bytecodeInterpreter.cpp revision 13051:a7683f72df68
184865Sobrien/*
2218822Sdim * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
3218822Sdim * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
484865Sobrien *
584865Sobrien * This code is free software; you can redistribute it and/or modify it
684865Sobrien * under the terms of the GNU General Public License version 2 only, as
784865Sobrien * published by the Free Software Foundation.
884865Sobrien *
984865Sobrien * This code is distributed in the hope that it will be useful, but WITHOUT
1084865Sobrien * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1184865Sobrien * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1284865Sobrien * version 2 for more details (a copy is included in the LICENSE file that
1384865Sobrien * accompanied this code).
1484865Sobrien *
1584865Sobrien * You should have received a copy of the GNU General Public License version
1684865Sobrien * 2 along with this work; if not, write to the Free Software Foundation,
1784865Sobrien * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1884865Sobrien *
1984865Sobrien * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20218822Sdim * or visit www.oracle.com if you need additional information or have any
21218822Sdim * questions.
2284865Sobrien *
23104834Sobrien */
24104834Sobrien
2584865Sobrien// no precompiled headers
2684865Sobrien#include "classfile/vmSymbols.hpp"
2784865Sobrien#include "gc/shared/collectedHeap.hpp"
2884865Sobrien#include "interpreter/bytecodeHistogram.hpp"
2984865Sobrien#include "interpreter/bytecodeInterpreter.hpp"
3084865Sobrien#include "interpreter/bytecodeInterpreter.inline.hpp"
3189857Sobrien#include "interpreter/bytecodeInterpreterProfiling.hpp"
3284865Sobrien#include "interpreter/interpreter.hpp"
3384865Sobrien#include "interpreter/interpreterRuntime.hpp"
3489857Sobrien#include "logging/log.hpp"
3584865Sobrien#include "memory/resourceArea.hpp"
3684865Sobrien#include "oops/methodCounters.hpp"
37130561Sobrien#include "oops/objArrayKlass.hpp"
38130561Sobrien#include "oops/objArrayOop.inline.hpp"
39130561Sobrien#include "oops/oop.inline.hpp"
40130561Sobrien#include "prims/jvmtiExport.hpp"
41130561Sobrien#include "prims/jvmtiThreadState.hpp"
42130561Sobrien#include "runtime/atomic.hpp"
43130561Sobrien#include "runtime/biasedLocking.hpp"
44130561Sobrien#include "runtime/frame.inline.hpp"
45130561Sobrien#include "runtime/handles.inline.hpp"
46130561Sobrien#include "runtime/interfaceSupport.hpp"
47130561Sobrien#include "runtime/orderAccess.inline.hpp"
48130561Sobrien#include "runtime/sharedRuntime.hpp"
49130561Sobrien#include "runtime/threadCritical.hpp"
50130561Sobrien#include "utilities/exceptions.hpp"
51130561Sobrien
52130561Sobrien// no precompiled headers
53130561Sobrien#ifdef CC_INTERP
54130561Sobrien
55130561Sobrien/*
56130561Sobrien * USELABELS - If using GCC, then use labels for the opcode dispatching
57130561Sobrien * rather -then a switch statement. This improves performance because it
5884865Sobrien * gives us the opportunity to have the instructions that calculate the
5984865Sobrien * next opcode to jump to be intermixed with the rest of the instructions
6084865Sobrien * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
6184865Sobrien */
6284865Sobrien#undef USELABELS
6384865Sobrien#ifdef __GNUC__
6484865Sobrien/*
6584865Sobrien   ASSERT signifies debugging. It is much easier to step thru bytecodes if we
6684865Sobrien   don't use the computed goto approach.
6784865Sobrien*/
6884865Sobrien#ifndef ASSERT
6984865Sobrien#define USELABELS
7084865Sobrien#endif
7184865Sobrien#endif
7284865Sobrien
7384865Sobrien#undef CASE
7484865Sobrien#ifdef USELABELS
7584865Sobrien#define CASE(opcode) opc ## opcode
7684865Sobrien#define DEFAULT opc_default
7784865Sobrien#else
78218822Sdim#define CASE(opcode) case Bytecodes:: opcode
79218822Sdim#define DEFAULT default
8084865Sobrien#endif
8184865Sobrien
82218822Sdim/*
83218822Sdim * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
84218822Sdim * opcode before going back to the top of the while loop, rather then having
85130561Sobrien * the top of the while loop handle it. This provides a better opportunity
86130561Sobrien * for instruction scheduling. Some compilers just do this prefetch
8784865Sobrien * automatically. Some actually end up with worse performance if you
8884865Sobrien * force the prefetch. Solaris gcc seems to do better, but cc does worse.
8984865Sobrien */
9084865Sobrien#undef PREFETCH_OPCCODE
9184865Sobrien#define PREFETCH_OPCCODE
9284865Sobrien
9384865Sobrien/*
9484865Sobrien  Interpreter safepoint: it is expected that the interpreter will have no live
9584865Sobrien  handles of its own creation live at an interpreter safepoint. Therefore we
9684865Sobrien  run a HandleMarkCleaner and trash all handles allocated in the call chain
97130561Sobrien  since the JavaCalls::call_helper invocation that initiated the chain.
98130561Sobrien  There really shouldn't be any handles remaining to trash but this is cheap
99130561Sobrien  in relation to a safepoint.
10084865Sobrien*/
101218822Sdim#define SAFEPOINT                                                                 \
10284865Sobrien    if ( SafepointSynchronize::is_synchronizing()) {                              \
10384865Sobrien        {                                                                         \
10484865Sobrien          /* zap freed handles rather than GC'ing them */                         \
10584865Sobrien          HandleMarkCleaner __hmc(THREAD);                                        \
10684865Sobrien        }                                                                         \
10784865Sobrien        CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
10884865Sobrien    }
10984865Sobrien
11084865Sobrien/*
11184865Sobrien * VM_JAVA_ERROR - Macro for throwing a java exception from
11289857Sobrien * the interpreter loop. Should really be a CALL_VM but there
11384865Sobrien * is no entry point to do the transition to vm so we just
11484865Sobrien * do it by hand here.
11584865Sobrien */
11684865Sobrien#define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
11784865Sobrien    DECACHE_STATE();                                                              \
11889857Sobrien    SET_LAST_JAVA_FRAME();                                                        \
119130561Sobrien    {                                                                             \
120130561Sobrien       InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
121130561Sobrien       ThreadInVMfromJava trans(THREAD);                                          \
122130561Sobrien       Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
12384865Sobrien    }                                                                             \
12484865Sobrien    RESET_LAST_JAVA_FRAME();                                                      \
12584865Sobrien    CACHE_STATE();
12684865Sobrien
12784865Sobrien// Normal throw of a java error.
128130561Sobrien#define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
129130561Sobrien    VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
130130561Sobrien    goto handle_exception;
13184865Sobrien
132218822Sdim#ifdef PRODUCT
13384865Sobrien#define DO_UPDATE_INSTRUCTION_COUNT(opcode)
134130561Sobrien#else
13584865Sobrien#define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
13684865Sobrien{                                                                                                    \
13784865Sobrien    BytecodeCounter::_counter_value++;                                                               \
13884865Sobrien    BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
139130561Sobrien    if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
140130561Sobrien    if (TraceBytecodes) {                                                                            \
14189857Sobrien      CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
14284865Sobrien                                        topOfStack[Interpreter::expr_index_at(1)],   \
14389857Sobrien                                        topOfStack[Interpreter::expr_index_at(2)]),  \
14484865Sobrien                                        handle_exception);                           \
145130561Sobrien    }                                                                                \
14689857Sobrien}
14784865Sobrien#endif
14884865Sobrien
14984865Sobrien#undef DEBUGGER_SINGLE_STEP_NOTIFY
15084865Sobrien#ifdef VM_JVMTI
15184865Sobrien/* NOTE: (kbr) This macro must be called AFTER the PC has been
15284865Sobrien   incremented. JvmtiExport::at_single_stepping_point() may cause a
153130561Sobrien   breakpoint opcode to get inserted at the current PC to allow the
15484865Sobrien   debugger to coalesce single-step events.
15584865Sobrien
15684865Sobrien   As a result if we call at_single_stepping_point() we refetch opcode
15789857Sobrien   to get the current opcode. This will override any other prefetching
158130561Sobrien   that might have occurred.
