem, Rem, 1);
1184
1185
1186      /* Perform various binary floating number operations */
1187      /* On some machine/platforms/compilers div zero check can be implicit */
1188
1189#undef  OPC_FLOAT_BINARY
1190#define OPC_FLOAT_BINARY(opcname, opname)                                  \
1191      CASE(_d##opcname): {                                                 \
1192          SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1193                                            STACK_DOUBLE(-1)),             \
1194                                            -3);                           \
1195          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1196      }                                                                    \
1197      CASE(_f##opcname):                                                   \
1198          SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1199                                          STACK_FLOAT(-1)),                \
1200                                          -2);                             \
1201          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1202
1203
1204     OPC_FLOAT_BINARY(add, Add);
1205     OPC_FLOAT_BINARY(sub, Sub);
1206     OPC_FLOAT_BINARY(mul, Mul);
1207     OPC_FLOAT_BINARY(div, Div);
1208     OPC_FLOAT_BINARY(rem, Rem);
1209
1210      /* Shift operations
1211       * Shift left int and long: ishl, lshl
1212       * Logical shift right int and long w/zero extension: iushr, lushr
1213       * Arithmetic shift right int and long w/sign extension: ishr, lshr
1214       */
1215
1216#undef  OPC_SHIFT_BINARY
1217#define OPC_SHIFT_BINARY(opcname, opname)                               \
1218      CASE(_i##opcname):                                                \
1219         SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1220                                     STACK_INT(-1)),                    \
1221                                     -2);                               \
1222         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1223      CASE(_l##opcname):                                                \
1224      {                                                                 \
1225         SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1226                                       STACK_INT(-1)),                  \
1227                                       -2);                             \
1228         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1229      }
1230
1231      OPC_SHIFT_BINARY(shl, Shl);
1232      OPC_SHIFT_BINARY(shr, Shr);
1233      OPC_SHIFT_BINARY(ushr, Ushr);
1234
1235     /* Increment local variable by constant */
1236      CASE(_iinc):
1237      {
1238          // locals[pc[1]].j.i += (jbyte)(pc[2]);
1239          SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1240          UPDATE_PC_AND_CONTINUE(3);
1241      }
1242
1243     /* negate the value on the top of the stack */
1244
1245      CASE(_ineg):
1246         SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1247         UPDATE_PC_AND_CONTINUE(1);
1248
1249      CASE(_fneg):
1250         SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1251         UPDATE_PC_AND_CONTINUE(1);
1252
1253      CASE(_lneg):
1254      {
1255         SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1256         UPDATE_PC_AND_CONTINUE(1);
1257      }
1258
1259      CASE(_dneg):
1260      {
1261         SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1262         UPDATE_PC_AND_CONTINUE(1);
1263      }
1264
1265      /* Conversion operations */
1266
1267      CASE(_i2f):       /* convert top of stack int to float */
1268         SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1269         UPDATE_PC_AND_CONTINUE(1);
1270
1271      CASE(_i2l):       /* convert top of stack int to long */
1272      {
1273          // this is ugly QQQ
1274          jlong r = VMint2Long(STACK_INT(-1));
1275          MORE_STACK(-1); // Pop
1276          SET_STACK_LONG(r, 1);
1277
1278          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1279      }
1280
1281      CASE(_i2d):       /* convert top of stack int to double */
1282      {
1283          // this is ugly QQQ (why cast to jlong?? )
1284          jdouble r = (jlong)STACK_INT(-1);
1285          MORE_STACK(-1); // Pop
1286          SET_STACK_DOUBLE(r, 1);
1287
1288          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1289      }
1290
1291      CASE(_l2i):       /* convert top of stack long to int */
1292      {
1293          jint r = VMlong2Int(STACK_LONG(-1));
1294          MORE_STACK(-2); // Pop
1295          SET_STACK_INT(r, 0);
1296          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1297      }
1298
1299      CASE(_l2f):   /* convert top of stack long to float */
1300      {
1301          jlong r = STACK_LONG(-1);
1302          MORE_STACK(-2); // Pop
1303          SET_STACK_FLOAT(VMlong2Float(r), 0);
1304          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1305      }
1306
1307      CASE(_l2d):       /* convert top of stack long to double */
1308      {
1309          jlong r = STACK_LONG(-1);
1310          MORE_STACK(-2); // Pop
1311          SET_STACK_DOUBLE(VMlong2Double(r), 1);
1312          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1313      }
1314
1315      CASE(_f2i):  /* Convert top of stack float to int */
1316          SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1317          UPDATE_PC_AND_CONTINUE(1);
1318
1319      CASE(_f2l):  /* convert top of stack float to long */
1320      {
1321          jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1322          MORE_STACK(-1); // POP
1323          SET_STACK_LONG(r, 1);
1324          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1325      }
1326
1327      CASE(_f2d):  /* convert top of stack float to double */
1328      {
1329          jfloat f;
1330          jdouble r;
1331          f = STACK_FLOAT(-1);
1332          r = (jdouble) f;
1333          MORE_STACK(-1); // POP
1334          SET_STACK_DOUBLE(r, 1);
1335          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1336      }
1337
1338      CASE(_d2i): /* convert top of stack double to int */
1339      {
1340          jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1341          MORE_STACK(-2);
1342          SET_STACK_INT(r1, 0);
1343          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1344      }
1345
1346      CASE(_d2f): /* convert top of stack double to float */
1347      {
1348          jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1349          MORE_STACK(-2);
1350          SET_STACK_FLOAT(r1, 0);
1351          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1352      }
1353
1354      CASE(_d2l): /* convert top of stack double to long */
1355      {
1356          jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1357          MORE_STACK(-2);
1358          SET_STACK_LONG(r1, 1);
1359          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1360      }
1361
1362      CASE(_i2b):
1363          SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1364          UPDATE_PC_AND_CONTINUE(1);
1365
1366      CASE(_i2c):
1367          SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1368          UPDATE_PC_AND_CONTINUE(1);
1369
1370      CASE(_i2s):
1371          SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1372          UPDATE_PC_AND_CONTINUE(1);
1373
1374      /* comparison operators */
1375
1376
1377#define COMPARISON_OP(name, comparison)                                      \
1378      CASE(_if_icmp##name): {                                                \
1379          int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1380                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1381          address branch_pc = pc;                                            \
1382          UPDATE_PC_AND_TOS(skip, -2);                                       \
1383          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1384          CONTINUE;                                                          \
1385      }                                                                      \
1386      CASE(_if##name): {                                                     \
1387          int skip = (STACK_INT(-1) comparison 0)                            \
1388                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1389          address branch_pc = pc;                                            \
1390          UPDATE_PC_AND_TOS(skip, -1);                                       \
1391          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1392          CONTINUE;                                                          \
1393      }
1394
1395#define COMPARISON_OP2(name, comparison)                                     \
1396      COMPARISON_OP(name, comparison)                                        \
1397      CASE(_if_acmp##name): {                                                \
1398          int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1399                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1400          address branch_pc = pc;                                            \
1401          UPDATE_PC_AND_TOS(skip, -2);                                       \
1402          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1403          CONTINUE;                                                          \
1404      }
1405
1406#define NULL_COMPARISON_NOT_OP(name)                                         \
1407      CASE(_if##name): {                                                     \
1408          int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1409                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1410          address branch_pc = pc;                                            \
1411          UPDATE_PC_AND_TOS(skip, -1);                                       \
1412          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1413          CONTINUE;                                                          \
1414      }
1415
1416#define NULL_COMPARISON_OP(name)                                             \
1417      CASE(_if##name): {                                                     \
1418          int skip = ((STACK_OBJECT(-1) == NULL))                            \
1419                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1420          address branch_pc = pc;                                            \
1421          UPDATE_PC_AND_TOS(skip, -1);                                       \
1422          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1423          CONTINUE;                                                          \
1424      }
1425      COMPARISON_OP(lt, <);
1426      COMPARISON_OP(gt, >);
1427      COMPARISON_OP(le, <=);
1428      COMPARISON_OP(ge, >=);
1429      COMPARISON_OP2(eq, ==);  /* include ref comparison */
1430      COMPARISON_OP2(ne, !=);  /* include ref comparison */
1431      NULL_COMPARISON_OP(null);
1432      NULL_COMPARISON_NOT_OP(nonnull);
1433
1434      /* Goto pc at specified offset in switch table. */
1435
1436      CASE(_tableswitch): {
1437          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1438          int32_t  key  = STACK_INT(-1);
1439          int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1440          int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1441          int32_t  skip;
1442          key -= low;
1443          skip = ((uint32_t) key > (uint32_t)(high - low))
1444                      ? Bytes::get_Java_u4((address)&lpc[0])
1445                      : Bytes::get_Java_u4((address)&lpc[key + 3]);
1446          // Does this really need a full backedge check (osr?)
