bytecodeInterpreter.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25
26// no precompiled headers
27#include "incls/_bytecodeInterpreter.cpp.incl"
28
29#ifdef CC_INTERP
30
31/*
32 * USELABELS - If using GCC, then use labels for the opcode dispatching
33 * rather -then a switch statement. This improves performance because it
34 * gives us the oportunity to have the instructions that calculate the
35 * next opcode to jump to be intermixed with the rest of the instructions
36 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
37 */
38#undef USELABELS
39#ifdef __GNUC__
40/*
41   ASSERT signifies debugging. It is much easier to step thru bytecodes if we
42   don't use the computed goto approach.
43*/
44#ifndef ASSERT
45#define USELABELS
46#endif
47#endif
48
49#undef CASE
50#ifdef USELABELS
51#define CASE(opcode) opc ## opcode
52#define DEFAULT opc_default
53#else
54#define CASE(opcode) case Bytecodes:: opcode
55#define DEFAULT default
56#endif
57
58/*
59 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
60 * opcode before going back to the top of the while loop, rather then having
61 * the top of the while loop handle it. This provides a better opportunity
62 * for instruction scheduling. Some compilers just do this prefetch
63 * automatically. Some actually end up with worse performance if you
64 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
65 */
66#undef PREFETCH_OPCCODE
67#define PREFETCH_OPCCODE
68
69/*
70  Interpreter safepoint: it is expected that the interpreter will have no live
71  handles of its own creation live at an interpreter safepoint. Therefore we
72  run a HandleMarkCleaner and trash all handles allocated in the call chain
73  since the JavaCalls::call_helper invocation that initiated the chain.
74  There really shouldn't be any handles remaining to trash but this is cheap
75  in relation to a safepoint.
76*/
77#define SAFEPOINT                                                                 \
78    if ( SafepointSynchronize::is_synchronizing()) {                              \
79        {                                                                         \
80          /* zap freed handles rather than GC'ing them */                         \
81          HandleMarkCleaner __hmc(THREAD);                                        \
82        }                                                                         \
83        CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
84    }
85
86/*
87 * VM_JAVA_ERROR - Macro for throwing a java exception from
88 * the interpreter loop. Should really be a CALL_VM but there
89 * is no entry point to do the transition to vm so we just
90 * do it by hand here.
91 */
92#define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
93    DECACHE_STATE();                                                              \
94    SET_LAST_JAVA_FRAME();                                                        \
95    {                                                                             \
96       ThreadInVMfromJava trans(THREAD);                                          \
97       Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
98    }                                                                             \
99    RESET_LAST_JAVA_FRAME();                                                      \
100    CACHE_STATE();
101
102// Normal throw of a java error
103#define VM_JAVA_ERROR(name, msg)                                                  \
104    VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
105    goto handle_exception;
106
107#ifdef PRODUCT
108#define DO_UPDATE_INSTRUCTION_COUNT(opcode)
109#else
110#define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
111{                                                                                                    \
112    BytecodeCounter::_counter_value++;                                                               \
113    BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
114    if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
115    if (TraceBytecodes) {                                                                            \
116      CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
117                                   topOfStack[Interpreter::expr_index_at(1)],   \
118                                   topOfStack[Interpreter::expr_index_at(2)]),  \
119                                   handle_exception);                      \
120    }                                                                      \
121}
122#endif
123
124#undef DEBUGGER_SINGLE_STEP_NOTIFY
125#ifdef VM_JVMTI
126/* NOTE: (kbr) This macro must be called AFTER the PC has been
127   incremented. JvmtiExport::at_single_stepping_point() may cause a
128   breakpoint opcode to get inserted at the current PC to allow the
129   debugger to coalesce single-step events.
130
131   As a result if we call at_single_stepping_point() we refetch opcode
132   to get the current opcode. This will override any other prefetching
133   that might have occurred.
134*/
135#define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
136{                                                                                \
137      if (_jvmti_interp_events) {                                                \
138        if (JvmtiExport::should_post_single_step()) {                            \
139          DECACHE_STATE();                                                       \
140          SET_LAST_JAVA_FRAME();                                                 \
141          ThreadInVMfromJava trans(THREAD);                                      \
142          JvmtiExport::at_single_stepping_point(THREAD,                          \
143                                          istate->method(),                      \
144                                          pc);                                   \
145          RESET_LAST_JAVA_FRAME();                                               \
146          CACHE_STATE();                                                         \
147          if (THREAD->pop_frame_pending() &&                                     \
148              !THREAD->pop_frame_in_process()) {                                 \
149            goto handle_Pop_Frame;                                               \
150          }                                                                      \
151          opcode = *pc;                                                          \
152        }                                                                        \
153      }                                                                          \
154}
155#else
156#define DEBUGGER_SINGLE_STEP_NOTIFY()
157#endif
158
159/*
160 * CONTINUE - Macro for executing the next opcode.
161 */
162#undef CONTINUE
163#ifdef USELABELS
164// Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
165// initialization (which is is the initialization of the table pointer...)
166#define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
167#define CONTINUE {                              \
168        opcode = *pc;                           \
169        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
170        DEBUGGER_SINGLE_STEP_NOTIFY();          \
171        DISPATCH(opcode);                       \
172    }
173#else
174#ifdef PREFETCH_OPCCODE
175#define CONTINUE {                              \
176        opcode = *pc;                           \
177        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
178        DEBUGGER_SINGLE_STEP_NOTIFY();          \
179        continue;                               \
180    }
181#else
182#define CONTINUE {                              \
183        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
184        DEBUGGER_SINGLE_STEP_NOTIFY();          \
185        continue;                               \
186    }
187#endif
188#endif
189
190// JavaStack Implementation
191#define MORE_STACK(count)  \
192    (topOfStack -= ((count) * Interpreter::stackElementWords))
193
194
195#define UPDATE_PC(opsize) {pc += opsize; }
196/*
197 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
198 */
199#undef UPDATE_PC_AND_TOS
200#define UPDATE_PC_AND_TOS(opsize, stack) \
201    {pc += opsize; MORE_STACK(stack); }
202
203/*
204 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
205 * and executing the next opcode. It's somewhat similar to the combination
206 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
207 */
208#undef UPDATE_PC_AND_TOS_AND_CONTINUE
209#ifdef USELABELS
210#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
211        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
212        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
213        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
214        DISPATCH(opcode);                                       \
215    }
216
217#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
218        pc += opsize; opcode = *pc;                             \
219        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
220        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
221        DISPATCH(opcode);                                       \
222    }
223#else
224#ifdef PREFETCH_OPCCODE
225#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
226        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
227        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
228        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
229        goto do_continue;                                       \
230    }
231
232#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
233        pc += opsize; opcode = *pc;                             \
234        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
235        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
236        goto do_continue;                                       \
237    }
238#else
239#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
240        pc += opsize; MORE_STACK(stack);                \
241        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
242        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
243        goto do_continue;                               \
244    }
245
246#define UPDATE_PC_AND_CONTINUE(opsize) {                \
247        pc += opsize;                                   \
248        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
249        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
250        goto do_continue;                               \
251    }
252#endif /* PREFETCH_OPCCODE */
253#endif /* USELABELS */
254
255// About to call a new method, update the save the adjusted pc and return to frame manager
256#define UPDATE_PC_AND_RETURN(opsize)  \
257   DECACHE_TOS();                     \
258   istate->set_bcp(pc+opsize);        \
259   return;
260
261
262#define METHOD istate->method()
263#define INVOCATION_COUNT METHOD->invocation_counter()
264#define BACKEDGE_COUNT METHOD->backedge_counter()
265
266
267#define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
268#define OSR_REQUEST(res, branch_pc) \
269            CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
270/*
271 * For those opcodes that need to have a GC point on a backwards branch
272 */
273
274// Backedge counting is kind of strange. The asm interpreter will increment
275// the backedge counter as a separate counter but it does it's comparisons
276// to the sum (scaled) of invocation counter and backedge count to make
277// a decision. Seems kind of odd to sum them together like that
278
279// skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
280
281
282#define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
283    if ((skip) <= 0) {                                                                              \
284      if (UseLoopCounter) {                                                                         \
285        bool do_OSR = UseOnStackReplacement;                                                        \
286        BACKEDGE_COUNT->increment();                                                                \
287        if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
288        if (do_OSR) {                                                                               \
289          nmethod*  osr_nmethod;                                                                    \
290          OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
291          if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
292            intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
293            istate->set_msg(do_osr);                                                                \
294            istate->set_osr_buf((address)buf);                                                      \
295            istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
296            return;                                                                                 \
297          }                                                                                         \
298        }                                                                                           \
299      }  /* UseCompiler ... */                                                                      \
300      INCR_INVOCATION_COUNT;                                                                        \
301      SAFEPOINT;                                                                                    \
302    }
303
304/*
305 * For those opcodes that need to have a GC point on a backwards branch
306 */
307
308/*
309 * Macros for caching and flushing the interpreter state. Some local
310 * variables need to be flushed out to the frame before we do certain
311 * things (like pushing frames or becomming gc safe) and some need to
312 * be recached later (like after popping a frame). We could use one
313 * macro to cache or decache everything, but this would be less then
314 * optimal because we don't always need to cache or decache everything
315 * because some things we know are already cached or decached.
316 */
317#undef DECACHE_TOS
318#undef CACHE_TOS
319#undef CACHE_PREV_TOS
320#define DECACHE_TOS()    istate->set_stack(topOfStack);
321
322#define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
323
324#undef DECACHE_PC
325#undef CACHE_PC
326#define DECACHE_PC()    istate->set_bcp(pc);
327#define CACHE_PC()      pc = istate->bcp();
328#define CACHE_CP()      cp = istate->constants();
329#define CACHE_LOCALS()  locals = istate->locals();
330#undef CACHE_FRAME
331#define CACHE_FRAME()
332
333/*
334 * CHECK_NULL - Macro for throwing a NullPointerException if the object
335 * passed is a null ref.
336 * On some architectures/platforms it should be possible to do this implicitly
337 */
338#undef CHECK_NULL
339#define CHECK_NULL(obj_)                                                 \
340    if ((obj_) == NULL) {                                                \
341        VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
342    }
343
344#define VMdoubleConstZero() 0.0
345#define VMdoubleConstOne() 1.0
346#define VMlongConstZero() (max_jlong-max_jlong)
347#define VMlongConstOne() ((max_jlong-max_jlong)+1)
348
349/*
350 * Alignment
351 */
352#define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
353
354// Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
355#define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
356
357// Reload interpreter state after calling the VM or a possible GC
358#define CACHE_STATE()   \
359        CACHE_TOS();    \
360        CACHE_PC();     \
361        CACHE_CP();     \
362        CACHE_LOCALS();
363
364// Call the VM don't check for pending exceptions
365#define CALL_VM_NOCHECK(func)                                     \
366          DECACHE_STATE();                                        \
367          SET_LAST_JAVA_FRAME();                                  \
368          func;                                                   \
369          RESET_LAST_JAVA_FRAME();                                \
370          CACHE_STATE();                                          \
371          if (THREAD->pop_frame_pending() &&                      \
372              !THREAD->pop_frame_in_process()) {                  \
373            goto handle_Pop_Frame;                                \
374          }
375
376// Call the VM and check for pending exceptions
377#define CALL_VM(func, label) {                                    \
378          CALL_VM_NOCHECK(func);                                  \
379          if (THREAD->has_pending_exception()) goto label;        \
380        }
381
382/*
383 * BytecodeInterpreter::run(interpreterState istate)
384 * BytecodeInterpreter::runWithChecks(interpreterState istate)
385 *
386 * The real deal. This is where byte codes actually get interpreted.