159130561Sobrien*/
16084865Sobrien#define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
161130561Sobrien{                                                                                \
162130561Sobrien      if (_jvmti_interp_events) {                                                \
163130561Sobrien        if (JvmtiExport::should_post_single_step()) {                            \
164130561Sobrien          DECACHE_STATE();                                                       \
165218822Sdim          SET_LAST_JAVA_FRAME();                                                 \
166218822Sdim          ThreadInVMfromJava trans(THREAD);                                      \
167218822Sdim          JvmtiExport::at_single_stepping_point(THREAD,                          \
168218822Sdim                                          istate->method(),                      \
169218822Sdim                                          pc);                                   \
170218822Sdim          RESET_LAST_JAVA_FRAME();                                               \
171218822Sdim          CACHE_STATE();                                                         \
172218822Sdim          if (THREAD->pop_frame_pending() &&                                     \
17384865Sobrien              !THREAD->pop_frame_in_process()) {                                 \
17484865Sobrien            goto handle_Pop_Frame;                                               \
17584865Sobrien          }                                                                      \
17684865Sobrien          if (THREAD->jvmti_thread_state() &&                                    \
17784865Sobrien              THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
17884865Sobrien            goto handle_Early_Return;                                            \
17984865Sobrien          }                                                                      \
18084865Sobrien          opcode = *pc;                                                          \
18184865Sobrien        }                                                                        \
18284865Sobrien      }                                                                          \
18384865Sobrien}
18484865Sobrien#else
18584865Sobrien#define DEBUGGER_SINGLE_STEP_NOTIFY()
18684865Sobrien#endif
18784865Sobrien
18884865Sobrien/*
18984865Sobrien * CONTINUE - Macro for executing the next opcode.
19084865Sobrien */
19184865Sobrien#undef CONTINUE
19284865Sobrien#ifdef USELABELS
19384865Sobrien// Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
19484865Sobrien// initialization (which is is the initialization of the table pointer...)
19584865Sobrien#define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
19684865Sobrien#define CONTINUE {                              \
19784865Sobrien        opcode = *pc;                           \
19884865Sobrien        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
19984865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();          \
20084865Sobrien        DISPATCH(opcode);                       \
20184865Sobrien    }
20284865Sobrien#else
20384865Sobrien#ifdef PREFETCH_OPCCODE
20484865Sobrien#define CONTINUE {                              \
20584865Sobrien        opcode = *pc;                           \
20684865Sobrien        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
20784865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();          \
20884865Sobrien        continue;                               \
20984865Sobrien    }
21084865Sobrien#else
21184865Sobrien#define CONTINUE {                              \
21284865Sobrien        DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
21384865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();          \
21484865Sobrien        continue;                               \
21584865Sobrien    }
21684865Sobrien#endif
21784865Sobrien#endif
21884865Sobrien
21984865Sobrien
22084865Sobrien#define UPDATE_PC(opsize) {pc += opsize; }
22184865Sobrien/*
22284865Sobrien * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
22384865Sobrien */
22484865Sobrien#undef UPDATE_PC_AND_TOS
22584865Sobrien#define UPDATE_PC_AND_TOS(opsize, stack) \
22684865Sobrien    {pc += opsize; MORE_STACK(stack); }
227130561Sobrien
22884865Sobrien/*
22984865Sobrien * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
23084865Sobrien * and executing the next opcode. It's somewhat similar to the combination
23184865Sobrien * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
23284865Sobrien */
23384865Sobrien#undef UPDATE_PC_AND_TOS_AND_CONTINUE
23484865Sobrien#ifdef USELABELS
23584865Sobrien#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
23684865Sobrien        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
23784865Sobrien        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
23884865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
23984865Sobrien        DISPATCH(opcode);                                       \
24084865Sobrien    }
24184865Sobrien
24284865Sobrien#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
24384865Sobrien        pc += opsize; opcode = *pc;                             \
244218822Sdim        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
24584865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
24684865Sobrien        DISPATCH(opcode);                                       \
24784865Sobrien    }
24884865Sobrien#else
24984865Sobrien#ifdef PREFETCH_OPCCODE
25084865Sobrien#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
25184865Sobrien        pc += opsize; opcode = *pc; MORE_STACK(stack);          \
252218822Sdim        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
25384865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
25484865Sobrien        goto do_continue;                                       \
255218822Sdim    }
256218822Sdim
257218822Sdim#define UPDATE_PC_AND_CONTINUE(opsize) {                        \
258218822Sdim        pc += opsize; opcode = *pc;                             \
259218822Sdim        DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
260218822Sdim        DEBUGGER_SINGLE_STEP_NOTIFY();                          \
261218822Sdim        goto do_continue;                                       \
262218822Sdim    }
263218822Sdim#else
264218822Sdim#define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
265218822Sdim        pc += opsize; MORE_STACK(stack);                \
266218822Sdim        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
267218822Sdim        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
26884865Sobrien        goto do_continue;                               \
26984865Sobrien    }
27084865Sobrien
27184865Sobrien#define UPDATE_PC_AND_CONTINUE(opsize) {                \
27284865Sobrien        pc += opsize;                                   \
27384865Sobrien        DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
27484865Sobrien        DEBUGGER_SINGLE_STEP_NOTIFY();                  \
27584865Sobrien        goto do_continue;                               \
27684865Sobrien    }
27784865Sobrien#endif /* PREFETCH_OPCCODE */
27884865Sobrien#endif /* USELABELS */
27984865Sobrien
28084865Sobrien// About to call a new method, update the save the adjusted pc and return to frame manager
28184865Sobrien#define UPDATE_PC_AND_RETURN(opsize)  \
282218822Sdim   DECACHE_TOS();                     \
283218822Sdim   istate->set_bcp(pc+opsize);        \
284218822Sdim   return;
285218822Sdim
286218822Sdim
287218822Sdim#define METHOD istate->method()
28884865Sobrien#define GET_METHOD_COUNTERS(res)    \
28984865Sobrien  res = METHOD->method_counters();  \
29084865Sobrien  if (res == NULL) {                \
29184865Sobrien    CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
29284865Sobrien  }
29384865Sobrien
29484865Sobrien#define OSR_REQUEST(res, branch_pc) \
29584865Sobrien            CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
29684865Sobrien/*
29784865Sobrien * For those opcodes that need to have a GC point on a backwards branch
29884865Sobrien */
29984865Sobrien
30084865Sobrien// Backedge counting is kind of strange. The asm interpreter will increment
30184865Sobrien// the backedge counter as a separate counter but it does it's comparisons
30284865Sobrien// to the sum (scaled) of invocation counter and backedge count to make
30384865Sobrien// a decision. Seems kind of odd to sum them together like that
30484865Sobrien
30584865Sobrien// skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
30684865Sobrien
307130561Sobrien
30884865Sobrien#define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
309130561Sobrien    if ((skip) <= 0) {                                                                              \
310130561Sobrien      MethodCounters* mcs;                                                                          \
31184865Sobrien      GET_METHOD_COUNTERS(mcs);                                                                     \
31289857Sobrien      if (UseLoopCounter) {                                                                         \
31389857Sobrien        bool do_OSR = UseOnStackReplacement;                                                        \
31489857Sobrien        mcs->backedge_counter()->increment();                                                       \
315130561Sobrien        if (ProfileInterpreter) {                                                                   \
316130561Sobrien          BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
317130561Sobrien          /* Check for overflow against MDO count. */                                               \
318218822Sdim          do_OSR = do_OSR                                                                           \
319130561Sobrien            && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
320            /* When ProfileInterpreter is on, the backedge_count comes     */                       \
321            /* from the methodDataOop, which value does not get reset on   */                       \
322            /* the call to frequency_counter_overflow(). To avoid          */                       \
323            /* excessive calls to the overflow routine while the method is */                       \
324            /* being compiled, add a second test to make sure the overflow */                       \
325            /* function is called only once every overflow_frequency.      */                       \
326            && (!(mdo_last_branch_taken_count & 1023));                                             \
327        } else {                                                                                    \
328          /* check for overflow of backedge counter */                                              \
329          do_OSR = do_OSR                                                                           \
330            && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
331        }                                                                                           \
332        if (do_OSR) {                                                                               \
333          nmethod* osr_nmethod;                                                                     \
334          OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
335          if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
336            intptr_t* buf;                                                                          \
337            /* Call OSR migration with last java frame only, no checks. */                          \
338            CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
339            istate->set_msg(do_osr);                                                                \
340            istate->set_osr_buf((address)buf);                                                      \
341            istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
342            return;                                                                                 \
343          }                                                                                         \
344        }                                                                                           \
345      }  /* UseCompiler ... */                                                                      \
346      SAFEPOINT;                                                                                    \
347    }
348
349/*
350 * For those opcodes that need to have a GC point on a backwards branch
351 */
352
353/*
354 * Macros for caching and flushing the interpreter state. Some local
355 * variables need to be flushed out to the frame before we do certain
356 * things (like pushing frames or becomming gc safe) and some need to
357 * be recached later (like after popping a frame). We could use one
358 * macro to cache or decache everything, but this would be less then
359 * optimal because we don't always need to cache or decache everything
360 * because some things we know are already cached or decached.