1447          address branch_pc = pc;
1448          UPDATE_PC_AND_TOS(skip, -1);
1449          DO_BACKEDGE_CHECKS(skip, branch_pc);
1450          CONTINUE;
1451      }
1452
1453      /* Goto pc whose table entry matches specified key */
1454
1455      CASE(_lookupswitch): {
1456          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1457          int32_t  key  = STACK_INT(-1);
1458          int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1459          int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1460          while (--npairs >= 0) {
1461              lpc += 2;
1462              if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1463                  skip = Bytes::get_Java_u4((address)&lpc[1]);
1464                  break;
1465              }
1466          }
1467          address branch_pc = pc;
1468          UPDATE_PC_AND_TOS(skip, -1);
1469          DO_BACKEDGE_CHECKS(skip, branch_pc);
1470          CONTINUE;
1471      }
1472
1473      CASE(_fcmpl):
1474      CASE(_fcmpg):
1475      {
1476          SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1477                                        STACK_FLOAT(-1),
1478                                        (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1479                        -2);
1480          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1481      }
1482
1483      CASE(_dcmpl):
1484      CASE(_dcmpg):
1485      {
1486          int r = VMdoubleCompare(STACK_DOUBLE(-3),
1487                                  STACK_DOUBLE(-1),
1488                                  (opcode == Bytecodes::_dcmpl ? -1 : 1));
1489          MORE_STACK(-4); // Pop
1490          SET_STACK_INT(r, 0);
1491          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1492      }
1493
1494      CASE(_lcmp):
1495      {
1496          int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1497          MORE_STACK(-4);
1498          SET_STACK_INT(r, 0);
1499          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1500      }
1501
1502
1503      /* Return from a method */
1504
1505      CASE(_areturn):
1506      CASE(_ireturn):
1507      CASE(_freturn):
1508      {
1509          // Allow a safepoint before returning to frame manager.
1510          SAFEPOINT;
1511
1512          goto handle_return;
1513      }
1514
1515      CASE(_lreturn):
1516      CASE(_dreturn):
1517      {
1518          // Allow a safepoint before returning to frame manager.
1519          SAFEPOINT;
1520          goto handle_return;
1521      }
1522
1523      CASE(_return_register_finalizer): {
1524
1525          oop rcvr = LOCALS_OBJECT(0);
1526          VERIFY_OOP(rcvr);
1527          if (rcvr->klass()->klass_part()->has_finalizer()) {
1528            CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1529          }
1530          goto handle_return;
1531      }
1532      CASE(_return): {
1533
1534          // Allow a safepoint before returning to frame manager.
1535          SAFEPOINT;
1536          goto handle_return;
1537      }
1538
1539      /* Array access byte-codes */
1540
1541      /* Every array access byte-code starts out like this */
1542//        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1543#define ARRAY_INTRO(arrayOff)                                                  \
1544      arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1545      jint     index  = STACK_INT(arrayOff + 1);                               \
1546      char message[jintAsStringSize];                                          \
1547      CHECK_NULL(arrObj);                                                      \
1548      if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1549          sprintf(message, "%d", index);                                       \
1550          VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1551                        message);                                              \
1552      }
1553
1554      /* 32-bit loads. These handle conversion from < 32-bit types */
1555#define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1556      {                                                                               \
1557          ARRAY_INTRO(-2);                                                            \
1558          extra;                                                                      \
1559          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1560                           -2);                                                       \
1561          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1562      }
1563
1564      /* 64-bit loads */
1565#define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1566      {                                                                                    \
1567          ARRAY_INTRO(-2);                                                                 \
1568          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1569          extra;                                                                           \
1570          UPDATE_PC_AND_CONTINUE(1);                                            \
1571      }
1572
1573      CASE(_iaload):
1574          ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1575      CASE(_faload):
1576          ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1577      CASE(_aaload):
1578          ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1579      CASE(_baload):
1580          ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1581      CASE(_caload):
1582          ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1583      CASE(_saload):
1584          ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1585      CASE(_laload):
1586          ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1587      CASE(_daload):
1588          ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1589
1590      /* 32-bit stores. These handle conversion to < 32-bit types */
1591#define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1592      {                                                                              \
1593          ARRAY_INTRO(-3);                                                           \
1594          extra;                                                                     \
1595          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1596          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1597      }
1598
1599      /* 64-bit stores */
1600#define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1601      {                                                                              \
1602          ARRAY_INTRO(-4);                                                           \
1603          extra;                                                                     \
1604          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1605          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1606      }
1607
1608      CASE(_iastore):
1609          ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1610      CASE(_fastore):
1611          ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1612      /*
1613       * This one looks different because of the assignability check
1614       */
1615      CASE(_aastore): {
1616          oop rhsObject = STACK_OBJECT(-1);
1617          VERIFY_OOP(rhsObject);
1618          ARRAY_INTRO( -3);
1619          // arrObj, index are set
1620          if (rhsObject != NULL) {
1621            /* Check assignability of rhsObject into arrObj */
1622            klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1623            assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1624            klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1625            //
1626            // Check for compatibilty. This check must not GC!!