387 * Basically it's a big while loop that iterates until we return from
388 * the method passed in.
389 *
390 * The runWithChecks is used if JVMTI is enabled.
391 *
392 */
393#if defined(VM_JVMTI)
394void
395BytecodeInterpreter::runWithChecks(interpreterState istate) {
396#else
397void
398BytecodeInterpreter::run(interpreterState istate) {
399#endif
400
401  // In order to simplify some tests based on switches set at runtime
402  // we invoke the interpreter a single time after switches are enabled
403  // and set simpler to to test variables rather than method calls or complex
404  // boolean expressions.
405
406  static int initialized = 0;
407  static int checkit = 0;
408  static intptr_t* c_addr = NULL;
409  static intptr_t  c_value;
410
411  if (checkit && *c_addr != c_value) {
412    os::breakpoint();
413  }
414#ifdef VM_JVMTI
415  static bool _jvmti_interp_events = 0;
416#endif
417
418  static int _compiling;  // (UseCompiler || CountCompiledCalls)
419
420#ifdef ASSERT
421  if (istate->_msg != initialize) {
422    assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
423  IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
424  }
425  // Verify linkages.
426  interpreterState l = istate;
427  do {
428    assert(l == l->_self_link, "bad link");
429    l = l->_prev_link;
430  } while (l != NULL);
431  // Screwups with stack management usually cause us to overwrite istate
432  // save a copy so we can verify it.
433  interpreterState orig = istate;
434#endif
435
436  static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
437
438  register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
439  register address          pc = istate->bcp();
440  register jubyte opcode;
441  register intptr_t*        locals = istate->locals();
442  register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
443#ifdef LOTS_OF_REGS
444  register JavaThread*      THREAD = istate->thread();
445  register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
446#else
447#undef THREAD
448#define THREAD istate->thread()
449#undef BYTE_MAP_BASE
450#define BYTE_MAP_BASE _byte_map_base
451#endif
452
453#ifdef USELABELS
454  const static void* const opclabels_data[256] = {
455/* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
456/* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
457/* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
458/* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
459
460/* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
461/* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
462/* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
463/* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
464
465/* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
466/* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
467/* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
468/* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
469
470/* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
471/* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
472/* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
473/* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
474
475/* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
476/* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
477/* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
478/* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
479
480/* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
481/* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
482/* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
483/* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
484
485/* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
486/* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
487/* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
488/* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
489
490/* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
491/* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
492/* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
493/* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
494
495/* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
496/* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
497/* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
498/* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
499
500/* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
501/* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
502/* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
503/* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
504
505/* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
506/* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
507/* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
508/* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
509
510/* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
511/* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
512/* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,NULL,               &&opc_new,
513/* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
514
515/* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
516/* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
517/* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
518/* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
519
520/* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
521/* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
522/* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
523/* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
524
525/* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
526/* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
527/* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
528/* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
529
530/* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
531/* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
532/* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
533/* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
534  };
535  register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
536#endif /* USELABELS */
537
538#ifdef ASSERT
539  // this will trigger a VERIFY_OOP on entry
540  if (istate->msg() != initialize && ! METHOD->is_static()) {
541    oop rcvr = LOCALS_OBJECT(0);
542  }
543#endif
544// #define HACK
545#ifdef HACK
546  bool interesting = false;
547#endif // HACK
548
549  /* QQQ this should be a stack method so we don't know actual direction */
550  assert(istate->msg() == initialize ||
551         topOfStack >= istate->stack_limit() &&
552         topOfStack < istate->stack_base(),
553         "Stack top out of range");
554
555  switch (istate->msg()) {
556    case initialize: {
557      if (initialized++) ShouldNotReachHere(); // Only one initialize call
558      _compiling = (UseCompiler || CountCompiledCalls);
559#ifdef VM_JVMTI
560      _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
561#endif
562      BarrierSet* bs = Universe::heap()->barrier_set();
563      assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
564      _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
565      return;
566    }
567    break;
568    case method_entry: {
569      THREAD->set_do_not_unlock();
570      // count invocations
571      assert(initialized, "Interpreter not initialized");
572      if (_compiling) {
573        if (ProfileInterpreter) {
574          METHOD->increment_interpreter_invocation_count();
575        }
576        INCR_INVOCATION_COUNT;
577        if (INVOCATION_COUNT->reached_InvocationLimit()) {
578            CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
579
580            // We no longer retry on a counter overflow
581
582            // istate->set_msg(retry_method);
583            // THREAD->clr_do_not_unlock();
584            // return;
585        }
586        SAFEPOINT;
587      }
588
589      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
590        // initialize
591        os::breakpoint();
592      }
593
594#ifdef HACK
595      {
596        ResourceMark rm;
597        char *method_name = istate->method()->name_and_sig_as_C_string();
598        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
599          tty->print_cr("entering: depth %d bci: %d",
600                         (istate->_stack_base - istate->_stack),
601                         istate->_bcp - istate->_method->code_base());
602          interesting = true;
603        }
604      }
605#endif // HACK
606
607
608      // lock method if synchronized
609      if (METHOD->is_synchronized()) {
610          // oop rcvr = locals[0].j.r;
611          oop rcvr;
612          if (METHOD->is_static()) {
613            rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
614          } else {
615            rcvr = LOCALS_OBJECT(0);
616          }
617          // The initial monitor is ours for the taking
618          BasicObjectLock* mon = &istate->monitor_base()[-1];
619          oop monobj = mon->obj();
620          assert(mon->obj() == rcvr, "method monitor mis-initialized");
621
622          bool success = UseBiasedLocking;
623          if (UseBiasedLocking) {
624            markOop mark = rcvr->mark();
625            if (mark->has_bias_pattern()) {
626              // The bias pattern is present in the object's header. Need to check
627              // whether the bias owner and the epoch are both still current.
628              intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
629              xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
630              intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
631              if (yy != 0 ) {
632                // At this point we know that the header has the bias pattern and
633                // that we are not the bias owner in the current epoch. We need to
634                // figure out more details about the state of the header in order to
635                // know what operations can be legally performed on the object's
636                // header.
637
638                // If the low three bits in the xor result aren't clear, that means
639                // the prototype header is no longer biased and we have to revoke
640                // the bias on this object.
641
642                if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
643                  // Biasing is still enabled for this data type. See whether the
644                  // epoch of the current bias is still valid, meaning that the epoch
645                  // bits of the mark word are equal to the epoch bits of the
646                  // prototype header. (Note that the prototype header's epoch bits
647                  // only change at a safepoint.) If not, attempt to rebias the object
648                  // toward the current thread. Note that we must be absolutely sure
649                  // that the current epoch is invalid in order to do this because
650                  // otherwise the manipulations it performs on the mark word are
651                  // illegal.
652                  if (yy & markOopDesc::epoch_mask_in_place == 0) {
653                    // The epoch of the current bias is still valid but we know nothing
654                    // about the owner; it might be set or it might be clear. Try to
655                    // acquire the bias of the object using an atomic operation. If this
656                    // fails we will go in to the runtime to revoke the object's bias.
657                    // Note that we first construct the presumed unbiased header so we
658                    // don't accidentally blow away another thread's valid bias.
659                    intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
660                                                           markOopDesc::age_mask_in_place |
661                                                           markOopDesc::epoch_mask_in_place);
662                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
663                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
664                    }
665                  } else {
666                    try_rebias:
667                    // At this point we know the epoch has expired, meaning that the
668                    // current "bias owner", if any, is actually invalid. Under these
669                    // circumstances _only_, we are allowed to use the current header's
670                    // value as the comparison value when doing the cas to acquire the
671                    // bias in the current epoch. In other words, we allow transfer of
672                    // the bias from one thread to another directly in this situation.
673                    xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
674                    if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
675                                            (intptr_t*) rcvr->mark_addr(),
676                                            (intptr_t) mark) != (intptr_t) mark) {
677                      CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
678                    }
679                  }
680                } else {
681                  try_revoke_bias:
682                  // The prototype mark in the klass doesn't have the bias bit set any
683                  // more, indicating that objects of this data type are not supposed
684                  // to be biased any more. We are going to try to reset the mark of
685                  // this object to the prototype value and fall through to the
686                  // CAS-based locking scheme. Note that if our CAS fails, it means
687                  // that another thread raced us for the privilege of revoking the
688                  // bias of this particular object, so it's okay to continue in the
689                  // normal locking code.
690                  //
691                  xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
692                  if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
693                                          (intptr_t*) rcvr->mark_addr(),
694                                          mark) == mark) {
695                    // (*counters->revoked_lock_entry_count_addr())++;
696                  success = false;
697                  }
698                }
699              }
700            } else {
701              cas_label:
702              success = false;
703            }
704          }
705          if (!success) {
706            markOop displaced = rcvr->mark()->set_unlocked();
707            mon->lock()->set_displaced_header(displaced);
708            if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
709              // Is it simple recursive case?
710              if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
711                mon->lock()->set_displaced_header(NULL);
712              } else {
713                CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
714              }
715            }
716          }
717      }
718      THREAD->clr_do_not_unlock();
719
720      // Notify jvmti
721#ifdef VM_JVMTI
722      if (_jvmti_interp_events) {
723        // Whenever JVMTI puts a thread in interp_only_mode, method
724        // entry/exit events are sent for that thread to track stack depth.
725        if (THREAD->is_interp_only_mode()) {
726          CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
727                  handle_exception);
728        }
729      }
730#endif /* VM_JVMTI */
731
732      goto run;
733    }
734
735    case popping_frame: {
736      // returned from a java call to pop the frame, restart the call
737      // clear the message so we don't confuse ourselves later
738      assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
739      istate->set_msg(no_request);
740      THREAD->clr_pop_frame_in_process();
741      goto run;
742    }
743
744    case method_resume: {
745      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
746        // resume
747        os::breakpoint();
748      }
749#ifdef HACK
750      {
751        ResourceMark rm;
752        char *method_name = istate->method()->name_and_sig_as_C_string();
753        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
754          tty->print_cr("resume: depth %d bci: %d",
755                         (istate->_stack_base - istate->_stack) ,
756                         istate->_bcp - istate->_method->code_base());
757          interesting = true;
758        }
759      }
760#endif // HACK
761      // returned from a java call, continue executing.
762      if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
763        goto handle_Pop_Frame;
764      }
765
766      if (THREAD->has_pending_exception()) goto handle_exception;
767      // Update the pc by the saved amount of the invoke bytecode size
768      UPDATE_PC(istate->bcp_advance());
769      goto run;
770    }
771
772    case deopt_resume2: {
773      // Returned from an opcode that will reexecute. Deopt was
774      // a result of a PopFrame request.