361 */
362#undef DECACHE_TOS
363#undef CACHE_TOS
364#undef CACHE_PREV_TOS
365#define DECACHE_TOS()    istate->set_stack(topOfStack);
366
367#define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
368
369#undef DECACHE_PC
370#undef CACHE_PC
371#define DECACHE_PC()    istate->set_bcp(pc);
372#define CACHE_PC()      pc = istate->bcp();
373#define CACHE_CP()      cp = istate->constants();
374#define CACHE_LOCALS()  locals = istate->locals();
375#undef CACHE_FRAME
376#define CACHE_FRAME()
377
378// BCI() returns the current bytecode-index.
379#undef  BCI
380#define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
381
382/*
383 * CHECK_NULL - Macro for throwing a NullPointerException if the object
384 * passed is a null ref.
385 * On some architectures/platforms it should be possible to do this implicitly
386 */
387#undef CHECK_NULL
388#define CHECK_NULL(obj_)                                                                         \
389        if ((obj_) == NULL) {                                                                    \
390          VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
391        }                                                                                        \
392        VERIFY_OOP(obj_)
393
394#define VMdoubleConstZero() 0.0
395#define VMdoubleConstOne() 1.0
396#define VMlongConstZero() (max_jlong-max_jlong)
397#define VMlongConstOne() ((max_jlong-max_jlong)+1)
398
399/*
400 * Alignment
401 */
402#define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
403
404// Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
405#define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
406
407// Reload interpreter state after calling the VM or a possible GC
408#define CACHE_STATE()   \
409        CACHE_TOS();    \
410        CACHE_PC();     \
411        CACHE_CP();     \
412        CACHE_LOCALS();
413
414// Call the VM with last java frame only.
415#define CALL_VM_NAKED_LJF(func)                                    \
416        DECACHE_STATE();                                           \
417        SET_LAST_JAVA_FRAME();                                     \
418        func;                                                      \
419        RESET_LAST_JAVA_FRAME();                                   \
420        CACHE_STATE();
421
422// Call the VM. Don't check for pending exceptions.
423#define CALL_VM_NOCHECK(func)                                      \
424        CALL_VM_NAKED_LJF(func)                                    \
425        if (THREAD->pop_frame_pending() &&                         \
426            !THREAD->pop_frame_in_process()) {                     \
427          goto handle_Pop_Frame;                                   \
428        }                                                          \
429        if (THREAD->jvmti_thread_state() &&                        \
430            THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
431          goto handle_Early_Return;                                \
432        }
433
434// Call the VM and check for pending exceptions
435#define CALL_VM(func, label) {                                     \
436          CALL_VM_NOCHECK(func);                                   \
437          if (THREAD->has_pending_exception()) goto label;         \
438        }
439
440/*
441 * BytecodeInterpreter::run(interpreterState istate)
442 * BytecodeInterpreter::runWithChecks(interpreterState istate)
443 *
444 * The real deal. This is where byte codes actually get interpreted.
445 * Basically it's a big while loop that iterates until we return from
446 * the method passed in.
447 *
448 * The runWithChecks is used if JVMTI is enabled.
449 *
450 */
451#if defined(VM_JVMTI)
452void
453BytecodeInterpreter::runWithChecks(interpreterState istate) {
454#else
455void
456BytecodeInterpreter::run(interpreterState istate) {
457#endif
458
459  // In order to simplify some tests based on switches set at runtime
460  // we invoke the interpreter a single time after switches are enabled
461  // and set simpler to to test variables rather than method calls or complex
462  // boolean expressions.
463
464  static int initialized = 0;
465  static int checkit = 0;
466  static intptr_t* c_addr = NULL;
467  static intptr_t  c_value;
468
469  if (checkit && *c_addr != c_value) {
470    os::breakpoint();
471  }
472#ifdef VM_JVMTI
473  static bool _jvmti_interp_events = 0;
474#endif
475
476  static int _compiling;  // (UseCompiler || CountCompiledCalls)
477
478#ifdef ASSERT
479  if (istate->_msg != initialize) {
480    assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
481#ifndef SHARK
482    IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
483#endif // !SHARK
484  }
485  // Verify linkages.
486  interpreterState l = istate;
487  do {
488    assert(l == l->_self_link, "bad link");
489    l = l->_prev_link;
490  } while (l != NULL);
491  // Screwups with stack management usually cause us to overwrite istate
492  // save a copy so we can verify it.
493  interpreterState orig = istate;
494#endif
495
496  register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
497  register address          pc = istate->bcp();
498  register jubyte opcode;
499  register intptr_t*        locals = istate->locals();
500  register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
501#ifdef LOTS_OF_REGS
502  register JavaThread*      THREAD = istate->thread();
503#else
504#undef THREAD
505#define THREAD istate->thread()
506#endif
507
508#ifdef USELABELS
509  const static void* const opclabels_data[256] = {
510/* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
511/* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
512/* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
513/* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
514
515/* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
516/* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
517/* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
518/* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
519
520/* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
521/* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
522/* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
523/* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
524
525/* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
526/* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
527/* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
528/* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
529
530/* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
531/* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
532/* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
533/* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
534
535/* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
536/* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
537/* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
538/* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
539
540/* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
541/* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
542/* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
543/* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
544
545/* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
546/* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
547/* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
548/* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
549
550/* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
551/* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
552/* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
553/* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
554
555/* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
556/* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
557/* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
558/* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
559
560/* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
561/* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
562/* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
563/* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
564
565/* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
566/* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
567/* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
568/* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
569
570/* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
571/* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
572/* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
573/* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
574
575/* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
576/* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
577/* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
578/* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
579
580/* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
581/* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
582/* 0xE8 */ &&opc_return_register_finalizer,
583                              &&opc_invokehandle,   &&opc_default,      &&opc_default,
584/* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
585
586/* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
587/* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
588/* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
589/* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
590  };
591  register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
592#endif /* USELABELS */
593
594#ifdef ASSERT
595  // this will trigger a VERIFY_OOP on entry
596  if (istate->msg() != initialize && ! METHOD->is_static()) {
597    oop rcvr = LOCALS_OBJECT(0);
598    VERIFY_OOP(rcvr);
599  }
600#endif
601// #define HACK
602#ifdef HACK
603  bool interesting = false;
604#endif // HACK
605
606  /* QQQ this should be a stack method so we don't know actual direction */
607  guarantee(istate->msg() == initialize ||
608         topOfStack >= istate->stack_limit() &&
609         topOfStack < istate->stack_base(),
610         "Stack top out of range");
611
612#ifdef CC_INTERP_PROFILE
613  // MethodData's last branch taken count.
614  uint mdo_last_branch_taken_count = 0;
615#else
616  const uint mdo_last_branch_taken_count = 0;
617#endif
618
619  switch (istate->msg()) {
620    case initialize: {
621      if (initialized++) ShouldNotReachHere(); // Only one initialize call.
622      _compiling = (UseCompiler || CountCompiledCalls);
623#ifdef VM_JVMTI
624      _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
625#endif
626      return;
627    }
628    break;
629    case method_entry: {
630      THREAD->set_do_not_unlock();
631      // count invocations
632      assert(initialized, "Interpreter not initialized");
633      if (_compiling) {
634        MethodCounters* mcs;
635        GET_METHOD_COUNTERS(mcs);
636#if COMPILER2_OR_JVMCI
637        if (ProfileInterpreter) {
638          METHOD->increment_interpreter_invocation_count(THREAD);
639        }
640#endif
641        mcs->invocation_counter()->increment();
642        if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
643          CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
644          // We no longer retry on a counter overflow.