1627            // Seems way more expensive now that we must dispatch
1628            //
1629            if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1630              VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1631            }
1632          }
1633          oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1634          // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1635          *elem_loc = rhsObject;
1636          // Mark the card
1637          OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1638          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1639      }
1640      CASE(_bastore):
1641          ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1642      CASE(_castore):
1643          ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1644      CASE(_sastore):
1645          ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1646      CASE(_lastore):
1647          ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1648      CASE(_dastore):
1649          ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1650
1651      CASE(_arraylength):
1652      {
1653          arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1654          CHECK_NULL(ary);
1655          SET_STACK_INT(ary->length(), -1);
1656          UPDATE_PC_AND_CONTINUE(1);
1657      }
1658
1659      /* monitorenter and monitorexit for locking/unlocking an object */
1660
1661      CASE(_monitorenter): {
1662        oop lockee = STACK_OBJECT(-1);
1663        // derefing's lockee ought to provoke implicit null check
1664        CHECK_NULL(lockee);
1665        // find a free monitor or one already allocated for this object
1666        // if we find a matching object then we need a new monitor
1667        // since this is recursive enter
1668        BasicObjectLock* limit = istate->monitor_base();
1669        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1670        BasicObjectLock* entry = NULL;
1671        while (most_recent != limit ) {
1672          if (most_recent->obj() == NULL) entry = most_recent;
1673          else if (most_recent->obj() == lockee) break;
1674          most_recent++;
1675        }
1676        if (entry != NULL) {
1677          entry->set_obj(lockee);
1678          markOop displaced = lockee->mark()->set_unlocked();
1679          entry->lock()->set_displaced_header(displaced);
1680          if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1681            // Is it simple recursive case?
1682            if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1683              entry->lock()->set_displaced_header(NULL);
1684            } else {
1685              CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1686            }
1687          }
1688          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1689        } else {
1690          istate->set_msg(more_monitors);
1691          UPDATE_PC_AND_RETURN(0); // Re-execute
1692        }
1693      }
1694
1695      CASE(_monitorexit): {
1696        oop lockee = STACK_OBJECT(-1);
1697        CHECK_NULL(lockee);
1698        // derefing's lockee ought to provoke implicit null check
1699        // find our monitor slot
1700        BasicObjectLock* limit = istate->monitor_base();
1701        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1702        while (most_recent != limit ) {
1703          if ((most_recent)->obj() == lockee) {
1704            BasicLock* lock = most_recent->lock();
1705            markOop header = lock->displaced_header();
1706            most_recent->set_obj(NULL);
1707            // If it isn't recursive we either must swap old header or call the runtime
1708            if (header != NULL) {
1709              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1710                // restore object for the slow case
1711                most_recent->set_obj(lockee);
1712                CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1713              }
1714            }
1715            UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1716          }
1717          most_recent++;
1718        }
1719        // Need to throw illegal monitor state exception
1720        CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1721        // Should never reach here...
1722        assert(false, "Should have thrown illegal monitor exception");
1723      }
1724
1725      /* All of the non-quick opcodes. */
1726
1727      /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1728       *  constant pool index in the instruction.
1729       */
1730      CASE(_getfield):
1731      CASE(_getstatic):
1732        {
1733          u2 index;
1734          ConstantPoolCacheEntry* cache;
1735          index = Bytes::get_native_u2(pc+1);
1736
1737          // QQQ Need to make this as inlined as possible. Probably need to
1738          // split all the bytecode cases out so c++ compiler has a chance
1739          // for constant prop to fold everything possible away.
1740
1741          cache = cp->entry_at(index);
1742          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1743            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1744                    handle_exception);
1745            cache = cp->entry_at(index);
1746          }
1747
1748#ifdef VM_JVMTI
1749          if (_jvmti_interp_events) {
1750            int *count_addr;
1751            oop obj;
1752            // Check to see if a field modification watch has been set
1753            // before we take the time to call into the VM.
1754            count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1755            if ( *count_addr > 0 ) {
1756              if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1757                obj = (oop)NULL;
1758              } else {
1759                obj = (oop) STACK_OBJECT(-1);
1760                VERIFY_OOP(obj);
1761              }
1762              CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1763                                          obj,
1764                                          cache),
1765                                          handle_exception);
1766            }
1767          }
1768#endif /* VM_JVMTI */
1769
1770          oop obj;
1771          if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1772            obj = (oop) cache->f1();
1773            MORE_STACK(1);  // Assume single slot push
1774          } else {
1775            obj = (oop) STACK_OBJECT(-1);
1776            CHECK_NULL(obj);
1777          }
1778
1779          //
1780          // Now store the result on the stack
1781          //
1782          TosState tos_type = cache->flag_state();
1783          int field_offset = cache->f2();
1784          if (cache->is_volatile()) {
1785            if (tos_type == atos) {
1786              VERIFY_OOP(obj->obj_field_acquire(field_offset));
1787              SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1788            } else if (tos_type == itos) {
1789              SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1790            } else if (tos_type == ltos) {
1791              SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1792              MORE_STACK(1);
1793            } else if (tos_type == btos) {
1794              SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1795            } else if (tos_type == ctos) {
1796              SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1797            } else if (tos_type == stos) {
1798              SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1799            } else if (tos_type == ftos) {
1800              SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1801            } else {
1802              SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1803              MORE_STACK(1);
1804            }
1805          } else {
1806            if (tos_type == atos) {
1807              VERIFY_OOP(obj->obj_field(field_offset));
1808              SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1809            } else if (tos_type == itos) {
1810              SET_STACK_INT(obj->int_field(field_offset), -1);
1811            } else if (tos_type == ltos) {
1812              SET_STACK_LONG(obj->long_field(field_offset), 0);
1813              MORE_STACK(1);
1814            } else if (tos_type == btos) {
1815              SET_STACK_INT(obj->byte_field(field_offset), -1);
1816            } else if (tos_type == ctos) {
1817              SET_STACK_INT(obj->char_field(field_offset), -1);
1818            } else if (tos_type == stos) {
1819              SET_STACK_INT(obj->short_field(field_offset), -1);
1820            } else if (tos_type == ftos) {
1821              SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1822            } else {
1823              SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1824              MORE_STACK(1);
1825            }
1826          }
1827
1828          UPDATE_PC_AND_CONTINUE(3);
1829         }
1830
1831      CASE(_putfield):
1832      CASE(_putstatic):
1833        {
1834          u2 index = Bytes::get_native_u2(pc+1);
1835          ConstantPoolCacheEntry* cache = cp->entry_at(index);
1836          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1837            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1838                    handle_exception);
1839            cache = cp->entry_at(index);
1840          }
1841
1842#ifdef VM_JVMTI
1843          if (_jvmti_interp_events) {
1844            int *count_addr;
1845            oop obj;
1846            // Check to see if a field modification watch has been set
1847            // before we take the time to call into the VM.
1848            count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1849            if ( *count_addr > 0 ) {
1850              if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1851                obj = (oop)NULL;
1852              }
1853              else {
1854                if (cache->is_long() || cache->is_double()) {
1855                  obj = (oop) STACK_OBJECT(-3);
1856                } else {
1857                  obj = (oop) STACK_OBJECT(-2);
1858                }
1859                VERIFY_OOP(obj);
1860              }
1861
1862              CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1863                                          obj,
1864                                          cache,
1865                                          (jvalue *)STACK_SLOT(-1)),
1866                                          handle_exception);
1867            }
1868          }
1869#endif /* VM_JVMTI */
1870
1871          // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1872          // out so c++ compiler has a chance for constant prop to fold everything possible away.