775      //
776      goto run;
777    }
778
779    case deopt_resume: {
780      // Returned from an opcode that has completed. The stack has
781      // the result all we need to do is skip across the bytecode
782      // and continue (assuming there is no exception pending)
783      //
784      // compute continuation length
785      //
786      // Note: it is possible to deopt at a return_register_finalizer opcode
787      // because this requires entering the vm to do the registering. While the
788      // opcode is complete we can't advance because there are no more opcodes
789      // much like trying to deopt at a poll return. In that has we simply
790      // get out of here
791      //
792      if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
793        // this will do the right thing even if an exception is pending.
794        goto handle_return;
795      }
796      UPDATE_PC(Bytecodes::length_at(pc));
797      if (THREAD->has_pending_exception()) goto handle_exception;
798      goto run;
799    }
800    case got_monitors: {
801      // continue locking now that we have a monitor to use
802      // we expect to find newly allocated monitor at the "top" of the monitor stack.
803      oop lockee = STACK_OBJECT(-1);
804      // derefing's lockee ought to provoke implicit null check
805      // find a free monitor
806      BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
807      assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
808      entry->set_obj(lockee);
809
810      markOop displaced = lockee->mark()->set_unlocked();
811      entry->lock()->set_displaced_header(displaced);
812      if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
813        // Is it simple recursive case?
814        if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
815          entry->lock()->set_displaced_header(NULL);
816        } else {
817          CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
818        }
819      }
820      UPDATE_PC_AND_TOS(1, -1);
821      goto run;
822    }
823    default: {
824      fatal("Unexpected message from frame manager");
825    }
826  }
827
828run:
829
830  DO_UPDATE_INSTRUCTION_COUNT(*pc)
831  DEBUGGER_SINGLE_STEP_NOTIFY();
832#ifdef PREFETCH_OPCCODE
833  opcode = *pc;  /* prefetch first opcode */
834#endif
835
836#ifndef USELABELS
837  while (1)
838#endif
839  {
840#ifndef PREFETCH_OPCCODE
841      opcode = *pc;
842#endif
843      // Seems like this happens twice per opcode. At worst this is only
844      // need at entry to the loop.
845      // DEBUGGER_SINGLE_STEP_NOTIFY();
846      /* Using this labels avoids double breakpoints when quickening and
847       * when returing from transition frames.
848       */
849  opcode_switch:
850      assert(istate == orig, "Corrupted istate");
851      /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
852      assert(topOfStack >= istate->stack_limit(), "Stack overrun");
853      assert(topOfStack < istate->stack_base(), "Stack underrun");
854
855#ifdef USELABELS
856      DISPATCH(opcode);
857#else
858      switch (opcode)
859#endif
860      {
861      CASE(_nop):
862          UPDATE_PC_AND_CONTINUE(1);
863
864          /* Push miscellaneous constants onto the stack. */
865
866      CASE(_aconst_null):
867          SET_STACK_OBJECT(NULL, 0);
868          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
869
870#undef  OPC_CONST_n
871#define OPC_CONST_n(opcode, const_type, value)                          \
872      CASE(opcode):                                                     \
873          SET_STACK_ ## const_type(value, 0);                           \
874          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
875
876          OPC_CONST_n(_iconst_m1,   INT,       -1);
877          OPC_CONST_n(_iconst_0,    INT,        0);
878          OPC_CONST_n(_iconst_1,    INT,        1);
879          OPC_CONST_n(_iconst_2,    INT,        2);
880          OPC_CONST_n(_iconst_3,    INT,        3);
881          OPC_CONST_n(_iconst_4,    INT,        4);
882          OPC_CONST_n(_iconst_5,    INT,        5);
883          OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
884          OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
885          OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
886
887#undef  OPC_CONST2_n
888#define OPC_CONST2_n(opcname, value, key, kind)                         \
889      CASE(_##opcname):                                                 \
890      {                                                                 \
891          SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
892          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
893      }
894         OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
895         OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
896         OPC_CONST2_n(lconst_0, Zero, long, LONG);
897         OPC_CONST2_n(lconst_1, One,  long, LONG);
898
899         /* Load constant from constant pool: */
900
901          /* Push a 1-byte signed integer value onto the stack. */
902      CASE(_bipush):
903          SET_STACK_INT((jbyte)(pc[1]), 0);
904          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
905
906          /* Push a 2-byte signed integer constant onto the stack. */
907      CASE(_sipush):
908          SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
909          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
910
911          /* load from local variable */
912
913      CASE(_aload):
914          SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
915          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
916
917      CASE(_iload):
918      CASE(_fload):
919          SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
920          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
921
922      CASE(_lload):
923          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
924          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
925
926      CASE(_dload):
927          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
928          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
929
930#undef  OPC_LOAD_n
931#define OPC_LOAD_n(num)                                                 \
932      CASE(_aload_##num):                                               \
933          SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
934          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
935                                                                        \
936      CASE(_iload_##num):                                               \
937      CASE(_fload_##num):                                               \
938          SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
939          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
940                                                                        \
941      CASE(_lload_##num):                                               \
942          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
943          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
944      CASE(_dload_##num):                                               \
945          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
946          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
947
948          OPC_LOAD_n(0);
949          OPC_LOAD_n(1);
950          OPC_LOAD_n(2);
951          OPC_LOAD_n(3);
952
953          /* store to a local variable */
954
955      CASE(_astore):
956          astore(topOfStack, -1, locals, pc[1]);
957          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
958
959      CASE(_istore):
960      CASE(_fstore):
961          SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
962          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
963
964      CASE(_lstore):
965          SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
966          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
967
968      CASE(_dstore):
969          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
970          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
971
972      CASE(_wide): {
973          uint16_t reg = Bytes::get_Java_u2(pc + 2);
974
975          opcode = pc[1];
976          switch(opcode) {
977              case Bytecodes::_aload:
978                  SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
979                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
980
981              case Bytecodes::_iload:
982              case Bytecodes::_fload:
983                  SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
984                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
985
986              case Bytecodes::_lload:
987                  SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
988                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
989
990              case Bytecodes::_dload:
991                  SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
992                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
993
994              case Bytecodes::_astore:
995                  astore(topOfStack, -1, locals, reg);
996                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
997
998              case Bytecodes::_istore:
999              case Bytecodes::_fstore:
1000                  SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1001                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1002
1003              case Bytecodes::_lstore:
1004                  SET_LOCALS_LONG(STACK_LONG(-1), reg);
1005                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1006
1007              case Bytecodes::_dstore:
1008                  SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1009                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1010
1011              case Bytecodes::_iinc: {
1012                  int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1013                  // Be nice to see what this generates.... QQQ
1014                  SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1015                  UPDATE_PC_AND_CONTINUE(6);
1016              }
1017              case Bytecodes::_ret:
1018                  pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1019                  UPDATE_PC_AND_CONTINUE(0);
1020              default:
1021                  VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1022          }
1023      }
1024
1025
1026#undef  OPC_STORE_n
1027#define OPC_STORE_n(num)                                                \
1028      CASE(_astore_##num):                                              \
1029          astore(topOfStack, -1, locals, num);                          \
1030          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1031      CASE(_istore_##num):                                              \
1032      CASE(_fstore_##num):                                              \
1033          SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1034          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1035
1036          OPC_STORE_n(0);
1037          OPC_STORE_n(1);
1038          OPC_STORE_n(2);
1039          OPC_STORE_n(3);
1040
1041#undef  OPC_DSTORE_n
1042#define OPC_DSTORE_n(num)                                               \
1043      CASE(_dstore_##num):                                              \
1044          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1045          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1046      CASE(_lstore_##num):                                              \
1047          SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1048          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1049
1050          OPC_DSTORE_n(0);
1051          OPC_DSTORE_n(1);
1052          OPC_DSTORE_n(2);
1053          OPC_DSTORE_n(3);
1054
1055          /* stack pop, dup, and insert opcodes */
1056
1057
1058      CASE(_pop):                /* Discard the top item on the stack */
1059          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1060
1061
1062      CASE(_pop2):               /* Discard the top 2 items on the stack */
1063          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1064
1065
1066      CASE(_dup):               /* Duplicate the top item on the stack */
1067          dup(topOfStack);
1068          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1069
1070      CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1071          dup2(topOfStack);
1072          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1073
1074      CASE(_dup_x1):    /* insert top word two down */
1075          dup_x1(topOfStack);
1076          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1077
1078      CASE(_dup_x2):    /* insert top word three down  */
1079          dup_x2(topOfStack);
1080          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1081
1082      CASE(_dup2_x1):   /* insert top 2 slots three down */
1083          dup2_x1(topOfStack);
1084          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1085
1086      CASE(_dup2_x2):   /* insert top 2 slots four down */
1087          dup2_x2(topOfStack);
1088          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089
1090      CASE(_swap): {        /* swap top two elements on the stack */
1091          swap(topOfStack);
1092          UPDATE_PC_AND_CONTINUE(1);
1093      }
1094
1095          /* Perform various binary integer operations */
1096
1097#undef  OPC_INT_BINARY
1098#define OPC_INT_BINARY(opcname, opname, test)                           \
1099      CASE(_i##opcname):                                                \
1100          if (test && (STACK_INT(-1) == 0)) {                           \
1101              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1102                            "/ by int zero");                           \
1103          }                                                             \
1104          SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1105                                      STACK_INT(-1)),                   \
1106                                      -2);                              \
1107          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1108      CASE(_l##opcname):                                                \
1109      {                                                                 \
1110          if (test) {                                                   \
1111            jlong l1 = STACK_LONG(-1);                                  \
1112            if (VMlongEqz(l1)) {                                        \
1113              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1114                            "/ by long zero");                          \
1115            }                                                           \
1116          }                                                             \
1117          /* First long at (-1,-2) next long at (-3,-4) */              \
1118          SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1119                                        STACK_LONG(-1)),                \