645        }
646        // Get or create profile data. Check for pending (async) exceptions.
647        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
648        SAFEPOINT;
649      }
650
651      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
652        // initialize
653        os::breakpoint();
654      }
655
656#ifdef HACK
657      {
658        ResourceMark rm;
659        char *method_name = istate->method()->name_and_sig_as_C_string();
660        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
661          tty->print_cr("entering: depth %d bci: %d",
662                         (istate->_stack_base - istate->_stack),
663                         istate->_bcp - istate->_method->code_base());
664          interesting = true;
665        }
666      }
667#endif // HACK
668
669      // Lock method if synchronized.
670      if (METHOD->is_synchronized()) {
671        // oop rcvr = locals[0].j.r;
672        oop rcvr;
673        if (METHOD->is_static()) {
674          rcvr = METHOD->constants()->pool_holder()->java_mirror();
675        } else {
676          rcvr = LOCALS_OBJECT(0);
677          VERIFY_OOP(rcvr);
678        }
679        // The initial monitor is ours for the taking.
680        // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
681        BasicObjectLock* mon = &istate->monitor_base()[-1];
682        mon->set_obj(rcvr);
683        bool success = false;
684        uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
685        markOop mark = rcvr->mark();
686        intptr_t hash = (intptr_t) markOopDesc::no_hash;
687        // Implies UseBiasedLocking.
688        if (mark->has_bias_pattern()) {
689          uintptr_t thread_ident;
690          uintptr_t anticipated_bias_locking_value;
691          thread_ident = (uintptr_t)istate->thread();
692          anticipated_bias_locking_value =
693            (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
694            ~((uintptr_t) markOopDesc::age_mask_in_place);
695
696          if (anticipated_bias_locking_value == 0) {
697            // Already biased towards this thread, nothing to do.
698            if (PrintBiasedLockingStatistics) {
699              (* BiasedLocking::biased_lock_entry_count_addr())++;
700            }
701            success = true;
702          } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
703            // Try to revoke bias.
704            markOop header = rcvr->klass()->prototype_header();
705            if (hash != markOopDesc::no_hash) {
706              header = header->copy_set_hash(hash);
707            }
708            if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
709              if (PrintBiasedLockingStatistics)
710                (*BiasedLocking::revoked_lock_entry_count_addr())++;
711            }
712          } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
713            // Try to rebias.
714            markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
715            if (hash != markOopDesc::no_hash) {
716              new_header = new_header->copy_set_hash(hash);
717            }
718            if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
719              if (PrintBiasedLockingStatistics) {
720                (* BiasedLocking::rebiased_lock_entry_count_addr())++;
721              }
722            } else {
723              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
724            }
725            success = true;
726          } else {
727            // Try to bias towards thread in case object is anonymously biased.
728            markOop header = (markOop) ((uintptr_t) mark &
729                                        ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
730                                         (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
731            if (hash != markOopDesc::no_hash) {
732              header = header->copy_set_hash(hash);
733            }
734            markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
735            // Debugging hint.
736            DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
737            if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
738              if (PrintBiasedLockingStatistics) {
739                (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
740              }
741            } else {
742              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
743            }
744            success = true;
745          }
746        }
747
748        // Traditional lightweight locking.
749        if (!success) {
750          markOop displaced = rcvr->mark()->set_unlocked();
751          mon->lock()->set_displaced_header(displaced);
752          bool call_vm = UseHeavyMonitors;
753          if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
754            // Is it simple recursive case?
755            if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
756              mon->lock()->set_displaced_header(NULL);
757            } else {
758              CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
759            }
760          }
761        }
762      }
763      THREAD->clr_do_not_unlock();
764
765      // Notify jvmti
766#ifdef VM_JVMTI
767      if (_jvmti_interp_events) {
768        // Whenever JVMTI puts a thread in interp_only_mode, method
769        // entry/exit events are sent for that thread to track stack depth.
770        if (THREAD->is_interp_only_mode()) {
771          CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
772                  handle_exception);
773        }
774      }
775#endif /* VM_JVMTI */
776
777      goto run;
778    }
779
780    case popping_frame: {
781      // returned from a java call to pop the frame, restart the call
782      // clear the message so we don't confuse ourselves later
783      assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
784      istate->set_msg(no_request);
785      if (_compiling) {
786        // Set MDX back to the ProfileData of the invoke bytecode that will be
787        // restarted.
788        SET_MDX(NULL);
789        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
790      }
791      THREAD->clr_pop_frame_in_process();
792      goto run;
793    }
794
795    case method_resume: {
796      if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
797        // resume
798        os::breakpoint();
799      }
800#ifdef HACK
801      {
802        ResourceMark rm;
803        char *method_name = istate->method()->name_and_sig_as_C_string();
804        if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
805          tty->print_cr("resume: depth %d bci: %d",
806                         (istate->_stack_base - istate->_stack) ,
807                         istate->_bcp - istate->_method->code_base());
808          interesting = true;
809        }
810      }
811#endif // HACK
812      // returned from a java call, continue executing.
813      if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
814        goto handle_Pop_Frame;
815      }
816      if (THREAD->jvmti_thread_state() &&
817          THREAD->jvmti_thread_state()->is_earlyret_pending()) {
818        goto handle_Early_Return;
819      }
820
821      if (THREAD->has_pending_exception()) goto handle_exception;
822      // Update the pc by the saved amount of the invoke bytecode size
823      UPDATE_PC(istate->bcp_advance());
824
825      if (_compiling) {
826        // Get or create profile data. Check for pending (async) exceptions.
827        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
828      }
829      goto run;
830    }
831
832    case deopt_resume2: {
833      // Returned from an opcode that will reexecute. Deopt was
834      // a result of a PopFrame request.
835      //
836
837      if (_compiling) {
838        // Get or create profile data. Check for pending (async) exceptions.
839        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
840      }
841      goto run;
842    }
843
844    case deopt_resume: {
845      // Returned from an opcode that has completed. The stack has
846      // the result all we need to do is skip across the bytecode
847      // and continue (assuming there is no exception pending)
848      //
849      // compute continuation length
850      //
851      // Note: it is possible to deopt at a return_register_finalizer opcode
852      // because this requires entering the vm to do the registering. While the
853      // opcode is complete we can't advance because there are no more opcodes
854      // much like trying to deopt at a poll return. In that has we simply
855      // get out of here
856      //
857      if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
858        // this will do the right thing even if an exception is pending.
859        goto handle_return;
860      }
861      UPDATE_PC(Bytecodes::length_at(METHOD, pc));
862      if (THREAD->has_pending_exception()) goto handle_exception;
863
864      if (_compiling) {
865        // Get or create profile data. Check for pending (async) exceptions.
866        BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
867      }
868      goto run;
869    }
870    case got_monitors: {
871      // continue locking now that we have a monitor to use
872      // we expect to find newly allocated monitor at the "top" of the monitor stack.
873      oop lockee = STACK_OBJECT(-1);
874      VERIFY_OOP(lockee);
875      // derefing's lockee ought to provoke implicit null check
876      // find a free monitor
877      BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
878      assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
879      entry->set_obj(lockee);
880      bool success = false;
881      uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
882
883      markOop mark = lockee->mark();
884      intptr_t hash = (intptr_t) markOopDesc::no_hash;
885      // implies UseBiasedLocking
886      if (mark->has_bias_pattern()) {
887        uintptr_t thread_ident;
888        uintptr_t anticipated_bias_locking_value;
889        thread_ident = (uintptr_t)istate->thread();
890        anticipated_bias_locking_value =
891          (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
892          ~((uintptr_t) markOopDesc::age_mask_in_place);
893
894        if  (anticipated_bias_locking_value == 0) {
895          // already biased towards this thread, nothing to do
896          if (PrintBiasedLockingStatistics) {
897            (* BiasedLocking::biased_lock_entry_count_addr())++;
898          }
899          success = true;
900        } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
901          // try revoke bias
902          markOop header = lockee->klass()->prototype_header();
903          if (hash != markOopDesc::no_hash) {
904            header = header->copy_set_hash(hash);
905          }
906          if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
907            if (PrintBiasedLockingStatistics) {
908              (*BiasedLocking::revoked_lock_entry_count_addr())++;
909            }
910          }
911        } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
912          // try rebias
913          markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
914          if (hash != markOopDesc::no_hash) {
915                new_header = new_header->copy_set_hash(hash);
916          }
917          if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
918            if (PrintBiasedLockingStatistics) {
919              (* BiasedLocking::rebiased_lock_entry_count_addr())++;
920            }
921          } else {
922            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
923          }
924          success = true;
925        } else {
926          // try to bias towards thread in case object is anonymously biased
927          markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
928                                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
929          if (hash != markOopDesc::no_hash) {
930            header = header->copy_set_hash(hash);
931          }
932          markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
933          // debugging hint
934          DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
935          if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
936            if (PrintBiasedLockingStatistics) {
937              (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
938            }
939          } else {
940            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
941          }
942          success = true;
943        }
944      }
945
946      // traditional lightweight locking
947      if (!success) {
948        markOop displaced = lockee->mark()->set_unlocked();
949        entry->lock()->set_displaced_header(displaced);
950        bool call_vm = UseHeavyMonitors;
951        if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
952          // Is it simple recursive case?