1873
1874          oop obj;
1875          int count;
1876          TosState tos_type = cache->flag_state();
1877
1878          count = -1;
1879          if (tos_type == ltos || tos_type == dtos) {
1880            --count;
1881          }
1882          if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1883            obj = (oop) cache->f1();
1884          } else {
1885            --count;
1886            obj = (oop) STACK_OBJECT(count);
1887            CHECK_NULL(obj);
1888          }
1889
1890          //
1891          // Now store the result
1892          //
1893          int field_offset = cache->f2();
1894          if (cache->is_volatile()) {
1895            if (tos_type == itos) {
1896              obj->release_int_field_put(field_offset, STACK_INT(-1));
1897            } else if (tos_type == atos) {
1898              VERIFY_OOP(STACK_OBJECT(-1));
1899              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1900              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1901            } else if (tos_type == btos) {
1902              obj->release_byte_field_put(field_offset, STACK_INT(-1));
1903            } else if (tos_type == ltos) {
1904              obj->release_long_field_put(field_offset, STACK_LONG(-1));
1905            } else if (tos_type == ctos) {
1906              obj->release_char_field_put(field_offset, STACK_INT(-1));
1907            } else if (tos_type == stos) {
1908              obj->release_short_field_put(field_offset, STACK_INT(-1));
1909            } else if (tos_type == ftos) {
1910              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1911            } else {
1912              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1913            }
1914            OrderAccess::storeload();
1915          } else {
1916            if (tos_type == itos) {
1917              obj->int_field_put(field_offset, STACK_INT(-1));
1918            } else if (tos_type == atos) {
1919              VERIFY_OOP(STACK_OBJECT(-1));
1920              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1921              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1922            } else if (tos_type == btos) {
1923              obj->byte_field_put(field_offset, STACK_INT(-1));
1924            } else if (tos_type == ltos) {
1925              obj->long_field_put(field_offset, STACK_LONG(-1));
1926            } else if (tos_type == ctos) {
1927              obj->char_field_put(field_offset, STACK_INT(-1));
1928            } else if (tos_type == stos) {
1929              obj->short_field_put(field_offset, STACK_INT(-1));
1930            } else if (tos_type == ftos) {
1931              obj->float_field_put(field_offset, STACK_FLOAT(-1));
1932            } else {
1933              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1934            }
1935          }
1936
1937          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1938        }
1939
1940      CASE(_new): {
1941        u2 index = Bytes::get_Java_u2(pc+1);
1942        constantPoolOop constants = istate->method()->constants();
1943        if (!constants->tag_at(index).is_unresolved_klass()) {
1944          // Make sure klass is initialized and doesn't have a finalizer
1945          oop entry = constants->slot_at(index).get_oop();
1946          assert(entry->is_klass(), "Should be resolved klass");
1947          klassOop k_entry = (klassOop) entry;
1948          assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1949          instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1950          if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1951            size_t obj_size = ik->size_helper();
1952            oop result = NULL;
1953            // If the TLAB isn't pre-zeroed then we'll have to do it
1954            bool need_zero = !ZeroTLAB;
1955            if (UseTLAB) {
1956              result = (oop) THREAD->tlab().allocate(obj_size);
1957            }
1958            if (result == NULL) {
1959              need_zero = true;
1960              // Try allocate in shared eden
1961        retry:
1962              HeapWord* compare_to = *Universe::heap()->top_addr();
1963              HeapWord* new_top = compare_to + obj_size;
1964              if (new_top <= *Universe::heap()->end_addr()) {
1965                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1966                  goto retry;
1967                }
1968                result = (oop) compare_to;
1969              }
1970            }
1971            if (result != NULL) {
1972              // Initialize object (if nonzero size and need) and then the header
1973              if (need_zero ) {
1974                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1975                obj_size -= sizeof(oopDesc) / oopSize;
1976                if (obj_size > 0 ) {
1977                  memset(to_zero, 0, obj_size * HeapWordSize);
1978                }
1979              }
1980              if (UseBiasedLocking) {
1981                result->set_mark(ik->prototype_header());
1982              } else {
1983                result->set_mark(markOopDesc::prototype());
1984              }
1985              result->set_klass_gap(0);
1986              result->set_klass(k_entry);
1987              SET_STACK_OBJECT(result, 0);
1988              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1989            }
1990          }
1991        }
1992        // Slow case allocation
1993        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1994                handle_exception);
1995        SET_STACK_OBJECT(THREAD->vm_result(), 0);
1996        THREAD->set_vm_result(NULL);
1997        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1998      }
1999      CASE(_anewarray): {
2000        u2 index = Bytes::get_Java_u2(pc+1);
2001        jint size = STACK_INT(-1);
2002        CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2003                handle_exception);
2004        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2005        THREAD->set_vm_result(NULL);
2006        UPDATE_PC_AND_CONTINUE(3);
2007      }
2008      CASE(_multianewarray): {
2009        jint dims = *(pc+3);
2010        jint size = STACK_INT(-1);
2011        // stack grows down, dimensions are up!
2012        jint *dimarray =
2013                   (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2014                                      Interpreter::stackElementWords-1];
2015        //adjust pointer to start of stack element
2016        CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2017                handle_exception);
2018        SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2019        THREAD->set_vm_result(NULL);
2020        UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2021      }
2022      CASE(_checkcast):
2023          if (STACK_OBJECT(-1) != NULL) {
2024            VERIFY_OOP(STACK_OBJECT(-1));
2025            u2 index = Bytes::get_Java_u2(pc+1);
2026            if (ProfileInterpreter) {
2027              // needs Profile_checkcast QQQ
2028              ShouldNotReachHere();
2029            }
2030            // Constant pool may have actual klass or unresolved klass. If it is
2031            // unresolved we must resolve it
2032            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2033              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2034            }
2035            klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2036            klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2037            //
2038            // Check for compatibilty. This check must not GC!!
2039            // Seems way more expensive now that we must dispatch
2040            //
2041            if (objKlassOop != klassOf &&
2042                !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2043              ResourceMark rm(THREAD);
2044              const char* objName = Klass::cast(objKlassOop)->external_name();
2045              const char* klassName = Klass::cast(klassOf)->external_name();
2046              char* message = SharedRuntime::generate_class_cast_message(
2047                objName, klassName);
2048              VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2049            }
2050          } else {
2051            if (UncommonNullCast) {
2052//              istate->method()->set_null_cast_seen();
2053// [RGV] Not sure what to do here!
2054
2055            }
2056          }
2057          UPDATE_PC_AND_CONTINUE(3);
2058
2059      CASE(_instanceof):
2060          if (STACK_OBJECT(-1) == NULL) {
2061            SET_STACK_INT(0, -1);
2062          } else {
2063            VERIFY_OOP(STACK_OBJECT(-1));
2064            u2 index = Bytes::get_Java_u2(pc+1);
2065            // Constant pool may have actual klass or unresolved klass. If it is
2066            // unresolved we must resolve it
2067            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2068              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2069            }
2070            klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
2071            klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2072            //
2073            // Check for compatibilty. This check must not GC!!