1120                                        -3);                            \
1121          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1122      }
1123
1124      OPC_INT_BINARY(add, Add, 0);
1125      OPC_INT_BINARY(sub, Sub, 0);
1126      OPC_INT_BINARY(mul, Mul, 0);
1127      OPC_INT_BINARY(and, And, 0);
1128      OPC_INT_BINARY(or,  Or,  0);
1129      OPC_INT_BINARY(xor, Xor, 0);
1130      OPC_INT_BINARY(div, Div, 1);
1131      OPC_INT_BINARY(rem, Rem, 1);
1132
1133
1134      /* Perform various binary floating number operations */
1135      /* On some machine/platforms/compilers div zero check can be implicit */
1136
1137#undef  OPC_FLOAT_BINARY
1138#define OPC_FLOAT_BINARY(opcname, opname)                                  \
1139      CASE(_d##opcname): {                                                 \
1140          SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1141                                            STACK_DOUBLE(-1)),             \
1142                                            -3);                           \
1143          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1144      }                                                                    \
1145      CASE(_f##opcname):                                                   \
1146          SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1147                                          STACK_FLOAT(-1)),                \
1148                                          -2);                             \
1149          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1150
1151
1152     OPC_FLOAT_BINARY(add, Add);
1153     OPC_FLOAT_BINARY(sub, Sub);
1154     OPC_FLOAT_BINARY(mul, Mul);
1155     OPC_FLOAT_BINARY(div, Div);
1156     OPC_FLOAT_BINARY(rem, Rem);
1157
1158      /* Shift operations
1159       * Shift left int and long: ishl, lshl
1160       * Logical shift right int and long w/zero extension: iushr, lushr
1161       * Arithmetic shift right int and long w/sign extension: ishr, lshr
1162       */
1163
1164#undef  OPC_SHIFT_BINARY
1165#define OPC_SHIFT_BINARY(opcname, opname)                               \
1166      CASE(_i##opcname):                                                \
1167         SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1168                                     STACK_INT(-1)),                    \
1169                                     -2);                               \
1170         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1171      CASE(_l##opcname):                                                \
1172      {                                                                 \
1173         SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1174                                       STACK_INT(-1)),                  \
1175                                       -2);                             \
1176         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1177      }
1178
1179      OPC_SHIFT_BINARY(shl, Shl);
1180      OPC_SHIFT_BINARY(shr, Shr);
1181      OPC_SHIFT_BINARY(ushr, Ushr);
1182
1183     /* Increment local variable by constant */
1184      CASE(_iinc):
1185      {
1186          // locals[pc[1]].j.i += (jbyte)(pc[2]);
1187          SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1188          UPDATE_PC_AND_CONTINUE(3);
1189      }
1190
1191     /* negate the value on the top of the stack */
1192
1193      CASE(_ineg):
1194         SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1195         UPDATE_PC_AND_CONTINUE(1);
1196
1197      CASE(_fneg):
1198         SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1199         UPDATE_PC_AND_CONTINUE(1);
1200
1201      CASE(_lneg):
1202      {
1203         SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1204         UPDATE_PC_AND_CONTINUE(1);
1205      }
1206
1207      CASE(_dneg):
1208      {
1209         SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1210         UPDATE_PC_AND_CONTINUE(1);
1211      }
1212
1213      /* Conversion operations */
1214
1215      CASE(_i2f):       /* convert top of stack int to float */
1216         SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1217         UPDATE_PC_AND_CONTINUE(1);
1218
1219      CASE(_i2l):       /* convert top of stack int to long */
1220      {
1221          // this is ugly QQQ
1222          jlong r = VMint2Long(STACK_INT(-1));
1223          MORE_STACK(-1); // Pop
1224          SET_STACK_LONG(r, 1);
1225
1226          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1227      }
1228
1229      CASE(_i2d):       /* convert top of stack int to double */
1230      {
1231          // this is ugly QQQ (why cast to jlong?? )
1232          jdouble r = (jlong)STACK_INT(-1);
1233          MORE_STACK(-1); // Pop
1234          SET_STACK_DOUBLE(r, 1);
1235
1236          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1237      }
1238
1239      CASE(_l2i):       /* convert top of stack long to int */
1240      {
1241          jint r = VMlong2Int(STACK_LONG(-1));
1242          MORE_STACK(-2); // Pop
1243          SET_STACK_INT(r, 0);
1244          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1245      }
1246
1247      CASE(_l2f):   /* convert top of stack long to float */
1248      {
1249          jlong r = STACK_LONG(-1);
1250          MORE_STACK(-2); // Pop
1251          SET_STACK_FLOAT(VMlong2Float(r), 0);
1252          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1253      }
1254
1255      CASE(_l2d):       /* convert top of stack long to double */
1256      {
1257          jlong r = STACK_LONG(-1);
1258          MORE_STACK(-2); // Pop
1259          SET_STACK_DOUBLE(VMlong2Double(r), 1);
1260          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1261      }
1262
1263      CASE(_f2i):  /* Convert top of stack float to int */
1264          SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1265          UPDATE_PC_AND_CONTINUE(1);
1266
1267      CASE(_f2l):  /* convert top of stack float to long */
1268      {
1269          jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1270          MORE_STACK(-1); // POP
1271          SET_STACK_LONG(r, 1);
1272          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1273      }
1274
1275      CASE(_f2d):  /* convert top of stack float to double */
1276      {
1277          jfloat f;
1278          jdouble r;
1279          f = STACK_FLOAT(-1);
1280          r = (jdouble) f;
1281          MORE_STACK(-1); // POP
1282          SET_STACK_DOUBLE(r, 1);
1283          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1284      }
1285
1286      CASE(_d2i): /* convert top of stack double to int */
1287      {
1288          jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1289          MORE_STACK(-2);
1290          SET_STACK_INT(r1, 0);
1291          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1292      }
1293
1294      CASE(_d2f): /* convert top of stack double to float */
1295      {
1296          jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1297          MORE_STACK(-2);
1298          SET_STACK_FLOAT(r1, 0);
1299          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1300      }
1301
1302      CASE(_d2l): /* convert top of stack double to long */
1303      {
1304          jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1305          MORE_STACK(-2);
1306          SET_STACK_LONG(r1, 1);
1307          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1308      }
1309
1310      CASE(_i2b):
1311          SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1312          UPDATE_PC_AND_CONTINUE(1);
1313
1314      CASE(_i2c):
1315          SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1316          UPDATE_PC_AND_CONTINUE(1);
1317
1318      CASE(_i2s):
1319          SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1320          UPDATE_PC_AND_CONTINUE(1);
1321
1322      /* comparison operators */
1323
1324
1325#define COMPARISON_OP(name, comparison)                                      \
1326      CASE(_if_icmp##name): {                                                \
1327          int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1328                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1329          address branch_pc = pc;                                            \
1330          UPDATE_PC_AND_TOS(skip, -2);                                       \
1331          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1332          CONTINUE;                                                          \
1333      }                                                                      \
1334      CASE(_if##name): {                                                     \
1335          int skip = (STACK_INT(-1) comparison 0)                            \
1336                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1337          address branch_pc = pc;                                            \
1338          UPDATE_PC_AND_TOS(skip, -1);                                       \
1339          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1340          CONTINUE;                                                          \
1341      }
1342
1343#define COMPARISON_OP2(name, comparison)                                     \
1344      COMPARISON_OP(name, comparison)                                        \
1345      CASE(_if_acmp##name): {                                                \
1346          int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1347                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1348          address branch_pc = pc;                                            \
1349          UPDATE_PC_AND_TOS(skip, -2);                                       \
1350          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1351          CONTINUE;                                                          \
1352      }
1353
1354#define NULL_COMPARISON_NOT_OP(name)                                         \
1355      CASE(_if##name): {                                                     \
1356          int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1357                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1358          address branch_pc = pc;                                            \
1359          UPDATE_PC_AND_TOS(skip, -1);                                       \
1360          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1361          CONTINUE;                                                          \
1362      }
1363
1364#define NULL_COMPARISON_OP(name)                                             \
1365      CASE(_if##name): {                                                     \
1366          int skip = ((STACK_OBJECT(-1) == NULL))                            \
1367                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1368          address branch_pc = pc;                                            \
1369          UPDATE_PC_AND_TOS(skip, -1);                                       \
1370          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1371          CONTINUE;                                                          \
1372      }
1373      COMPARISON_OP(lt, <);
1374      COMPARISON_OP(gt, >);
1375      COMPARISON_OP(le, <=);
1376      COMPARISON_OP(ge, >=);
1377      COMPARISON_OP2(eq, ==);  /* include ref comparison */
1378      COMPARISON_OP2(ne, !=);  /* include ref comparison */
1379      NULL_COMPARISON_OP(null);
1380      NULL_COMPARISON_NOT_OP(nonnull);
1381
1382      /* Goto pc at specified offset in switch table. */
1383
1384      CASE(_tableswitch): {
1385          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1386          int32_t  key  = STACK_INT(-1);
1387          int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1388          int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1389          int32_t  skip;
1390          key -= low;
1391          skip = ((uint32_t) key > (uint32_t)(high - low))
1392                      ? Bytes::get_Java_u4((address)&lpc[0])
1393                      : Bytes::get_Java_u4((address)&lpc[key + 3]);
1394          // Does this really need a full backedge check (osr?)
1395          address branch_pc = pc;
1396          UPDATE_PC_AND_TOS(skip, -1);
1397          DO_BACKEDGE_CHECKS(skip, branch_pc);
1398          CONTINUE;
1399      }
1400
1401      /* Goto pc whose table entry matches specified key */
1402
1403      CASE(_lookupswitch): {
1404          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1405          int32_t  key  = STACK_INT(-1);
1406          int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1407          int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1408          while (--npairs >= 0) {
1409              lpc += 2;
1410              if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1411                  skip = Bytes::get_Java_u4((address)&lpc[1]);
1412                  break;
1413              }
1414          }
1415          address branch_pc = pc;
1416          UPDATE_PC_AND_TOS(skip, -1);
1417          DO_BACKEDGE_CHECKS(skip, branch_pc);
1418          CONTINUE;
1419      }
1420
1421      CASE(_fcmpl):
1422      CASE(_fcmpg):
1423      {
1424          SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1425                                        STACK_FLOAT(-1),
1426                                        (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1427                        -2);
1428          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1429      }
1430
1431      CASE(_dcmpl):
1432      CASE(_dcmpg):
1433      {
1434          int r = VMdoubleCompare(STACK_DOUBLE(-3),
1435                                  STACK_DOUBLE(-1),
1436                                  (opcode == Bytecodes::_dcmpl ? -1 : 1));
1437          MORE_STACK(-4); // Pop
1438          SET_STACK_INT(r, 0);
1439          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1440      }
1441
1442      CASE(_lcmp):
1443      {
1444          int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1445          MORE_STACK(-4);
1446          SET_STACK_INT(r, 0);
1447          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1448      }
1449
1450
1451      /* Return from a method */
1452
1453      CASE(_areturn):
1454      CASE(_ireturn):
1455      CASE(_freturn):
1456      {
1457          // Allow a safepoint before returning to frame manager.
1458          SAFEPOINT;
1459
1460          goto handle_return;
1461      }
1462
1463      CASE(_lreturn):
1464      CASE(_dreturn):
1465      {
1466          // Allow a safepoint before returning to frame manager.
1467          SAFEPOINT;
1468          goto handle_return;
1469      }
1470
1471      CASE(_return_register_finalizer): {
1472
1473          oop rcvr = LOCALS_OBJECT(0);
1474          if (rcvr->klass()->klass_part()->has_finalizer()) {
1475            CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1476          }
1477          goto handle_return;
1478      }
1479      CASE(_return): {
1480
1481          // Allow a safepoint before returning to frame manager.