953          if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
954            entry->lock()->set_displaced_header(NULL);
955          } else {
956            CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
957          }
958        }
959      }
960      UPDATE_PC_AND_TOS(1, -1);
961      goto run;
962    }
963    default: {
964      fatal("Unexpected message from frame manager");
965    }
966  }
967
968run:
969
970  DO_UPDATE_INSTRUCTION_COUNT(*pc)
971  DEBUGGER_SINGLE_STEP_NOTIFY();
972#ifdef PREFETCH_OPCCODE
973  opcode = *pc;  /* prefetch first opcode */
974#endif
975
976#ifndef USELABELS
977  while (1)
978#endif
979  {
980#ifndef PREFETCH_OPCCODE
981      opcode = *pc;
982#endif
983      // Seems like this happens twice per opcode. At worst this is only
984      // need at entry to the loop.
985      // DEBUGGER_SINGLE_STEP_NOTIFY();
986      /* Using this labels avoids double breakpoints when quickening and
987       * when returing from transition frames.
988       */
989  opcode_switch:
990      assert(istate == orig, "Corrupted istate");
991      /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
992      assert(topOfStack >= istate->stack_limit(), "Stack overrun");
993      assert(topOfStack < istate->stack_base(), "Stack underrun");
994
995#ifdef USELABELS
996      DISPATCH(opcode);
997#else
998      switch (opcode)
999#endif
1000      {
1001      CASE(_nop):
1002          UPDATE_PC_AND_CONTINUE(1);
1003
1004          /* Push miscellaneous constants onto the stack. */
1005
1006      CASE(_aconst_null):
1007          SET_STACK_OBJECT(NULL, 0);
1008          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1009
1010#undef  OPC_CONST_n
1011#define OPC_CONST_n(opcode, const_type, value)                          \
1012      CASE(opcode):                                                     \
1013          SET_STACK_ ## const_type(value, 0);                           \
1014          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1015
1016          OPC_CONST_n(_iconst_m1,   INT,       -1);
1017          OPC_CONST_n(_iconst_0,    INT,        0);
1018          OPC_CONST_n(_iconst_1,    INT,        1);
1019          OPC_CONST_n(_iconst_2,    INT,        2);
1020          OPC_CONST_n(_iconst_3,    INT,        3);
1021          OPC_CONST_n(_iconst_4,    INT,        4);
1022          OPC_CONST_n(_iconst_5,    INT,        5);
1023          OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1024          OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1025          OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1026
1027#undef  OPC_CONST2_n
1028#define OPC_CONST2_n(opcname, value, key, kind)                         \
1029      CASE(_##opcname):                                                 \
1030      {                                                                 \
1031          SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1032          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1033      }
1034         OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1035         OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1036         OPC_CONST2_n(lconst_0, Zero, long, LONG);
1037         OPC_CONST2_n(lconst_1, One,  long, LONG);
1038
1039         /* Load constant from constant pool: */
1040
1041          /* Push a 1-byte signed integer value onto the stack. */
1042      CASE(_bipush):
1043          SET_STACK_INT((jbyte)(pc[1]), 0);
1044          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1045
1046          /* Push a 2-byte signed integer constant onto the stack. */
1047      CASE(_sipush):
1048          SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1049          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1050
1051          /* load from local variable */
1052
1053      CASE(_aload):
1054          VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1055          SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1056          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1057
1058      CASE(_iload):
1059      CASE(_fload):
1060          SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1061          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1062
1063      CASE(_lload):
1064          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1065          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1066
1067      CASE(_dload):
1068          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1069          UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1070
1071#undef  OPC_LOAD_n
1072#define OPC_LOAD_n(num)                                                 \
1073      CASE(_aload_##num):                                               \
1074          VERIFY_OOP(LOCALS_OBJECT(num));                               \
1075          SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1076          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1077                                                                        \
1078      CASE(_iload_##num):                                               \
1079      CASE(_fload_##num):                                               \
1080          SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1081          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1082                                                                        \
1083      CASE(_lload_##num):                                               \
1084          SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1085          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1086      CASE(_dload_##num):                                               \
1087          SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1088          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089
1090          OPC_LOAD_n(0);
1091          OPC_LOAD_n(1);
1092          OPC_LOAD_n(2);
1093          OPC_LOAD_n(3);
1094
1095          /* store to a local variable */
1096
1097      CASE(_astore):
1098          astore(topOfStack, -1, locals, pc[1]);
1099          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1100
1101      CASE(_istore):
1102      CASE(_fstore):
1103          SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1104          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1105
1106      CASE(_lstore):
1107          SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1108          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1109
1110      CASE(_dstore):
1111          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1112          UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1113
1114      CASE(_wide): {
1115          uint16_t reg = Bytes::get_Java_u2(pc + 2);
1116
1117          opcode = pc[1];
1118
1119          // Wide and it's sub-bytecode are counted as separate instructions. If we
1120          // don't account for this here, the bytecode trace skips the next bytecode.
1121          DO_UPDATE_INSTRUCTION_COUNT(opcode);
1122
1123          switch(opcode) {
1124              case Bytecodes::_aload:
1125                  VERIFY_OOP(LOCALS_OBJECT(reg));
1126                  SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1127                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1128
1129              case Bytecodes::_iload:
1130              case Bytecodes::_fload:
1131                  SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1132                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1133
1134              case Bytecodes::_lload:
1135                  SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1136                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1137
1138              case Bytecodes::_dload:
1139                  SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1140                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1141
1142              case Bytecodes::_astore:
1143                  astore(topOfStack, -1, locals, reg);
1144                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1145
1146              case Bytecodes::_istore:
1147              case Bytecodes::_fstore:
1148                  SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1149                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1150
1151              case Bytecodes::_lstore:
1152                  SET_LOCALS_LONG(STACK_LONG(-1), reg);
1153                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1154
1155              case Bytecodes::_dstore:
1156                  SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1157                  UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1158
1159              case Bytecodes::_iinc: {
1160                  int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1161                  // Be nice to see what this generates.... QQQ
1162                  SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1163                  UPDATE_PC_AND_CONTINUE(6);
1164              }
1165              case Bytecodes::_ret:
1166                  // Profile ret.