2074            // Seems way more expensive now that we must dispatch
2075            //
2076            if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2077              SET_STACK_INT(1, -1);
2078            } else {
2079              SET_STACK_INT(0, -1);
2080            }
2081          }
2082          UPDATE_PC_AND_CONTINUE(3);
2083
2084      CASE(_ldc_w):
2085      CASE(_ldc):
2086        {
2087          u2 index;
2088          bool wide = false;
2089          int incr = 2; // frequent case
2090          if (opcode == Bytecodes::_ldc) {
2091            index = pc[1];
2092          } else {
2093            index = Bytes::get_Java_u2(pc+1);
2094            incr = 3;
2095            wide = true;
2096          }
2097
2098          constantPoolOop constants = METHOD->constants();
2099          switch (constants->tag_at(index).value()) {
2100          case JVM_CONSTANT_Integer:
2101            SET_STACK_INT(constants->int_at(index), 0);
2102            break;
2103
2104          case JVM_CONSTANT_Float:
2105            SET_STACK_FLOAT(constants->float_at(index), 0);
2106            break;
2107
2108          case JVM_CONSTANT_String:
2109            VERIFY_OOP(constants->resolved_string_at(index));
2110            SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2111            break;
2112
2113          case JVM_CONSTANT_Class:
2114            VERIFY_OOP(constants->resolved_klass_at(index)->klass_part()->java_mirror());
2115            SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
2116            break;
2117
2118          case JVM_CONSTANT_UnresolvedString:
2119          case JVM_CONSTANT_UnresolvedClass:
2120          case JVM_CONSTANT_UnresolvedClassInError:
2121            CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2122            SET_STACK_OBJECT(THREAD->vm_result(), 0);
2123            THREAD->set_vm_result(NULL);
2124            break;
2125
2126          default:  ShouldNotReachHere();
2127          }
2128          UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2129        }
2130
2131      CASE(_ldc2_w):
2132        {
2133          u2 index = Bytes::get_Java_u2(pc+1);
2134
2135          constantPoolOop constants = METHOD->constants();
2136          switch (constants->tag_at(index).value()) {
2137
2138          case JVM_CONSTANT_Long:
2139             SET_STACK_LONG(constants->long_at(index), 1);
2140            break;
2141
2142          case JVM_CONSTANT_Double:
2143             SET_STACK_DOUBLE(constants->double_at(index), 1);
2144            break;
2145          default:  ShouldNotReachHere();
2146          }
2147          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2148        }
2149
2150      CASE(_invokeinterface): {
2151        u2 index = Bytes::get_native_u2(pc+1);
2152
2153        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2154        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2155
2156        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2157        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2158          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2159                  handle_exception);
2160          cache = cp->entry_at(index);
2161        }
2162
2163        istate->set_msg(call_method);
2164
2165        // Special case of invokeinterface called for virtual method of
2166        // java.lang.Object.  See cpCacheOop.cpp for details.
2167        // This code isn't produced by javac, but could be produced by
2168        // another compliant java compiler.
2169        if (cache->is_methodInterface()) {
2170          methodOop callee;
2171          CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2172          if (cache->is_vfinal()) {
2173            callee = (methodOop) cache->f2();
2174          } else {
2175            // get receiver
2176            int parms = cache->parameter_size();
2177            // Same comments as invokevirtual apply here
2178            VERIFY_OOP(STACK_OBJECT(-parms));
2179            instanceKlass* rcvrKlass = (instanceKlass*)
2180                                 STACK_OBJECT(-parms)->klass()->klass_part();
2181            callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2182          }
2183          istate->set_callee(callee);
2184          istate->set_callee_entry_point(callee->from_interpreted_entry());
2185#ifdef VM_JVMTI
2186          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2187            istate->set_callee_entry_point(callee->interpreter_entry());
2188          }
2189#endif /* VM_JVMTI */
2190          istate->set_bcp_advance(5);
2191          UPDATE_PC_AND_RETURN(0); // I'll be back...
2192        }
2193
2194        // this could definitely be cleaned up QQQ
2195        methodOop callee;
2196        klassOop iclass = (klassOop)cache->f1();
2197        // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2198        // get receiver
2199        int parms = cache->parameter_size();
2200        oop rcvr = STACK_OBJECT(-parms);
2201        CHECK_NULL(rcvr);
2202        instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2203        itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2204        int i;
2205        for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2206          if (ki->interface_klass() == iclass) break;
2207        }
2208        // If the interface isn't found, this class doesn't implement this
2209        // interface.  The link resolver checks this but only for the first
2210        // time this interface is called.
2211        if (i == int2->itable_length()) {
2212          VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2213        }
2214        int mindex = cache->f2();
2215        itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2216        callee = im[mindex].method();
2217        if (callee == NULL) {
2218          VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2219        }
2220
2221        istate->set_callee(callee);
2222        istate->set_callee_entry_point(callee->from_interpreted_entry());
2223#ifdef VM_JVMTI
2224        if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2225          istate->set_callee_entry_point(callee->interpreter_entry());
2226        }
2227#endif /* VM_JVMTI */
2228        istate->set_bcp_advance(5);
2229        UPDATE_PC_AND_RETURN(0); // I'll be back...
2230      }
2231
2232      CASE(_invokevirtual):
2233      CASE(_invokespecial):
2234      CASE(_invokestatic): {
2235        u2 index = Bytes::get_native_u2(pc+1);
2236
2237        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2238        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2239        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2240
2241        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2242          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2243                  handle_exception);
2244          cache = cp->entry_at(index);
2245        }
2246
2247        istate->set_msg(call_method);
2248        {
2249          methodOop callee;
2250          if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2251            CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2252            if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2253            else {
2254              // get receiver
2255              int parms = cache->parameter_size();
2256              // this works but needs a resourcemark and seems to create a vtable on every call:
2257              // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2258              //
2259              // this fails with an assert
2260              // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2261              // but this works
2262              VERIFY_OOP(STACK_OBJECT(-parms));
2263              instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2264              /*
2265                Executing this code in java.lang.String:
2266                    public String(char value[]) {
2267                          this.count = value.length;
2268                          this.value = (char[])value.clone();
2269                     }
2270
2271                 a find on rcvr->klass()->klass_part() reports:
2272                 {type array char}{type array class}
2273                  - klass: {other class}
2274
2275                  but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2276                  because rcvr->klass()->klass_part()->oop_is_instance() == 0
2277                  However it seems to have a vtable in the right location. Huh?
2278
2279              */
2280              callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2281            }
2282          } else {
2283            if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2284              CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2285            }
2286            callee = (methodOop) cache->f1();
2287          }
2288
2289          istate->set_callee(callee);
2290          istate->set_callee_entry_point(callee->from_interpreted_entry());
2291#ifdef VM_JVMTI
2292          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2293            istate->set_callee_entry_point(callee->interpreter_entry());
2294          }
2295#endif /* VM_JVMTI */
2296          istate->set_bcp_advance(3);
2297          UPDATE_PC_AND_RETURN(0); // I'll be back...
2298        }
2299      }
2300
2301      /* Allocate memory for a new java object. */
2302
2303      CASE(_newarray): {
2304        BasicType atype = (BasicType) *(pc+1);
2305        jint size = STACK_INT(-1);
2306        CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2307                handle_exception);
2308        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2309        THREAD->set_vm_result(NULL);
2310
2311        UPDATE_PC_AND_CONTINUE(2);
2312      }
2313
2314      /* Throw an exception. */
2315
2316      CASE(_athrow): {
2317          oop except_oop = STACK_OBJECT(-1);
2318          CHECK_NULL(except_oop);
2319          // set pending_exception so we use common code
2320          THREAD->set_pending_exception(except_oop, NULL, 0);
2321          goto handle_exception;
2322      }
2323
2324      /* goto and jsr. They are exactly the same except jsr pushes
2325       * the address of the next instruction first.