1482          SAFEPOINT;
1483          goto handle_return;
1484      }
1485
1486      /* Array access byte-codes */
1487
1488      /* Every array access byte-code starts out like this */
1489//        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1490#define ARRAY_INTRO(arrayOff)                                                  \
1491      arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1492      jint     index  = STACK_INT(arrayOff + 1);                               \
1493      char message[jintAsStringSize];                                          \
1494      CHECK_NULL(arrObj);                                                      \
1495      if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1496          sprintf(message, "%d", index);                                       \
1497          VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1498                        message);                                              \
1499      }
1500
1501      /* 32-bit loads. These handle conversion from < 32-bit types */
1502#define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1503      {                                                                               \
1504          ARRAY_INTRO(-2);                                                            \
1505          extra;                                                                      \
1506          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1507                           -2);                                                       \
1508          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1509      }
1510
1511      /* 64-bit loads */
1512#define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1513      {                                                                                    \
1514          ARRAY_INTRO(-2);                                                                 \
1515          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1516          extra;                                                                           \
1517          UPDATE_PC_AND_CONTINUE(1);                                            \
1518      }
1519
1520      CASE(_iaload):
1521          ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1522      CASE(_faload):
1523          ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1524      CASE(_aaload):
1525          ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1526      CASE(_baload):
1527          ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1528      CASE(_caload):
1529          ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1530      CASE(_saload):
1531          ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1532      CASE(_laload):
1533          ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1534      CASE(_daload):
1535          ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1536
1537      /* 32-bit stores. These handle conversion to < 32-bit types */
1538#define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1539      {                                                                              \
1540          ARRAY_INTRO(-3);                                                           \
1541          extra;                                                                     \
1542          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1543          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1544      }
1545
1546      /* 64-bit stores */
1547#define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1548      {                                                                              \
1549          ARRAY_INTRO(-4);                                                           \
1550          extra;                                                                     \
1551          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1552          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1553      }
1554
1555      CASE(_iastore):
1556          ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1557      CASE(_fastore):
1558          ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1559      /*
1560       * This one looks different because of the assignability check
1561       */
1562      CASE(_aastore): {
1563          oop rhsObject = STACK_OBJECT(-1);
1564          ARRAY_INTRO( -3);
1565          // arrObj, index are set
1566          if (rhsObject != NULL) {
1567            /* Check assignability of rhsObject into arrObj */
1568            klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1569            assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1570            klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1571            //
1572            // Check for compatibilty. This check must not GC!!
1573            // Seems way more expensive now that we must dispatch
1574            //
1575            if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1576              VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1577            }
1578          }
1579          oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1580          // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1581          *elem_loc = rhsObject;
1582          // Mark the card
1583          OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1584          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1585      }
1586      CASE(_bastore):
1587          ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1588      CASE(_castore):
1589          ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1590      CASE(_sastore):
1591          ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1592      CASE(_lastore):
1593          ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1594      CASE(_dastore):
1595          ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1596
1597      CASE(_arraylength):
1598      {
1599          arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1600          CHECK_NULL(ary);
1601          SET_STACK_INT(ary->length(), -1);
1602          UPDATE_PC_AND_CONTINUE(1);
1603      }
1604
1605      /* monitorenter and monitorexit for locking/unlocking an object */
1606
1607      CASE(_monitorenter): {
1608        oop lockee = STACK_OBJECT(-1);
1609        // derefing's lockee ought to provoke implicit null check
1610        CHECK_NULL(lockee);
1611        // find a free monitor or one already allocated for this object
1612        // if we find a matching object then we need a new monitor
1613        // since this is recursive enter
1614        BasicObjectLock* limit = istate->monitor_base();
1615        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1616        BasicObjectLock* entry = NULL;
1617        while (most_recent != limit ) {
1618          if (most_recent->obj() == NULL) entry = most_recent;
1619          else if (most_recent->obj() == lockee) break;
1620          most_recent++;
1621        }
1622        if (entry != NULL) {
1623          entry->set_obj(lockee);
1624          markOop displaced = lockee->mark()->set_unlocked();
1625          entry->lock()->set_displaced_header(displaced);
1626          if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1627            // Is it simple recursive case?
1628            if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1629              entry->lock()->set_displaced_header(NULL);
1630            } else {
1631              CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1632            }
1633          }
1634          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1635        } else {
1636          istate->set_msg(more_monitors);
1637          UPDATE_PC_AND_RETURN(0); // Re-execute
1638        }
1639      }
1640
1641      CASE(_monitorexit): {
1642        oop lockee = STACK_OBJECT(-1);
1643        CHECK_NULL(lockee);
1644        // derefing's lockee ought to provoke implicit null check
1645        // find our monitor slot
1646        BasicObjectLock* limit = istate->monitor_base();
1647        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1648        while (most_recent != limit ) {
1649          if ((most_recent)->obj() == lockee) {
1650            BasicLock* lock = most_recent->lock();
1651            markOop header = lock->displaced_header();
1652            most_recent->set_obj(NULL);
1653            // If it isn't recursive we either must swap old header or call the runtime
1654            if (header != NULL) {
1655              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1656                // restore object for the slow case
1657                most_recent->set_obj(lockee);
1658                CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1659              }
1660            }
1661            UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1662          }
1663          most_recent++;
1664        }
1665        // Need to throw illegal monitor state exception
1666        CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1667        // Should never reach here...
1668        assert(false, "Should have thrown illegal monitor exception");
1669      }
1670
1671      /* All of the non-quick opcodes. */
1672
1673      /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1674       *  constant pool index in the instruction.
1675       */
1676      CASE(_getfield):
1677      CASE(_getstatic):
1678        {
1679          u2 index;
1680          ConstantPoolCacheEntry* cache;
1681          index = Bytes::get_native_u2(pc+1);
1682
1683          // QQQ Need to make this as inlined as possible. Probably need to
1684          // split all the bytecode cases out so c++ compiler has a chance
1685          // for constant prop to fold everything possible away.
1686
1687          cache = cp->entry_at(index);
1688          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1689            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1690                    handle_exception);
1691            cache = cp->entry_at(index);
1692          }
1693
1694#ifdef VM_JVMTI
1695          if (_jvmti_interp_events) {
1696            int *count_addr;
1697            oop obj;
1698            // Check to see if a field modification watch has been set
1699            // before we take the time to call into the VM.
1700            count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1701            if ( *count_addr > 0 ) {
1702              if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1703                obj = (oop)NULL;
1704              } else {
1705                obj = (oop) STACK_OBJECT(-1);
1706              }
1707              CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1708                                          obj,
1709                                          cache),
1710                                          handle_exception);
1711            }
1712          }
1713#endif /* VM_JVMTI */
1714
1715          oop obj;
1716          if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1717            obj = (oop) cache->f1();
1718            MORE_STACK(1);  // Assume single slot push
1719          } else {
1720            obj = (oop) STACK_OBJECT(-1);
1721            CHECK_NULL(obj);
1722          }
1723
1724          //
1725          // Now store the result on the stack
1726          //
1727          TosState tos_type = cache->flag_state();
1728          int field_offset = cache->f2();
1729          if (cache->is_volatile()) {
1730            if (tos_type == atos) {
1731              SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1732            } else if (tos_type == itos) {
1733              SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1734            } else if (tos_type == ltos) {
1735              SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1736              MORE_STACK(1);
1737            } else if (tos_type == btos) {
1738              SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1739            } else if (tos_type == ctos) {
1740              SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1741            } else if (tos_type == stos) {
1742              SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1743            } else if (tos_type == ftos) {
1744              SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1745            } else {
1746              SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1747              MORE_STACK(1);
1748            }
1749          } else {
1750            if (tos_type == atos) {
1751              SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1752            } else if (tos_type == itos) {
1753              SET_STACK_INT(obj->int_field(field_offset), -1);
1754            } else if (tos_type == ltos) {
1755              SET_STACK_LONG(obj->long_field(field_offset), 0);
1756              MORE_STACK(1);
1757            } else if (tos_type == btos) {
1758              SET_STACK_INT(obj->byte_field(field_offset), -1);
1759            } else if (tos_type == ctos) {
1760              SET_STACK_INT(obj->char_field(field_offset), -1);
1761            } else if (tos_type == stos) {
1762              SET_STACK_INT(obj->short_field(field_offset), -1);
1763            } else if (tos_type == ftos) {
1764              SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1765            } else {
1766              SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1767              MORE_STACK(1);
1768            }
1769          }
1770
1771          UPDATE_PC_AND_CONTINUE(3);
1772         }
1773
1774      CASE(_putfield):
1775      CASE(_putstatic):
1776        {
1777          u2 index = Bytes::get_native_u2(pc+1);
1778          ConstantPoolCacheEntry* cache = cp->entry_at(index);
1779          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1780            CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1781                    handle_exception);
1782            cache = cp->entry_at(index);
1783          }
1784
1785#ifdef VM_JVMTI
1786          if (_jvmti_interp_events) {
1787            int *count_addr;
1788            oop obj;
1789            // Check to see if a field modification watch has been set
1790            // before we take the time to call into the VM.
1791            count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1792            if ( *count_addr > 0 ) {
1793              if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1794                obj = (oop)NULL;
1795              }
1796              else {
1797                if (cache->is_long() || cache->is_double()) {
1798                  obj = (oop) STACK_OBJECT(-3);
1799                } else {
1800                  obj = (oop) STACK_OBJECT(-2);
1801                }
1802              }
1803
1804              CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1805                                          obj,
1806                                          cache,
1807                                          (jvalue *)STACK_SLOT(-1)),
1808                                          handle_exception);
1809            }
1810          }
1811#endif /* VM_JVMTI */
1812
1813          // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1814          // out so c++ compiler has a chance for constant prop to fold everything possible away.