1167                  BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1168                  // Now, update the pc.
1169                  pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1170                  UPDATE_PC_AND_CONTINUE(0);
1171              default:
1172                  VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1173          }
1174      }
1175
1176
1177#undef  OPC_STORE_n
1178#define OPC_STORE_n(num)                                                \
1179      CASE(_astore_##num):                                              \
1180          astore(topOfStack, -1, locals, num);                          \
1181          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1182      CASE(_istore_##num):                                              \
1183      CASE(_fstore_##num):                                              \
1184          SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1185          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1186
1187          OPC_STORE_n(0);
1188          OPC_STORE_n(1);
1189          OPC_STORE_n(2);
1190          OPC_STORE_n(3);
1191
1192#undef  OPC_DSTORE_n
1193#define OPC_DSTORE_n(num)                                               \
1194      CASE(_dstore_##num):                                              \
1195          SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1196          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1197      CASE(_lstore_##num):                                              \
1198          SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1199          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1200
1201          OPC_DSTORE_n(0);
1202          OPC_DSTORE_n(1);
1203          OPC_DSTORE_n(2);
1204          OPC_DSTORE_n(3);
1205
1206          /* stack pop, dup, and insert opcodes */
1207
1208
1209      CASE(_pop):                /* Discard the top item on the stack */
1210          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1211
1212
1213      CASE(_pop2):               /* Discard the top 2 items on the stack */
1214          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1215
1216
1217      CASE(_dup):               /* Duplicate the top item on the stack */
1218          dup(topOfStack);
1219          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1220
1221      CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1222          dup2(topOfStack);
1223          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1224
1225      CASE(_dup_x1):    /* insert top word two down */
1226          dup_x1(topOfStack);
1227          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1228
1229      CASE(_dup_x2):    /* insert top word three down  */
1230          dup_x2(topOfStack);
1231          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1232
1233      CASE(_dup2_x1):   /* insert top 2 slots three down */
1234          dup2_x1(topOfStack);
1235          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1236
1237      CASE(_dup2_x2):   /* insert top 2 slots four down */
1238          dup2_x2(topOfStack);
1239          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1240
1241      CASE(_swap): {        /* swap top two elements on the stack */
1242          swap(topOfStack);
1243          UPDATE_PC_AND_CONTINUE(1);
1244      }
1245
1246          /* Perform various binary integer operations */
1247
1248#undef  OPC_INT_BINARY
1249#define OPC_INT_BINARY(opcname, opname, test)                           \
1250      CASE(_i##opcname):                                                \
1251          if (test && (STACK_INT(-1) == 0)) {                           \
1252              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1253                            "/ by zero", note_div0Check_trap);          \
1254          }                                                             \
1255          SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1256                                      STACK_INT(-1)),                   \
1257                                      -2);                              \
1258          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1259      CASE(_l##opcname):                                                \
1260      {                                                                 \
1261          if (test) {                                                   \
1262            jlong l1 = STACK_LONG(-1);                                  \
1263            if (VMlongEqz(l1)) {                                        \
1264              VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1265                            "/ by long zero", note_div0Check_trap);     \
1266            }                                                           \
1267          }                                                             \
1268          /* First long at (-1,-2) next long at (-3,-4) */              \
1269          SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1270                                        STACK_LONG(-1)),                \
1271                                        -3);                            \
1272          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1273      }
1274
1275      OPC_INT_BINARY(add, Add, 0);
1276      OPC_INT_BINARY(sub, Sub, 0);
1277      OPC_INT_BINARY(mul, Mul, 0);
1278      OPC_INT_BINARY(and, And, 0);
1279      OPC_INT_BINARY(or,  Or,  0);
1280      OPC_INT_BINARY(xor, Xor, 0);
1281      OPC_INT_BINARY(div, Div, 1);
1282      OPC_INT_BINARY(rem, Rem, 1);
1283
1284
1285      /* Perform various binary floating number operations */
1286      /* On some machine/platforms/compilers div zero check can be implicit */
1287
1288#undef  OPC_FLOAT_BINARY
1289#define OPC_FLOAT_BINARY(opcname, opname)                                  \
1290      CASE(_d##opcname): {                                                 \
1291          SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1292                                            STACK_DOUBLE(-1)),             \
1293                                            -3);                           \
1294          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1295      }                                                                    \
1296      CASE(_f##opcname):                                                   \
1297          SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1298                                          STACK_FLOAT(-1)),                \
1299                                          -2);                             \
1300          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1301
1302
1303     OPC_FLOAT_BINARY(add, Add);
1304     OPC_FLOAT_BINARY(sub, Sub);
1305     OPC_FLOAT_BINARY(mul, Mul);
1306     OPC_FLOAT_BINARY(div, Div);
1307     OPC_FLOAT_BINARY(rem, Rem);
1308
1309      /* Shift operations
1310       * Shift left int and long: ishl, lshl
1311       * Logical shift right int and long w/zero extension: iushr, lushr
1312       * Arithmetic shift right int and long w/sign extension: ishr, lshr
1313       */
1314
1315#undef  OPC_SHIFT_BINARY
1316#define OPC_SHIFT_BINARY(opcname, opname)                               \
1317      CASE(_i##opcname):                                                \
1318         SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1319                                     STACK_INT(-1)),                    \
1320                                     -2);                               \
1321         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1322      CASE(_l##opcname):                                                \
1323      {                                                                 \
1324         SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1325                                       STACK_INT(-1)),                  \
1326                                       -2);                             \
1327         UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1328      }
1329
1330      OPC_SHIFT_BINARY(shl, Shl);
1331      OPC_SHIFT_BINARY(shr, Shr);
1332      OPC_SHIFT_BINARY(ushr, Ushr);
1333
1334     /* Increment local variable by constant */
1335      CASE(_iinc):
1336      {
1337          // locals[pc[1]].j.i += (jbyte)(pc[2]);
1338          SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1339          UPDATE_PC_AND_CONTINUE(3);
1340      }
1341
1342     /* negate the value on the top of the stack */
1343
1344      CASE(_ineg):
1345         SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1346         UPDATE_PC_AND_CONTINUE(1);
1347
1348      CASE(_fneg):
1349         SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1350         UPDATE_PC_AND_CONTINUE(1);
1351
1352      CASE(_lneg):
1353      {
1354         SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1355         UPDATE_PC_AND_CONTINUE(1);
1356      }
1357
1358      CASE(_dneg):
1359      {
1360         SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1361         UPDATE_PC_AND_CONTINUE(1);
1362      }
1363
1364      /* Conversion operations */
1365
1366      CASE(_i2f):       /* convert top of stack int to float */
1367         SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1368         UPDATE_PC_AND_CONTINUE(1);
1369
1370      CASE(_i2l):       /* convert top of stack int to long */
1371      {
1372          // this is ugly QQQ
1373          jlong r = VMint2Long(STACK_INT(-1));
1374          MORE_STACK(-1); // Pop
1375          SET_STACK_LONG(r, 1);
1376
1377          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1378      }
1379
1380      CASE(_i2d):       /* convert top of stack int to double */
1381      {
1382          // this is ugly QQQ (why cast to jlong?? )
1383          jdouble r = (jlong)STACK_INT(-1);
1384          MORE_STACK(-1); // Pop
1385          SET_STACK_DOUBLE(r, 1);
1386
1387          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1388      }
1389
1390      CASE(_l2i):       /* convert top of stack long to int */
1391      {
1392          jint r = VMlong2Int(STACK_LONG(-1));
1393          MORE_STACK(-2); // Pop
1394          SET_STACK_INT(r, 0);
1395          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1396      }
1397
1398      CASE(_l2f):   /* convert top of stack long to float */
1399      {
1400          jlong r = STACK_LONG(-1);
1401          MORE_STACK(-2); // Pop
1402          SET_STACK_FLOAT(VMlong2Float(r), 0);
1403          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1404      }
1405
1406      CASE(_l2d):       /* convert top of stack long to double */
1407      {
1408          jlong r = STACK_LONG(-1);
1409          MORE_STACK(-2); // Pop
1410          SET_STACK_DOUBLE(VMlong2Double(r), 1);
1411          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1412      }
1413
1414      CASE(_f2i):  /* Convert top of stack float to int */
1415          SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1416          UPDATE_PC_AND_CONTINUE(1);
1417
1418      CASE(_f2l):  /* convert top of stack float to long */
1419      {
1420          jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1421          MORE_STACK(-1); // POP
1422          SET_STACK_LONG(r, 1);
1423          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1424      }
1425
1426      CASE(_f2d):  /* convert top of stack float to double */
1427      {
1428          jfloat f;
1429          jdouble r;
1430          f = STACK_FLOAT(-1);
1431          r = (jdouble) f;
1432          MORE_STACK(-1); // POP
1433          SET_STACK_DOUBLE(r, 1);
1434          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1435      }
1436
1437      CASE(_d2i): /* convert top of stack double to int */
1438      {
1439          jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1440          MORE_STACK(-2);
1441          SET_STACK_INT(r1, 0);
1442          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1443      }
1444
1445      CASE(_d2f): /* convert top of stack double to float */
1446      {
1447          jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1448          MORE_STACK(-2);
1449          SET_STACK_FLOAT(r1, 0);
1450          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1451      }
1452
1453      CASE(_d2l): /* convert top of stack double to long */
1454      {
1455          jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1456          MORE_STACK(-2);
1457          SET_STACK_LONG(r1, 1);
1458          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1459      }
1460
1461      CASE(_i2b):
1462          SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1463          UPDATE_PC_AND_CONTINUE(1);
1464
1465      CASE(_i2c):
1466          SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1467          UPDATE_PC_AND_CONTINUE(1);
1468
1469      CASE(_i2s):
1470          SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1471          UPDATE_PC_AND_CONTINUE(1);
1472
1473      /* comparison operators */
1474
1475
1476#define COMPARISON_OP(name, comparison)                                      \
1477      CASE(_if_icmp##name): {                                                \
1478          const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1479          int skip = cmp                                                     \