2326       */
2327
2328      CASE(_jsr): {
2329          /* push bytecode index on stack */
2330          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2331          MORE_STACK(1);
2332          /* FALL THROUGH */
2333      }
2334
2335      CASE(_goto):
2336      {
2337          int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2338          address branch_pc = pc;
2339          UPDATE_PC(offset);
2340          DO_BACKEDGE_CHECKS(offset, branch_pc);
2341          CONTINUE;
2342      }
2343
2344      CASE(_jsr_w): {
2345          /* push return address on the stack */
2346          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2347          MORE_STACK(1);
2348          /* FALL THROUGH */
2349      }
2350
2351      CASE(_goto_w):
2352      {
2353          int32_t offset = Bytes::get_Java_u4(pc + 1);
2354          address branch_pc = pc;
2355          UPDATE_PC(offset);
2356          DO_BACKEDGE_CHECKS(offset, branch_pc);
2357          CONTINUE;
2358      }
2359
2360      /* return from a jsr or jsr_w */
2361
2362      CASE(_ret): {
2363          pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2364          UPDATE_PC_AND_CONTINUE(0);
2365      }
2366
2367      /* debugger breakpoint */
2368
2369      CASE(_breakpoint): {
2370          Bytecodes::Code original_bytecode;
2371          DECACHE_STATE();
2372          SET_LAST_JAVA_FRAME();
2373          original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2374                              METHOD, pc);
2375          RESET_LAST_JAVA_FRAME();
2376          CACHE_STATE();
2377          if (THREAD->has_pending_exception()) goto handle_exception;
2378            CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2379                                                    handle_exception);
2380
2381          opcode = (jubyte)original_bytecode;
2382          goto opcode_switch;
2383      }
2384
2385      DEFAULT:
2386#ifdef ZERO
2387          // Some zero configurations use the C++ interpreter as a
2388          // fallback interpreter and have support for platform
2389          // specific fast bytecodes which aren't supported here, so
2390          // redispatch to the equivalent non-fast bytecode when they
2391          // are encountered.
2392          if (Bytecodes::is_defined((Bytecodes::Code)opcode)) {
2393              opcode = (jubyte)Bytecodes::java_code((Bytecodes::Code)opcode);
2394              goto opcode_switch;
2395          }
2396#endif
2397          fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2398                        Bytecodes::name((Bytecodes::Code)opcode)));
2399          goto finish;
2400
2401      } /* switch(opc) */
2402
2403
2404#ifdef USELABELS
2405    check_for_exception:
2406#endif
2407    {
2408      if (!THREAD->has_pending_exception()) {
2409        CONTINUE;
2410      }
2411      /* We will be gcsafe soon, so flush our state. */
2412      DECACHE_PC();
2413      goto handle_exception;
2414    }
2415  do_continue: ;
2416
2417  } /* while (1) interpreter loop */
2418
2419
2420  // An exception exists in the thread state see whether this activation can handle it
2421  handle_exception: {
2422
2423    HandleMarkCleaner __hmc(THREAD);
2424    Handle except_oop(THREAD, THREAD->pending_exception());
2425    // Prevent any subsequent HandleMarkCleaner in the VM
2426    // from freeing the except_oop handle.
2427    HandleMark __hm(THREAD);
2428
2429    THREAD->clear_pending_exception();
2430    assert(except_oop(), "No exception to process");
2431    intptr_t continuation_bci;
2432    // expression stack is emptied
2433    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2434    CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2435            handle_exception);
2436
2437    except_oop = (oop) THREAD->vm_result();
2438    THREAD->set_vm_result(NULL);
2439    if (continuation_bci >= 0) {
2440      // Place exception on top of stack
2441      SET_STACK_OBJECT(except_oop(), 0);
2442      MORE_STACK(1);
2443      pc = METHOD->code_base() + continuation_bci;
2444      if (TraceExceptions) {
2445        ttyLocker ttyl;
2446        ResourceMark rm;
2447        tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2448        tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2449        tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2450                      pc - (intptr_t)METHOD->code_base(),
2451                      continuation_bci, THREAD);
2452      }
2453      // for AbortVMOnException flag
2454      NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2455      goto run;
2456    }
2457    if (TraceExceptions) {
2458      ttyLocker ttyl;
2459      ResourceMark rm;
2460      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2461      tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2462      tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2463                    pc  - (intptr_t) METHOD->code_base(),
2464                    THREAD);
2465    }
2466    // for AbortVMOnException flag
2467    NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2468    // No handler in this activation, unwind and try again
2469    THREAD->set_pending_exception(except_oop(), NULL, 0);
2470    goto handle_return;
2471  }  /* handle_exception: */
2472
2473
2474
2475  // Return from an interpreter invocation with the result of the interpretation
2476  // on the top of the Java Stack (or a pending exception)
2477
2478handle_Pop_Frame:
2479
2480  // We don't really do anything special here except we must be aware
2481  // that we can get here without ever locking the method (if sync).
2482  // Also we skip the notification of the exit.
2483
2484  istate->set_msg(popping_frame);
2485  // Clear pending so while the pop is in process
2486  // we don't start another one if a call_vm is done.
2487  THREAD->clr_pop_frame_pending();
2488  // Let interpreter (only) see the we're in the process of popping a frame
2489  THREAD->set_pop_frame_in_process();
2490
2491handle_return:
2492  {
2493    DECACHE_STATE();
2494
2495    bool suppress_error = istate->msg() == popping_frame;
2496    bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2497    Handle original_exception(THREAD, THREAD->pending_exception());
2498    Handle illegal_state_oop(THREAD, NULL);
2499
2500    // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2501    // in any following VM entries from freeing our live handles, but illegal_state_oop
2502    // isn't really allocated yet and so doesn't become live until later and
2503    // in unpredicatable places. Instead we must protect the places where we enter the
2504    // VM. It would be much simpler (and safer) if we could allocate a real handle with
2505    // a NULL oop in it and then overwrite the oop later as needed. This isn't
2506    // unfortunately isn't possible.
2507
2508    THREAD->clear_pending_exception();
2509
2510    //
2511    // As far as we are concerned we have returned. If we have a pending exception
2512    // that will be returned as this invocation's result. However if we get any
2513    // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2514    // will be our final result (i.e. monitor exception trumps a pending exception).
2515    //
2516
2517    // If we never locked the method (or really passed the point where we would have),
2518    // there is no need to unlock it (or look for other monitors), since that
2519    // could not have happened.
2520
2521    if (THREAD->do_not_unlock()) {
2522
2523      // Never locked, reset the flag now because obviously any caller must
2524      // have passed their point of locking for us to have gotten here.
2525
2526      THREAD->clr_do_not_unlock();
2527    } else {
2528      // At this point we consider that we have returned. We now check that the
2529      // locks were properly block structured. If we find that they were not
2530      // used properly we will return with an illegal monitor exception.