1815
1816          oop obj;
1817          int count;
1818          TosState tos_type = cache->flag_state();
1819
1820          count = -1;
1821          if (tos_type == ltos || tos_type == dtos) {
1822            --count;
1823          }
1824          if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1825            obj = (oop) cache->f1();
1826          } else {
1827            --count;
1828            obj = (oop) STACK_OBJECT(count);
1829            CHECK_NULL(obj);
1830          }
1831
1832          //
1833          // Now store the result
1834          //
1835          int field_offset = cache->f2();
1836          if (cache->is_volatile()) {
1837            if (tos_type == itos) {
1838              obj->release_int_field_put(field_offset, STACK_INT(-1));
1839            } else if (tos_type == atos) {
1840              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1841              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1842            } else if (tos_type == btos) {
1843              obj->release_byte_field_put(field_offset, STACK_INT(-1));
1844            } else if (tos_type == ltos) {
1845              obj->release_long_field_put(field_offset, STACK_LONG(-1));
1846            } else if (tos_type == ctos) {
1847              obj->release_char_field_put(field_offset, STACK_INT(-1));
1848            } else if (tos_type == stos) {
1849              obj->release_short_field_put(field_offset, STACK_INT(-1));
1850            } else if (tos_type == ftos) {
1851              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1852            } else {
1853              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1854            }
1855            OrderAccess::storeload();
1856          } else {
1857            if (tos_type == itos) {
1858              obj->int_field_put(field_offset, STACK_INT(-1));
1859            } else if (tos_type == atos) {
1860              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1861              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1862            } else if (tos_type == btos) {
1863              obj->byte_field_put(field_offset, STACK_INT(-1));
1864            } else if (tos_type == ltos) {
1865              obj->long_field_put(field_offset, STACK_LONG(-1));
1866            } else if (tos_type == ctos) {
1867              obj->char_field_put(field_offset, STACK_INT(-1));
1868            } else if (tos_type == stos) {
1869              obj->short_field_put(field_offset, STACK_INT(-1));
1870            } else if (tos_type == ftos) {
1871              obj->float_field_put(field_offset, STACK_FLOAT(-1));
1872            } else {
1873              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1874            }
1875          }
1876
1877          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1878        }
1879
1880      CASE(_new): {
1881        u2 index = Bytes::get_Java_u2(pc+1);
1882        constantPoolOop constants = istate->method()->constants();
1883        if (!constants->tag_at(index).is_unresolved_klass()) {
1884          // Make sure klass is initialized and doesn't have a finalizer
1885          oop entry = (klassOop) *constants->obj_at_addr(index);
1886          assert(entry->is_klass(), "Should be resolved klass");
1887          klassOop k_entry = (klassOop) entry;
1888          assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1889          instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1890          if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1891            size_t obj_size = ik->size_helper();
1892            oop result = NULL;
1893            // If the TLAB isn't pre-zeroed then we'll have to do it
1894            bool need_zero = !ZeroTLAB;
1895            if (UseTLAB) {
1896              result = (oop) THREAD->tlab().allocate(obj_size);
1897            }
1898            if (result == NULL) {
1899              need_zero = true;
1900              // Try allocate in shared eden
1901        retry:
1902              HeapWord* compare_to = *Universe::heap()->top_addr();
1903              HeapWord* new_top = compare_to + obj_size;
1904              if (new_top <= *Universe::heap()->end_addr()) {
1905                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1906                  goto retry;
1907                }
1908                result = (oop) compare_to;
1909              }
1910            }
1911            if (result != NULL) {
1912              // Initialize object (if nonzero size and need) and then the header
1913              if (need_zero ) {
1914                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1915                obj_size -= sizeof(oopDesc) / oopSize;
1916                if (obj_size > 0 ) {
1917                  memset(to_zero, 0, obj_size * HeapWordSize);
1918                }
1919              }
1920              if (UseBiasedLocking) {
1921                result->set_mark(ik->prototype_header());
1922              } else {
1923                result->set_mark(markOopDesc::prototype());
1924              }
1925              result->set_klass_gap(0);
1926              result->set_klass(k_entry);
1927              SET_STACK_OBJECT(result, 0);
1928              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1929            }
1930          }
1931        }
1932        // Slow case allocation
1933        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1934                handle_exception);
1935        SET_STACK_OBJECT(THREAD->vm_result(), 0);
1936        THREAD->set_vm_result(NULL);
1937        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1938      }
1939      CASE(_anewarray): {
1940        u2 index = Bytes::get_Java_u2(pc+1);
1941        jint size = STACK_INT(-1);
1942        CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
1943                handle_exception);
1944        SET_STACK_OBJECT(THREAD->vm_result(), -1);
1945        THREAD->set_vm_result(NULL);
1946        UPDATE_PC_AND_CONTINUE(3);
1947      }
1948      CASE(_multianewarray): {
1949        jint dims = *(pc+3);
1950        jint size = STACK_INT(-1);
1951        // stack grows down, dimensions are up!
1952        jint *dimarray =
1953                   (jint*)&topOfStack[dims * Interpreter::stackElementWords+
1954                                      Interpreter::stackElementWords-1];
1955        //adjust pointer to start of stack element
1956        CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
1957                handle_exception);
1958        SET_STACK_OBJECT(THREAD->vm_result(), -dims);
1959        THREAD->set_vm_result(NULL);
1960        UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
1961      }
1962      CASE(_checkcast):
1963          if (STACK_OBJECT(-1) != NULL) {
1964            u2 index = Bytes::get_Java_u2(pc+1);
1965            if (ProfileInterpreter) {
1966              // needs Profile_checkcast QQQ
1967              ShouldNotReachHere();
1968            }
1969            // Constant pool may have actual klass or unresolved klass. If it is
1970            // unresolved we must resolve it
1971            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
1972              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
1973            }
1974            klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
1975            klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
1976            //
1977            // Check for compatibilty. This check must not GC!!
1978            // Seems way more expensive now that we must dispatch
1979            //
1980            if (objKlassOop != klassOf &&
1981                !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
1982              ResourceMark rm(THREAD);
1983              const char* objName = Klass::cast(objKlassOop)->external_name();
1984              const char* klassName = Klass::cast(klassOf)->external_name();
1985              char* message = SharedRuntime::generate_class_cast_message(
1986                objName, klassName);
1987              VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
1988            }
1989          } else {
1990            if (UncommonNullCast) {
1991//              istate->method()->set_null_cast_seen();
1992// [RGV] Not sure what to do here!
1993
1994            }
1995          }
1996          UPDATE_PC_AND_CONTINUE(3);
1997
1998      CASE(_instanceof):
1999          if (STACK_OBJECT(-1) == NULL) {
2000            SET_STACK_INT(0, -1);
2001          } else {
2002            u2 index = Bytes::get_Java_u2(pc+1);
2003            // Constant pool may have actual klass or unresolved klass. If it is
2004            // unresolved we must resolve it
2005            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2006              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2007            }
2008            klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
2009            klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2010            //
2011            // Check for compatibilty. This check must not GC!!
2012            // Seems way more expensive now that we must dispatch
2013            //
2014            if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2015              SET_STACK_INT(1, -1);
2016            } else {
2017              SET_STACK_INT(0, -1);
2018            }
2019          }
2020          UPDATE_PC_AND_CONTINUE(3);
2021
2022      CASE(_ldc_w):
2023      CASE(_ldc):
2024        {
2025          u2 index;
2026          bool wide = false;
2027          int incr = 2; // frequent case
2028          if (opcode == Bytecodes::_ldc) {
2029            index = pc[1];
2030          } else {
2031            index = Bytes::get_Java_u2(pc+1);
2032            incr = 3;
2033            wide = true;
2034          }
2035
2036          constantPoolOop constants = METHOD->constants();
2037          switch (constants->tag_at(index).value()) {
2038          case JVM_CONSTANT_Integer:
2039            SET_STACK_INT(constants->int_at(index), 0);
2040            break;
2041
2042          case JVM_CONSTANT_Float:
2043            SET_STACK_FLOAT(constants->float_at(index), 0);
2044            break;
2045
2046          case JVM_CONSTANT_String:
2047            SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2048            break;
2049
2050          case JVM_CONSTANT_Class:
2051            SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
2052            break;
2053
2054          case JVM_CONSTANT_UnresolvedString:
2055          case JVM_CONSTANT_UnresolvedClass:
2056          case JVM_CONSTANT_UnresolvedClassInError:
2057            CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2058            SET_STACK_OBJECT(THREAD->vm_result(), 0);
2059            THREAD->set_vm_result(NULL);
2060            break;
2061
2062#if 0
2063          CASE(_fast_igetfield):
2064          CASE(_fastagetfield):
2065          CASE(_fast_aload_0):
2066          CASE(_fast_iaccess_0):
2067          CASE(__fast_aaccess_0):
2068          CASE(_fast_linearswitch):
2069          CASE(_fast_binaryswitch):
2070            fatal("unsupported fast bytecode");
2071#endif
2072
2073          default:  ShouldNotReachHere();
2074          }
2075          UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2076        }
2077
2078      CASE(_ldc2_w):
2079        {
2080          u2 index = Bytes::get_Java_u2(pc+1);
2081
2082          constantPoolOop constants = METHOD->constants();
2083          switch (constants->tag_at(index).value()) {
2084
2085          case JVM_CONSTANT_Long:
2086             SET_STACK_LONG(constants->long_at(index), 1);
2087            break;
2088
2089          case JVM_CONSTANT_Double:
2090             SET_STACK_DOUBLE(constants->double_at(index), 1);
2091            break;
2092          default:  ShouldNotReachHere();
2093          }
2094          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2095        }
2096
2097      CASE(_invokeinterface): {
2098        u2 index = Bytes::get_native_u2(pc+1);
2099
2100        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2101        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2102
2103        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2104        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2105          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2106                  handle_exception);
2107          cache = cp->entry_at(index);
2108        }
2109
2110        istate->set_msg(call_method);
2111
2112        // Special case of invokeinterface called for virtual method of
2113        // java.lang.Object.  See cpCacheOop.cpp for details.
2114        // This code isn't produced by javac, but could be produced by
2115        // another compliant java compiler.
2116        if (cache->is_methodInterface()) {
2117          methodOop callee;
2118          CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2119          if (cache->is_vfinal()) {
2120            callee = (methodOop) cache->f2();
2121          } else {
2122            // get receiver
2123            int parms = cache->parameter_size();
2124            // Same comments as invokevirtual apply here
2125            instanceKlass* rcvrKlass = (instanceKlass*)
2126                                 STACK_OBJECT(-parms)->klass()->klass_part();
2127            callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2128          }
2129          istate->set_callee(callee);
2130          istate->set_callee_entry_point(callee->from_interpreted_entry());
2131#ifdef VM_JVMTI
2132          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2133            istate->set_callee_entry_point(callee->interpreter_entry());
2134          }
2135#endif /* VM_JVMTI */
2136          istate->set_bcp_advance(5);
2137          UPDATE_PC_AND_RETURN(0); // I'll be back...
2138        }
2139
2140        // this could definitely be cleaned up QQQ
2141        methodOop callee;
2142        klassOop iclass = (klassOop)cache->f1();
2143        // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2144        // get receiver
2145        int parms = cache->parameter_size();
2146        oop rcvr = STACK_OBJECT(-parms);
2147        CHECK_NULL(rcvr);
2148        instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2149        itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2150        int i;
2151        for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2152          if (ki->interface_klass() == iclass) break;
2153        }
2154        // If the interface isn't found, this class doesn't implement this
2155        // interface.  The link resolver checks this but only for the first
2156        // time this interface is called.
2157        if (i == int2->itable_length()) {
2158          VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2159        }
2160        int mindex = cache->f2();
2161        itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2162        callee = im[mindex].method();
2163        if (callee == NULL) {
2164          VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2165        }
2166
2167        istate->set_callee(callee);
2168        istate->set_callee_entry_point(callee->from_interpreted_entry());
2169#ifdef VM_JVMTI
2170        if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2171          istate->set_callee_entry_point(callee->interpreter_entry());
2172        }
2173#endif /* VM_JVMTI */
2174        istate->set_bcp_advance(5);
2175        UPDATE_PC_AND_RETURN(0); // I'll be back...
2176      }
2177
2178      CASE(_invokevirtual):
2179      CASE(_invokespecial):
2180      CASE(_invokestatic): {
2181        u2 index = Bytes::get_native_u2(pc+1);
2182
2183        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2184        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2185        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2186
2187        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2188          CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2189                  handle_exception);
2190          cache = cp->entry_at(index);
2191        }
2192
2193        istate->set_msg(call_method);
2194        {
2195          methodOop callee;
2196          if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2197            CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2198            if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2199            else {
2200              // get receiver
2201              int parms = cache->parameter_size();
2202              // this works but needs a resourcemark and seems to create a vtable on every call:
2203              // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2204              //
2205              // this fails with an assert
2206              // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2207              // but this works
2208              instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2209              /*
2210                Executing this code in java.lang.String:
2211                    public String(char value[]) {
2212                          this.count = value.length;
2213                          this.value = (char[])value.clone();
2214                     }
2215
2216                 a find on rcvr->klass()->klass_part() reports:
2217                 {type array char}{type array class}
2218                  - klass: {other class}
2219
2220                  but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2221                  because rcvr->klass()->klass_part()->oop_is_instance() == 0
2222                  However it seems to have a vtable in the right location. Huh?
2223
2224              */
2225              callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2226            }
2227          } else {
2228            if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2229              CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2230            }
2231            callee = (methodOop) cache->f1();
2232          }
2233
2234          istate->set_callee(callee);
2235          istate->set_callee_entry_point(callee->from_interpreted_entry());
2236#ifdef VM_JVMTI
2237          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2238            istate->set_callee_entry_point(callee->interpreter_entry());
2239          }
2240#endif /* VM_JVMTI */
2241          istate->set_bcp_advance(3);
2242          UPDATE_PC_AND_RETURN(0); // I'll be back...
2243        }
2244      }
2245
2246      /* Allocate memory for a new java object. */
2247
2248      CASE(_newarray): {
2249        BasicType atype = (BasicType) *(pc+1);
2250        jint size = STACK_INT(-1);
2251        CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2252                handle_exception);
2253        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2254        THREAD->set_vm_result(NULL);
2255
2256        UPDATE_PC_AND_CONTINUE(2);
2257      }
2258
2259      /* Throw an exception. */
2260
2261      CASE(_athrow): {
2262          oop except_oop = STACK_OBJECT(-1);
2263          CHECK_NULL(except_oop);
2264          // set pending_exception so we use common code
2265          THREAD->set_pending_exception(except_oop, NULL, 0);
2266          goto handle_exception;
2267      }
2268
2269      /* goto and jsr. They are exactly the same except jsr pushes
2270       * the address of the next instruction first.