1480                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1481          address branch_pc = pc;                                            \
1482          /* Profile branch. */                                              \
1483          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1484          UPDATE_PC_AND_TOS(skip, -2);                                       \
1485          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1486          CONTINUE;                                                          \
1487      }                                                                      \
1488      CASE(_if##name): {                                                     \
1489          const bool cmp = (STACK_INT(-1) comparison 0);                     \
1490          int skip = cmp                                                     \
1491                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1492          address branch_pc = pc;                                            \
1493          /* Profile branch. */                                              \
1494          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1495          UPDATE_PC_AND_TOS(skip, -1);                                       \
1496          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1497          CONTINUE;                                                          \
1498      }
1499
1500#define COMPARISON_OP2(name, comparison)                                     \
1501      COMPARISON_OP(name, comparison)                                        \
1502      CASE(_if_acmp##name): {                                                \
1503          const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1504          int skip = cmp                                                     \
1505                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1506          address branch_pc = pc;                                            \
1507          /* Profile branch. */                                              \
1508          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1509          UPDATE_PC_AND_TOS(skip, -2);                                       \
1510          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1511          CONTINUE;                                                          \
1512      }
1513
1514#define NULL_COMPARISON_NOT_OP(name)                                         \
1515      CASE(_if##name): {                                                     \
1516          const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1517          int skip = cmp                                                     \
1518                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1519          address branch_pc = pc;                                            \
1520          /* Profile branch. */                                              \
1521          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1522          UPDATE_PC_AND_TOS(skip, -1);                                       \
1523          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1524          CONTINUE;                                                          \
1525      }
1526
1527#define NULL_COMPARISON_OP(name)                                             \
1528      CASE(_if##name): {                                                     \
1529          const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1530          int skip = cmp                                                     \
1531                      ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1532          address branch_pc = pc;                                            \
1533          /* Profile branch. */                                              \
1534          BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1535          UPDATE_PC_AND_TOS(skip, -1);                                       \
1536          DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1537          CONTINUE;                                                          \
1538      }
1539      COMPARISON_OP(lt, <);
1540      COMPARISON_OP(gt, >);
1541      COMPARISON_OP(le, <=);
1542      COMPARISON_OP(ge, >=);
1543      COMPARISON_OP2(eq, ==);  /* include ref comparison */
1544      COMPARISON_OP2(ne, !=);  /* include ref comparison */
1545      NULL_COMPARISON_OP(null);
1546      NULL_COMPARISON_NOT_OP(nonnull);
1547
1548      /* Goto pc at specified offset in switch table. */
1549
1550      CASE(_tableswitch): {
1551          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1552          int32_t  key  = STACK_INT(-1);
1553          int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1554          int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1555          int32_t  skip;
1556          key -= low;
1557          if (((uint32_t) key > (uint32_t)(high - low))) {
1558            key = -1;
1559            skip = Bytes::get_Java_u4((address)&lpc[0]);
1560          } else {
1561            skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1562          }
1563          // Profile switch.
1564          BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1565          // Does this really need a full backedge check (osr)?
1566          address branch_pc = pc;
1567          UPDATE_PC_AND_TOS(skip, -1);
1568          DO_BACKEDGE_CHECKS(skip, branch_pc);
1569          CONTINUE;
1570      }
1571
1572      /* Goto pc whose table entry matches specified key. */
1573
1574      CASE(_lookupswitch): {
1575          jint* lpc  = (jint*)VMalignWordUp(pc+1);
1576          int32_t  key  = STACK_INT(-1);
1577          int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1578          // Remember index.
1579          int      index = -1;
1580          int      newindex = 0;
1581          int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1582          while (--npairs >= 0) {
1583            lpc += 2;
1584            if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1585              skip = Bytes::get_Java_u4((address)&lpc[1]);
1586              index = newindex;
1587              break;
1588            }
1589            newindex += 1;
1590          }
1591          // Profile switch.
1592          BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1593          address branch_pc = pc;
1594          UPDATE_PC_AND_TOS(skip, -1);
1595          DO_BACKEDGE_CHECKS(skip, branch_pc);
1596          CONTINUE;
1597      }
1598
1599      CASE(_fcmpl):
1600      CASE(_fcmpg):
1601      {
1602          SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1603                                        STACK_FLOAT(-1),
1604                                        (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1605                        -2);
1606          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1607      }
1608
1609      CASE(_dcmpl):
1610      CASE(_dcmpg):
1611      {
1612          int r = VMdoubleCompare(STACK_DOUBLE(-3),
1613                                  STACK_DOUBLE(-1),
1614                                  (opcode == Bytecodes::_dcmpl ? -1 : 1));
1615          MORE_STACK(-4); // Pop
1616          SET_STACK_INT(r, 0);
1617          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1618      }
1619
1620      CASE(_lcmp):
1621      {
1622          int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1623          MORE_STACK(-4);
1624          SET_STACK_INT(r, 0);
1625          UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1626      }
1627
1628
1629      /* Return from a method */
1630
1631      CASE(_areturn):
1632      CASE(_ireturn):
1633      CASE(_freturn):
1634      {
1635          // Allow a safepoint before returning to frame manager.
1636          SAFEPOINT;
1637
1638          goto handle_return;
1639      }
1640
1641      CASE(_lreturn):
1642      CASE(_dreturn):
1643      {
1644          // Allow a safepoint before returning to frame manager.
1645          SAFEPOINT;
1646          goto handle_return;
1647      }
1648
1649      CASE(_return_register_finalizer): {
1650
1651          oop rcvr = LOCALS_OBJECT(0);
1652          VERIFY_OOP(rcvr);
1653          if (rcvr->klass()->has_finalizer()) {
1654            CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1655          }
1656          goto handle_return;
1657      }
1658      CASE(_return): {
1659
1660          // Allow a safepoint before returning to frame manager.
1661          SAFEPOINT;
1662          goto handle_return;
1663      }
1664
1665      /* Array access byte-codes */
1666
1667      /* Every array access byte-code starts out like this */
1668//        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1669#define ARRAY_INTRO(arrayOff)                                                  \
1670      arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1671      jint     index  = STACK_INT(arrayOff + 1);                               \
1672      char message[jintAsStringSize];                                          \
1673      CHECK_NULL(arrObj);                                                      \
1674      if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1675          sprintf(message, "%d", index);                                       \
1676          VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1677                        message, note_rangeCheck_trap);                        \
1678      }
1679
1680      /* 32-bit loads. These handle conversion from < 32-bit types */
1681#define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1682      {                                                                               \
1683          ARRAY_INTRO(-2);                                                            \
1684          (void)extra;                                                                \
1685          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1686                           -2);                                                       \
1687          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1688      }
1689
1690      /* 64-bit loads */
1691#define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1692      {                                                                                    \
1693          ARRAY_INTRO(-2);                                                                 \
1694          SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1695          (void)extra;                                                                     \
1696          UPDATE_PC_AND_CONTINUE(1);                                                       \
1697      }
1698
1699      CASE(_iaload):
1700          ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1701      CASE(_faload):
1702          ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1703      CASE(_aaload): {
1704          ARRAY_INTRO(-2);
1705          SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1706          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1707      }
1708      CASE(_baload):
1709          ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1710      CASE(_caload):
1711          ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1712      CASE(_saload):
1713          ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1714      CASE(_laload):
1715          ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1716      CASE(_daload):
1717          ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1718
1719      /* 32-bit stores. These handle conversion to < 32-bit types */
1720#define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1721      {                                                                              \
1722          ARRAY_INTRO(-3);                                                           \
1723          (void)extra;                                                               \
1724          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1725          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1726      }
1727
1728      /* 64-bit stores */
1729#define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1730      {                                                                              \
1731          ARRAY_INTRO(-4);                                                           \
1732          (void)extra;                                                               \
1733          *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1734          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1735      }
1736
1737      CASE(_iastore):
1738          ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1739      CASE(_fastore):
1740          ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1741      /*
1742       * This one looks different because of the assignability check
1743       */
1744      CASE(_aastore): {
1745          oop rhsObject = STACK_OBJECT(-1);
1746          VERIFY_OOP(rhsObject);
1747          ARRAY_INTRO( -3);
1748          // arrObj, index are set
1749          if (rhsObject != NULL) {
1750            /* Check assignability of rhsObject into arrObj */
1751            Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1752            Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1753            //
1754            // Check for compatibilty. This check must not GC!!