2531      // The exception is checked by the caller not the callee since this
2532      // checking is considered to be part of the invocation and therefore
2533      // in the callers scope (JVM spec 8.13).
2534      //
2535      // Another weird thing to watch for is if the method was locked
2536      // recursively and then not exited properly. This means we must
2537      // examine all the entries in reverse time(and stack) order and
2538      // unlock as we find them. If we find the method monitor before
2539      // we are at the initial entry then we should throw an exception.
2540      // It is not clear the template based interpreter does this
2541      // correctly
2542
2543      BasicObjectLock* base = istate->monitor_base();
2544      BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2545      bool method_unlock_needed = METHOD->is_synchronized();
2546      // We know the initial monitor was used for the method don't check that
2547      // slot in the loop
2548      if (method_unlock_needed) base--;
2549
2550      // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2551      while (end < base) {
2552        oop lockee = end->obj();
2553        if (lockee != NULL) {
2554          BasicLock* lock = end->lock();
2555          markOop header = lock->displaced_header();
2556          end->set_obj(NULL);
2557          // If it isn't recursive we either must swap old header or call the runtime
2558          if (header != NULL) {
2559            if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2560              // restore object for the slow case
2561              end->set_obj(lockee);
2562              {
2563                // Prevent any HandleMarkCleaner from freeing our live handles
2564                HandleMark __hm(THREAD);
2565                CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2566              }
2567            }
2568          }
2569          // One error is plenty
2570          if (illegal_state_oop() == NULL && !suppress_error) {
2571            {
2572              // Prevent any HandleMarkCleaner from freeing our live handles
2573              HandleMark __hm(THREAD);
2574              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2575            }
2576            assert(THREAD->has_pending_exception(), "Lost our exception!");
2577            illegal_state_oop = THREAD->pending_exception();
2578            THREAD->clear_pending_exception();
2579          }
2580        }
2581        end++;
2582      }
2583      // Unlock the method if needed
2584      if (method_unlock_needed) {
2585        if (base->obj() == NULL) {
2586          // The method is already unlocked this is not good.
2587          if (illegal_state_oop() == NULL && !suppress_error) {
2588            {
2589              // Prevent any HandleMarkCleaner from freeing our live handles
2590              HandleMark __hm(THREAD);
2591              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2592            }
2593            assert(THREAD->has_pending_exception(), "Lost our exception!");
2594            illegal_state_oop = THREAD->pending_exception();
2595            THREAD->clear_pending_exception();
2596          }
2597        } else {
2598          //
2599          // The initial monitor is always used for the method
2600          // However if that slot is no longer the oop for the method it was unlocked
2601          // and reused by something that wasn't unlocked!
2602          //
2603          // deopt can come in with rcvr dead because c2 knows
2604          // its value is preserved in the monitor. So we can't use locals[0] at all
2605          // and must use first monitor slot.
2606          //
2607          oop rcvr = base->obj();
2608          if (rcvr == NULL) {
2609            if (!suppress_error) {
2610              VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2611              illegal_state_oop = THREAD->pending_exception();
2612              THREAD->clear_pending_exception();
2613            }
2614          } else {
2615            BasicLock* lock = base->lock();
2616            markOop header = lock->displaced_header();
2617            base->set_obj(NULL);
2618            // If it isn't recursive we either must swap old header or call the runtime
2619            if (header != NULL) {
2620              if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2621                // restore object for the slow case
2622                base->set_obj(rcvr);
2623                {
2624                  // Prevent any HandleMarkCleaner from freeing our live handles
2625                  HandleMark __hm(THREAD);
2626                  CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2627                }
2628                if (THREAD->has_pending_exception()) {
2629                  if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2630                  THREAD->clear_pending_exception();
2631                }
2632              }
2633            }
2634          }
2635        }
2636      }
2637    }
2638
2639    //
2640    // Notify jvmti/jvmdi
2641    //
2642    // NOTE: we do not notify a method_exit if we have a pending exception,
2643    // including an exception we generate for unlocking checks.  In the former
2644    // case, JVMDI has already been notified by our call for the exception handler
2645    // and in both cases as far as JVMDI is concerned we have already returned.
2646    // If we notify it again JVMDI will be all confused about how many frames
2647    // are still on the stack (4340444).
2648    //
2649    // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2650    // method_exit events whenever we leave an activation unless it was done
2651    // for popframe. This is nothing like jvmdi. However we are passing the
2652    // tests at the moment (apparently because they are jvmdi based) so rather
2653    // than change this code and possibly fail tests we will leave it alone
2654    // (with this note) in anticipation of changing the vm and the tests
2655    // simultaneously.
2656
2657
2658    //
2659    suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2660
2661
2662
2663#ifdef VM_JVMTI
2664      if (_jvmti_interp_events) {
2665        // Whenever JVMTI puts a thread in interp_only_mode, method
2666        // entry/exit events are sent for that thread to track stack depth.
2667        if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2668          {
2669            // Prevent any HandleMarkCleaner from freeing our live handles
2670            HandleMark __hm(THREAD);
2671            CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2672          }
2673        }
2674      }
2675#endif /* VM_JVMTI */
2676
2677    //
2678    // See if we are returning any exception
2679    // A pending exception that was pending prior to a possible popping frame
2680    // overrides the popping frame.
2681    //
2682    assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2683    if (illegal_state_oop() != NULL || original_exception() != NULL) {
2684      // inform the frame manager we have no result
2685      istate->set_msg(throwing_exception);
2686      if (illegal_state_oop() != NULL)
2687        THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2688      else
2689        THREAD->set_pending_exception(original_exception(), NULL, 0);
2690      istate->set_return_kind((Bytecodes::Code)opcode);
2691      UPDATE_PC_AND_RETURN(0);
2692    }
2693
2694    if (istate->msg() == popping_frame) {
2695      // Make it simpler on the assembly code and set the message for the frame pop.
2696      // returns
2697      if (istate->prev() == NULL) {
2698        // We must be returning to a deoptimized frame (because popframe only happens between
2699        // two interpreted frames). We need to save the current arguments in C heap so that
2700        // the deoptimized frame when it restarts can copy the arguments to its expression
2701        // stack and re-execute the call. We also have to notify deoptimization that this
2702        // has occurred and to pick the preserved args copy them to the deoptimized frame's
2703        // java expression stack. Yuck.
2704        //
2705        THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2706                                LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2707        THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2708      }
2709      THREAD->clr_pop_frame_in_process();
2710    }
2711
2712    // Normal return
2713    // Advance the pc and return to frame manager
2714    istate->set_msg(return_from_method);
2715    istate->set_return_kind((Bytecodes::Code)opcode);
2716    UPDATE_PC_AND_RETURN(1);
2717  } /* handle_return: */
2718
2719// This is really a fatal error return
2720
2721finish:
2722  DECACHE_TOS();
2723  DECACHE_PC();
2724
2725  return;
2726}
2727
2728/*
2729 * All the code following this point is only produced once and is not present
2730 * in the JVMTI version of the interpreter
2731*/
2732
2733#ifndef VM_JVMTI
2734
2735// This constructor should only be used to contruct the object to signal
2736// interpreter initialization. All other instances should be created by
2737// the frame manager.