2271       */
2272
2273      CASE(_jsr): {
2274          /* push bytecode index on stack */
2275          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2276          MORE_STACK(1);
2277          /* FALL THROUGH */
2278      }
2279
2280      CASE(_goto):
2281      {
2282          int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2283          address branch_pc = pc;
2284          UPDATE_PC(offset);
2285          DO_BACKEDGE_CHECKS(offset, branch_pc);
2286          CONTINUE;
2287      }
2288
2289      CASE(_jsr_w): {
2290          /* push return address on the stack */
2291          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2292          MORE_STACK(1);
2293          /* FALL THROUGH */
2294      }
2295
2296      CASE(_goto_w):
2297      {
2298          int32_t offset = Bytes::get_Java_u4(pc + 1);
2299          address branch_pc = pc;
2300          UPDATE_PC(offset);
2301          DO_BACKEDGE_CHECKS(offset, branch_pc);
2302          CONTINUE;
2303      }
2304
2305      /* return from a jsr or jsr_w */
2306
2307      CASE(_ret): {
2308          pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2309          UPDATE_PC_AND_CONTINUE(0);
2310      }
2311
2312      /* debugger breakpoint */
2313
2314      CASE(_breakpoint): {
2315          Bytecodes::Code original_bytecode;
2316          DECACHE_STATE();
2317          SET_LAST_JAVA_FRAME();
2318          original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2319                              METHOD, pc);
2320          RESET_LAST_JAVA_FRAME();
2321          CACHE_STATE();
2322          if (THREAD->has_pending_exception()) goto handle_exception;
2323            CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2324                                                    handle_exception);
2325
2326          opcode = (jubyte)original_bytecode;
2327          goto opcode_switch;
2328      }
2329
2330      DEFAULT:
2331#ifdef ZERO
2332          // Some zero configurations use the C++ interpreter as a
2333          // fallback interpreter and have support for platform
2334          // specific fast bytecodes which aren't supported here, so
2335          // redispatch to the equivalent non-fast bytecode when they
2336          // are encountered.
2337          if (Bytecodes::is_defined((Bytecodes::Code)opcode)) {
2338              opcode = (jubyte)Bytecodes::java_code((Bytecodes::Code)opcode);
2339              goto opcode_switch;
2340          }
2341#endif
2342          fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2343                        Bytecodes::name((Bytecodes::Code)opcode)));
2344          goto finish;
2345
2346      } /* switch(opc) */
2347
2348
2349#ifdef USELABELS
2350    check_for_exception:
2351#endif
2352    {
2353      if (!THREAD->has_pending_exception()) {
2354        CONTINUE;
2355      }
2356      /* We will be gcsafe soon, so flush our state. */
2357      DECACHE_PC();
2358      goto handle_exception;
2359    }
2360  do_continue: ;
2361
2362  } /* while (1) interpreter loop */
2363
2364
2365  // An exception exists in the thread state see whether this activation can handle it
2366  handle_exception: {
2367
2368    HandleMarkCleaner __hmc(THREAD);
2369    Handle except_oop(THREAD, THREAD->pending_exception());
2370    // Prevent any subsequent HandleMarkCleaner in the VM
2371    // from freeing the except_oop handle.
2372    HandleMark __hm(THREAD);
2373
2374    THREAD->clear_pending_exception();
2375    assert(except_oop(), "No exception to process");
2376    intptr_t continuation_bci;
2377    // expression stack is emptied
2378    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2379    CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2380            handle_exception);
2381
2382    except_oop = (oop) THREAD->vm_result();
2383    THREAD->set_vm_result(NULL);
2384    if (continuation_bci >= 0) {
2385      // Place exception on top of stack
2386      SET_STACK_OBJECT(except_oop(), 0);
2387      MORE_STACK(1);
2388      pc = METHOD->code_base() + continuation_bci;
2389      if (TraceExceptions) {
2390        ttyLocker ttyl;
2391        ResourceMark rm;
2392        tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2393        tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2394        tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2395                      pc - (intptr_t)METHOD->code_base(),
2396                      continuation_bci, THREAD);
2397      }
2398      // for AbortVMOnException flag
2399      NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2400      goto run;
2401    }
2402    if (TraceExceptions) {
2403      ttyLocker ttyl;
2404      ResourceMark rm;
2405      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2406      tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2407      tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2408                    pc  - (intptr_t) METHOD->code_base(),
2409                    THREAD);
2410    }
2411    // for AbortVMOnException flag
2412    NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2413    // No handler in this activation, unwind and try again
2414    THREAD->set_pending_exception(except_oop(), NULL, 0);
2415    goto handle_return;
2416  }  /* handle_exception: */
2417
2418
2419
2420  // Return from an interpreter invocation with the result of the interpretation
2421  // on the top of the Java Stack (or a pending exception)
2422
2423handle_Pop_Frame:
2424
2425  // We don't really do anything special here except we must be aware
2426  // that we can get here without ever locking the method (if sync).
2427  // Also we skip the notification of the exit.
2428
2429  istate->set_msg(popping_frame);
2430  // Clear pending so while the pop is in process
2431  // we don't start another one if a call_vm is done.
2432  THREAD->clr_pop_frame_pending();
2433  // Let interpreter (only) see the we're in the process of popping a frame
2434  THREAD->set_pop_frame_in_process();
2435
2436handle_return:
2437  {
2438    DECACHE_STATE();
2439
2440    bool suppress_error = istate->msg() == popping_frame;
2441    bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2442    Handle original_exception(THREAD, THREAD->pending_exception());
2443    Handle illegal_state_oop(THREAD, NULL);
2444
2445    // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2446    // in any following VM entries from freeing our live handles, but illegal_state_oop
2447    // isn't really allocated yet and so doesn't become live until later and
2448    // in unpredicatable places. Instead we must protect the places where we enter the
2449    // VM. It would be much simpler (and safer) if we could allocate a real handle with
2450    // a NULL oop in it and then overwrite the oop later as needed. This isn't
2451    // unfortunately isn't possible.
2452
2453    THREAD->clear_pending_exception();
2454
2455    //
2456    // As far as we are concerned we have returned. If we have a pending exception
2457    // that will be returned as this invocation's result. However if we get any
2458    // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2459    // will be our final result (i.e. monitor exception trumps a pending exception).
2460    //
2461
2462    // If we never locked the method (or really passed the point where we would have),
2463    // there is no need to unlock it (or look for other monitors), since that
2464    // could not have happened.
2465
2466    if (THREAD->do_not_unlock()) {
2467
2468      // Never locked, reset the flag now because obviously any caller must
2469      // have passed their point of locking for us to have gotten here.
2470
2471      THREAD->clr_do_not_unlock();
2472    } else {
2473      // At this point we consider that we have returned. We now check that the
2474      // locks were properly block structured. If we find that they were not
2475      // used properly we will return with an illegal monitor exception.
2476      // The exception is checked by the caller not the callee since this
2477      // checking is considered to be part of the invocation and therefore
2478      // in the callers scope (JVM spec 8.13).
2479      //
2480      // Another weird thing to watch for is if the method was locked
2481      // recursively and then not exited properly. This means we must
2482      // examine all the entries in reverse time(and stack) order and
2483      // unlock as we find them. If we find the method monitor before
2484      // we are at the initial entry then we should throw an exception.
2485      // It is not clear the template based interpreter does this
2486      // correctly
2487
2488      BasicObjectLock* base = istate->monitor_base();
2489      BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2490      bool method_unlock_needed = METHOD->is_synchronized();
2491      // We know the initial monitor was used for the method don't check that
2492      // slot in the loop
2493      if (method_unlock_needed) base--;
2494
2495      // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2496      while (end < base) {
2497        oop lockee = end->obj();
2498        if (lockee != NULL) {
2499          BasicLock* lock = end->lock();
2500          markOop header = lock->displaced_header();
2501          end->set_obj(NULL);
2502          // If it isn't recursive we either must swap old header or call the runtime
2503          if (header != NULL) {
2504            if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2505              // restore object for the slow case
2506              end->set_obj(lockee);
2507              {
2508                // Prevent any HandleMarkCleaner from freeing our live handles
2509                HandleMark __hm(THREAD);
2510                CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2511              }
2512            }
2513          }
2514          // One error is plenty
2515          if (illegal_state_oop() == NULL && !suppress_error) {
2516            {
2517              // Prevent any HandleMarkCleaner from freeing our live handles
2518              HandleMark __hm(THREAD);
2519              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2520            }
2521            assert(THREAD->has_pending_exception(), "Lost our exception!");
2522            illegal_state_oop = THREAD->pending_exception();
2523            THREAD->clear_pending_exception();
2524          }
2525        }
2526        end++;
2527      }
2528      // Unlock the method if needed
2529      if (method_unlock_needed) {
2530        if (base->obj() == NULL) {
2531          // The method is already unlocked this is not good.
2532          if (illegal_state_oop() == NULL && !suppress_error) {
2533            {
2534              // Prevent any HandleMarkCleaner from freeing our live handles
2535              HandleMark __hm(THREAD);
2536              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2537            }
2538            assert(THREAD->has_pending_exception(), "Lost our exception!");
2539            illegal_state_oop = THREAD->pending_exception();
2540            THREAD->clear_pending_exception();
2541          }
2542        } else {
2543          //
2544          // The initial monitor is always used for the method
2545          // However if that slot is no longer the oop for the method it was unlocked
2546          // and reused by something that wasn't unlocked!
2547          //
2548          // deopt can come in with rcvr dead because c2 knows
2549          // its value is preserved in the monitor. So we can't use locals[0] at all
2550          // and must use first monitor slot.