2738BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2739  if (msg != initialize) ShouldNotReachHere();
2740  _msg = msg;
2741  _self_link = this;
2742  _prev_link = NULL;
2743}
2744
2745// Inline static functions for Java Stack and Local manipulation
2746
2747// The implementations are platform dependent. We have to worry about alignment
2748// issues on some machines which can change on the same platform depending on
2749// whether it is an LP64 machine also.
2750address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2751  return (address) tos[Interpreter::expr_index_at(-offset)];
2752}
2753
2754jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2755  return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2756}
2757
2758jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2759  return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2760}
2761
2762oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2763  return (oop)tos [Interpreter::expr_index_at(-offset)];
2764}
2765
2766jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2767  return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2768}
2769
2770jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2771  return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2772}
2773
2774// only used for value types
2775void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2776                                                        int offset) {
2777  *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2778}
2779
2780void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2781                                                       int offset) {
2782  *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2783}
2784
2785void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2786                                                         int offset) {
2787  *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2788}
2789
2790void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2791                                                          int offset) {
2792  *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2793}
2794
2795// needs to be platform dep for the 32 bit platforms.
2796void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2797                                                          int offset) {
2798  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2799}
2800
2801void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2802                                              address addr, int offset) {
2803  (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2804                        ((VMJavaVal64*)addr)->d);
2805}
2806
2807void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2808                                                        int offset) {
2809  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2810  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2811}
2812
2813void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2814                                            address addr, int offset) {
2815  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2816  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2817                        ((VMJavaVal64*)addr)->l;
2818}
2819
2820// Locals
2821
2822address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2823  return (address)locals[Interpreter::local_index_at(-offset)];
2824}
2825jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2826  return (jint)locals[Interpreter::local_index_at(-offset)];
2827}
2828jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2829  return (jfloat)locals[Interpreter::local_index_at(-offset)];
2830}
2831oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2832  return (oop)locals[Interpreter::local_index_at(-offset)];
2833}
2834jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2835  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2836}
2837jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2838  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2839}
2840
2841// Returns the address of locals value.
2842address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2843  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2844}
2845address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2846  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2847}
2848
2849// Used for local value or returnAddress
2850void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2851                                   address value, int offset) {
2852  *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2853}
2854void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2855                                   jint value, int offset) {
2856  *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2857}
2858void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2859                                   jfloat value, int offset) {
2860  *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2861}
2862void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2863                                   oop value, int offset) {
2864  *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2865}
2866void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2867                                   jdouble value, int offset) {
2868  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2869}
2870void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2871                                   jlong value, int offset) {
2872  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2873}
2874void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2875                                   address addr, int offset) {
2876  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2877}
2878void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2879                                   address addr, int offset) {
2880  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2881}
2882
2883void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2884                          intptr_t* locals, int locals_offset) {
2885  intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2886  locals[Interpreter::local_index_at(-locals_offset)] = value;
2887}
2888
2889
2890void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2891                                   int to_offset) {
2892  tos[Interpreter::expr_index_at(-to_offset)] =
2893                      (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2894}
2895
2896void BytecodeInterpreter::dup(intptr_t *tos) {
2897  copy_stack_slot(tos, -1, 0);
2898}
2899void BytecodeInterpreter::dup2(intptr_t *tos) {
2900  copy_stack_slot(tos, -2, 0);
2901  copy_stack_slot(tos, -1, 1);
2902}
2903
2904void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2905  /* insert top word two down */
2906  copy_stack_slot(tos, -1, 0);
2907  copy_stack_slot(tos, -2, -1);
2908  copy_stack_slot(tos, 0, -2);
2909}
2910
2911void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2912  /* insert top word three down  */
2913  copy_stack_slot(tos, -1, 0);
2914  copy_stack_slot(tos, -2, -1);
2915  copy_stack_slot(tos, -3, -2);
2916  copy_stack_slot(tos, 0, -3);
2917}
2918void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2919  /* insert top 2 slots three down */
2920  copy_stack_slot(tos, -1, 1);
2921  copy_stack_slot(tos, -2, 0);
2922  copy_stack_slot(tos, -3, -1);
2923  copy_stack_slot(tos, 1, -2);
2924  copy_stack_slot(tos, 0, -3);
2925}
2926void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2927  /* insert top 2 slots four down */
2928  copy_stack_slot(tos, -1, 1);
2929  copy_stack_slot(tos, -2, 0);
2930  copy_stack_slot(tos, -3, -1);
2931  copy_stack_slot(tos, -4, -2);
2932  copy_stack_slot(tos, 1, -3);
2933  copy_stack_slot(tos, 0, -4);
2934}
2935
2936
2937void BytecodeInterpreter::swap(intptr_t *tos) {
2938  // swap top two elements
2939  intptr_t val = tos[Interpreter::expr_index_at(1)];
2940  // Copy -2 entry to -1
2941  copy_stack_slot(tos, -2, -1);
2942  // Store saved -1 entry into -2
2943  tos[Interpreter::expr_index_at(2)] = val;
2944}
2945// --------------------------------------------------------------------------------
2946// Non-product code
2947#ifndef PRODUCT
2948
2949const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
2950  switch (msg) {
2951     case BytecodeInterpreter::no_request:  return("no_request");
2952     case BytecodeInterpreter::initialize:  return("initialize");
2953     // status message to C++ interpreter
2954     case BytecodeInterpreter::method_entry:  return("method_entry");
2955     case BytecodeInterpreter::method_resume:  return("method_resume");
2956     case BytecodeInterpreter::got_monitors:  return("got_monitors");
2957     case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
2958     // requests to frame manager from C++ interpreter
2959     case BytecodeInterpreter::call_method:  return("call_method");
2960     case BytecodeInterpreter::return_from_method:  return("return_from_method");
2961     case BytecodeInterpreter::more_monitors:  return("more_monitors");
2962     case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
2963     case BytecodeInterpreter::popping_frame:  return("popping_frame");
2964     case BytecodeInterpreter::do_osr:  return("do_osr");
2965     // deopt
2966     case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
2967     case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
2968     default: return("BAD MSG");
2969  }
2970}
2971void
2972BytecodeInterpreter::print() {
2973  tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
2974  tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
2975  tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
2976  tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
2977  {
2978    ResourceMark rm;
2979    char *method_name = _method->name_and_sig_as_C_string();
2980    tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
2981  }
2982  tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
2983  tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
2984  tty->print_cr("msg: %s", C_msg(this->_msg));
2985  tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
2986  tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
2987  tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
2988  tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
2989  tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
2990  tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
2991  tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
2992  tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
2993  tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
2994  tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
2995  tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
2996#ifdef SPARC
2997  tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
2998  tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
2999  tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3000  tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3001#endif
3002#if defined(IA64) && !defined(ZERO)
3003  tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3004#endif // IA64 && !ZERO
3005  tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3006}
3007
3008extern "C" {
3009    void PI(uintptr_t arg) {
3010        ((BytecodeInterpreter*)arg)->print();
3011    }
3012}
3013#endif // PRODUCT
3014
3015#endif // JVMTI
3016#endif // CC_INTERP
3017