2551          //
2552          oop rcvr = base->obj();
2553          if (rcvr == NULL) {
2554            if (!suppress_error) {
2555              VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2556              illegal_state_oop = THREAD->pending_exception();
2557              THREAD->clear_pending_exception();
2558            }
2559          } else {
2560            BasicLock* lock = base->lock();
2561            markOop header = lock->displaced_header();
2562            base->set_obj(NULL);
2563            // If it isn't recursive we either must swap old header or call the runtime
2564            if (header != NULL) {
2565              if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2566                // restore object for the slow case
2567                base->set_obj(rcvr);
2568                {
2569                  // Prevent any HandleMarkCleaner from freeing our live handles
2570                  HandleMark __hm(THREAD);
2571                  CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2572                }
2573                if (THREAD->has_pending_exception()) {
2574                  if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2575                  THREAD->clear_pending_exception();
2576                }
2577              }
2578            }
2579          }
2580        }
2581      }
2582    }
2583
2584    //
2585    // Notify jvmti/jvmdi
2586    //
2587    // NOTE: we do not notify a method_exit if we have a pending exception,
2588    // including an exception we generate for unlocking checks.  In the former
2589    // case, JVMDI has already been notified by our call for the exception handler
2590    // and in both cases as far as JVMDI is concerned we have already returned.
2591    // If we notify it again JVMDI will be all confused about how many frames
2592    // are still on the stack (4340444).
2593    //
2594    // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2595    // method_exit events whenever we leave an activation unless it was done
2596    // for popframe. This is nothing like jvmdi. However we are passing the
2597    // tests at the moment (apparently because they are jvmdi based) so rather
2598    // than change this code and possibly fail tests we will leave it alone
2599    // (with this note) in anticipation of changing the vm and the tests
2600    // simultaneously.
2601
2602
2603    //
2604    suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2605
2606
2607
2608#ifdef VM_JVMTI
2609      if (_jvmti_interp_events) {
2610        // Whenever JVMTI puts a thread in interp_only_mode, method
2611        // entry/exit events are sent for that thread to track stack depth.
2612        if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2613          {
2614            // Prevent any HandleMarkCleaner from freeing our live handles
2615            HandleMark __hm(THREAD);
2616            CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2617          }
2618        }
2619      }
2620#endif /* VM_JVMTI */
2621
2622    //
2623    // See if we are returning any exception
2624    // A pending exception that was pending prior to a possible popping frame
2625    // overrides the popping frame.
2626    //
2627    assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2628    if (illegal_state_oop() != NULL || original_exception() != NULL) {
2629      // inform the frame manager we have no result
2630      istate->set_msg(throwing_exception);
2631      if (illegal_state_oop() != NULL)
2632        THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2633      else
2634        THREAD->set_pending_exception(original_exception(), NULL, 0);
2635      istate->set_return_kind((Bytecodes::Code)opcode);
2636      UPDATE_PC_AND_RETURN(0);
2637    }
2638
2639    if (istate->msg() == popping_frame) {
2640      // Make it simpler on the assembly code and set the message for the frame pop.
2641      // returns
2642      if (istate->prev() == NULL) {
2643        // We must be returning to a deoptimized frame (because popframe only happens between
2644        // two interpreted frames). We need to save the current arguments in C heap so that
2645        // the deoptimized frame when it restarts can copy the arguments to its expression
2646        // stack and re-execute the call. We also have to notify deoptimization that this
2647        // has occurred and to pick the preserved args copy them to the deoptimized frame's
2648        // java expression stack. Yuck.
2649        //
2650        THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2651                                LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2652        THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2653      }
2654      UPDATE_PC_AND_RETURN(1);
2655    } else {
2656      // Normal return
2657      // Advance the pc and return to frame manager
2658      istate->set_msg(return_from_method);
2659      istate->set_return_kind((Bytecodes::Code)opcode);
2660      UPDATE_PC_AND_RETURN(1);
2661    }
2662  } /* handle_return: */
2663
2664// This is really a fatal error return
2665
2666finish:
2667  DECACHE_TOS();
2668  DECACHE_PC();
2669
2670  return;
2671}
2672
2673/*
2674 * All the code following this point is only produced once and is not present
2675 * in the JVMTI version of the interpreter
2676*/
2677
2678#ifndef VM_JVMTI
2679
2680// This constructor should only be used to contruct the object to signal
2681// interpreter initialization. All other instances should be created by
2682// the frame manager.
2683BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2684  if (msg != initialize) ShouldNotReachHere();
2685  _msg = msg;
2686  _self_link = this;
2687  _prev_link = NULL;
2688}
2689
2690// Inline static functions for Java Stack and Local manipulation
2691
2692// The implementations are platform dependent. We have to worry about alignment
2693// issues on some machines which can change on the same platform depending on
2694// whether it is an LP64 machine also.
2695address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2696  return (address) tos[Interpreter::expr_index_at(-offset)];
2697}
2698
2699jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2700  return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2701}
2702
2703jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2704  return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2705}
2706
2707oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2708  return (oop)tos [Interpreter::expr_index_at(-offset)];
2709}
2710
2711jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2712  return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2713}
2714
2715jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2716  return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2717}
2718
2719// only used for value types
2720void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2721                                                        int offset) {
2722  *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2723}
2724
2725void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2726                                                       int offset) {
2727  *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2728}
2729
2730void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2731                                                         int offset) {
2732  *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2733}
2734
2735void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2736                                                          int offset) {
2737  *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2738}
2739
2740// needs to be platform dep for the 32 bit platforms.
2741void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2742                                                          int offset) {
2743  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2744}
2745
2746void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2747                                              address addr, int offset) {
2748  (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2749                        ((VMJavaVal64*)addr)->d);
2750}
2751
2752void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2753                                                        int offset) {
2754  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2755  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2756}
2757
2758void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2759                                            address addr, int offset) {
2760  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2761  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2762                        ((VMJavaVal64*)addr)->l;
2763}
2764
2765// Locals
2766
2767address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2768  return (address)locals[Interpreter::local_index_at(-offset)];
2769}
2770jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2771  return (jint)locals[Interpreter::local_index_at(-offset)];
2772}
2773jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2774  return (jfloat)locals[Interpreter::local_index_at(-offset)];
2775}
2776oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2777  return (oop)locals[Interpreter::local_index_at(-offset)];
2778}
2779jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2780  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2781}
2782jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2783  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2784}
2785
2786// Returns the address of locals value.
2787address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2788  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2789}
2790address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2791  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2792}
2793
2794// Used for local value or returnAddress
2795void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2796                                   address value, int offset) {
2797  *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2798}
2799void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2800                                   jint value, int offset) {
2801  *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2802}
2803void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2804                                   jfloat value, int offset) {
2805  *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2806}
2807void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2808                                   oop value, int offset) {
2809  *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2810}
2811void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2812                                   jdouble value, int offset) {
2813  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2814}
2815void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2816                                   jlong value, int offset) {
2817  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2818}
2819void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2820                                   address addr, int offset) {
2821  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2822}
2823void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2824                                   address addr, int offset) {
2825  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2826}
2827
2828void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2829                          intptr_t* locals, int locals_offset) {
2830  intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2831  locals[Interpreter::local_index_at(-locals_offset)] = value;
2832}
2833
2834
2835void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2836                                   int to_offset) {
2837  tos[Interpreter::expr_index_at(-to_offset)] =
2838                      (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2839}
2840
2841void BytecodeInterpreter::dup(intptr_t *tos) {
2842  copy_stack_slot(tos, -1, 0);
2843}
2844void BytecodeInterpreter::dup2(intptr_t *tos) {
2845  copy_stack_slot(tos, -2, 0);
2846  copy_stack_slot(tos, -1, 1);
2847}
2848
2849void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2850  /* insert top word two down */
2851  copy_stack_slot(tos, -1, 0);
2852  copy_stack_slot(tos, -2, -1);
2853  copy_stack_slot(tos, 0, -2);
2854}
2855
2856void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2857  /* insert top word three down  */
2858  copy_stack_slot(tos, -1, 0);
2859  copy_stack_slot(tos, -2, -1);
2860  copy_stack_slot(tos, -3, -2);
2861  copy_stack_slot(tos, 0, -3);
2862}
2863void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2864  /* insert top 2 slots three down */
2865  copy_stack_slot(tos, -1, 1);
2866  copy_stack_slot(tos, -2, 0);
2867  copy_stack_slot(tos, -3, -1);
2868  copy_stack_slot(tos, 1, -2);
2869  copy_stack_slot(tos, 0, -3);
2870}
2871void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2872  /* insert top 2 slots four down */
2873  copy_stack_slot(tos, -1, 1);
2874  copy_stack_slot(tos, -2, 0);
2875  copy_stack_slot(tos, -3, -1);
2876  copy_stack_slot(tos, -4, -2);
2877  copy_stack_slot(tos, 1, -3);
2878  copy_stack_slot(tos, 0, -4);
2879}
2880
2881
2882void BytecodeInterpreter::swap(intptr_t *tos) {
2883  // swap top two elements
2884  intptr_t val = tos[Interpreter::expr_index_at(1)];
2885  // Copy -2 entry to -1
2886  copy_stack_slot(tos, -2, -1);
2887  // Store saved -1 entry into -2
2888  tos[Interpreter::expr_index_at(2)] = val;
2889}
2890// --------------------------------------------------------------------------------
2891// Non-product code
2892#ifndef PRODUCT
2893
2894const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
2895  switch (msg) {
2896     case BytecodeInterpreter::no_request:  return("no_request");
2897     case BytecodeInterpreter::initialize:  return("initialize");
2898     // status message to C++ interpreter
2899     case BytecodeInterpreter::method_entry:  return("method_entry");
2900     case BytecodeInterpreter::method_resume:  return("method_resume");
2901     case BytecodeInterpreter::got_monitors:  return("got_monitors");
2902     case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
2903     // requests to frame manager from C++ interpreter
2904     case BytecodeInterpreter::call_method:  return("call_method");
2905     case BytecodeInterpreter::return_from_method:  return("return_from_method");
2906     case BytecodeInterpreter::more_monitors:  return("more_monitors");
2907     case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
2908     case BytecodeInterpreter::popping_frame:  return("popping_frame");
2909     case BytecodeInterpreter::do_osr:  return("do_osr");
2910     // deopt
2911     case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
2912     case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
2913     default: return("BAD MSG");
2914  }
2915}
2916void
2917BytecodeInterpreter::print() {
2918  tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
2919  tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
2920  tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
2921  tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
2922  {
2923    ResourceMark rm;
2924    char *method_name = _method->name_and_sig_as_C_string();
2925    tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
2926  }
2927  tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
2928  tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
2929  tty->print_cr("msg: %s", C_msg(this->_msg));
2930  tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
2931  tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
2932  tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
2933  tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
2934  tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
2935  tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
2936  tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
2937  tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
2938  tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
2939  tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
2940  tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
2941#ifdef SPARC
2942  tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
2943  tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
2944  tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
2945  tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
2946#endif
2947#if defined(IA64) && !defined(ZERO)
2948  tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
2949#endif // IA64 && !ZERO
2950  tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
2951}
2952
2953extern "C" {
2954    void PI(uintptr_t arg) {
2955        ((BytecodeInterpreter*)arg)->print();
2956    }
2957}
2958#endif // PRODUCT
2959
2960#endif // JVMTI
2961#endif // CC_INTERP
2962