1755            // Seems way more expensive now that we must dispatch
1756            //
1757            if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1758              // Decrement counter if subtype check failed.
1759              BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1760              VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1761            }
1762            // Profile checkcast with null_seen and receiver.
1763            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1764          } else {
1765            // Profile checkcast with null_seen and receiver.
1766            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1767          }
1768          ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1769          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1770      }
1771      CASE(_bastore): {
1772          ARRAY_INTRO(-3);
1773          int item = STACK_INT(-1);
1774          // if it is a T_BOOLEAN array, mask the stored value to 0/1
1775          if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1776            item &= 1;
1777          } else {
1778            assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1779                   "should be byte array otherwise");
1780          }
1781          ((typeArrayOop)arrObj)->byte_at_put(index, item);
1782          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1783      }
1784      CASE(_castore):
1785          ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1786      CASE(_sastore):
1787          ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1788      CASE(_lastore):
1789          ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1790      CASE(_dastore):
1791          ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1792
1793      CASE(_arraylength):
1794      {
1795          arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1796          CHECK_NULL(ary);
1797          SET_STACK_INT(ary->length(), -1);
1798          UPDATE_PC_AND_CONTINUE(1);
1799      }
1800
1801      /* monitorenter and monitorexit for locking/unlocking an object */
1802
1803      CASE(_monitorenter): {
1804        oop lockee = STACK_OBJECT(-1);
1805        // derefing's lockee ought to provoke implicit null check
1806        CHECK_NULL(lockee);
1807        // find a free monitor or one already allocated for this object
1808        // if we find a matching object then we need a new monitor
1809        // since this is recursive enter
1810        BasicObjectLock* limit = istate->monitor_base();
1811        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1812        BasicObjectLock* entry = NULL;
1813        while (most_recent != limit ) {
1814          if (most_recent->obj() == NULL) entry = most_recent;
1815          else if (most_recent->obj() == lockee) break;
1816          most_recent++;
1817        }
1818        if (entry != NULL) {
1819          entry->set_obj(lockee);
1820          int success = false;
1821          uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1822
1823          markOop mark = lockee->mark();
1824          intptr_t hash = (intptr_t) markOopDesc::no_hash;
1825          // implies UseBiasedLocking
1826          if (mark->has_bias_pattern()) {
1827            uintptr_t thread_ident;
1828            uintptr_t anticipated_bias_locking_value;
1829            thread_ident = (uintptr_t)istate->thread();
1830            anticipated_bias_locking_value =
1831              (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1832              ~((uintptr_t) markOopDesc::age_mask_in_place);
1833
1834            if  (anticipated_bias_locking_value == 0) {
1835              // already biased towards this thread, nothing to do
1836              if (PrintBiasedLockingStatistics) {
1837                (* BiasedLocking::biased_lock_entry_count_addr())++;
1838              }
1839              success = true;
1840            }
1841            else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1842              // try revoke bias
1843              markOop header = lockee->klass()->prototype_header();
1844              if (hash != markOopDesc::no_hash) {
1845                header = header->copy_set_hash(hash);
1846              }
1847              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1848                if (PrintBiasedLockingStatistics)
1849                  (*BiasedLocking::revoked_lock_entry_count_addr())++;
1850              }
1851            }
1852            else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1853              // try rebias
1854              markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1855              if (hash != markOopDesc::no_hash) {
1856                new_header = new_header->copy_set_hash(hash);
1857              }
1858              if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1859                if (PrintBiasedLockingStatistics)
1860                  (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1861              }
1862              else {
1863                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1864              }
1865              success = true;
1866            }
1867            else {
1868              // try to bias towards thread in case object is anonymously biased
1869              markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1870                                                              (uintptr_t)markOopDesc::age_mask_in_place |
1871                                                              epoch_mask_in_place));
1872              if (hash != markOopDesc::no_hash) {
1873                header = header->copy_set_hash(hash);
1874              }
1875              markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1876              // debugging hint
1877              DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1878              if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1879                if (PrintBiasedLockingStatistics)
1880                  (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1881              }
1882              else {
1883                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1884              }
1885              success = true;
1886            }
1887          }
1888
1889          // traditional lightweight locking
1890          if (!success) {
1891            markOop displaced = lockee->mark()->set_unlocked();
1892            entry->lock()->set_displaced_header(displaced);
1893            bool call_vm = UseHeavyMonitors;
1894            if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1895              // Is it simple recursive case?
1896              if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1897                entry->lock()->set_displaced_header(NULL);
1898              } else {
1899                CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1900              }
1901            }
1902          }
1903          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1904        } else {
1905          istate->set_msg(more_monitors);
1906          UPDATE_PC_AND_RETURN(0); // Re-execute
1907        }
1908      }
1909
1910      CASE(_monitorexit): {
1911        oop lockee = STACK_OBJECT(-1);
1912        CHECK_NULL(lockee);
1913        // derefing's lockee ought to provoke implicit null check
1914        // find our monitor slot
1915        BasicObjectLock* limit = istate->monitor_base();
1916        BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1917        while (most_recent != limit ) {
1918          if ((most_recent)->obj() == lockee) {
1919            BasicLock* lock = most_recent->lock();
1920            markOop header = lock->displaced_header();
1921            most_recent->set_obj(NULL);
1922            if (!lockee->mark()->has_bias_pattern()) {
1923              bool call_vm = UseHeavyMonitors;
1924              // If it isn't recursive we either must swap old header or call the runtime
1925              if (header != NULL || call_vm) {
1926                if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1927                  // restore object for the slow case
1928                  most_recent->set_obj(lockee);
1929                  CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1930                }
1931              }
1932            }
1933            UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1934          }
1935          most_recent++;
1936        }
1937        // Need to throw illegal monitor state exception
1938        CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1939        ShouldNotReachHere();
1940      }
1941
1942      /* All of the non-quick opcodes. */
1943
1944      /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1945       *  constant pool index in the instruction.
1946       */
1947      CASE(_getfield):
1948      CASE(_getstatic):
1949        {
1950          u2 index;
1951          ConstantPoolCacheEntry* cache;
1952          index = Bytes::get_native_u2(pc+1);
1953
1954          // QQQ Need to make this as inlined as possible. Probably need to
1955          // split all the bytecode cases out so c++ compiler has a chance
1956          // for constant prop to fold everything possible away.
1957
1958          cache = cp->entry_at(index);
1959          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1960            CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1961                    handle_exception);
1962            cache = cp->entry_at(index);
1963          }
1964
1965#ifdef VM_JVMTI
1966          if (_jvmti_interp_events) {
1967            int *count_addr;
1968            oop obj;
1969            // Check to see if a field modification watch has been set
1970            // before we take the time to call into the VM.
1971            count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1972            if ( *count_addr > 0 ) {
1973              if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1974                obj = (oop)NULL;
1975              } else {
1976                obj = (oop) STACK_OBJECT(-1);
1977                VERIFY_OOP(obj);
1978              }
1979              CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1980                                          obj,
1981                                          cache),
1982                                          handle_exception);
1983            }
1984          }
1985#endif /* VM_JVMTI */
1986
1987          oop obj;
1988          if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1989            Klass* k = cache->f1_as_klass();
1990            obj = k->java_mirror();
1991            MORE_STACK(1);  // Assume single slot push
1992          } else {
1993            obj = (oop) STACK_OBJECT(-1);
1994            CHECK_NULL(obj);
1995          }
1996
1997          //
1998          // Now store the result on the stack
1999          //
2000          TosState tos_type = cache->flag_state();
2001          int field_offset = cache->f2_as_index();
2002          if (cache->is_volatile()) {
2003            if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2004              OrderAccess::fence();
2005            }
2006            if (tos_type == atos) {
2007              VERIFY_OOP(obj->obj_field_acquire(field_offset));
2008              SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2009            } else if (tos_type == itos) {
2010              SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2011            } else if (tos_type == ltos) {
2012              SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2013              MORE_STACK(1);
2014            } else if (tos_type == btos || tos_type == ztos) {
2015              SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2016            } else if (tos_type == ctos) {
2017              SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2018            } else if (tos_type == stos) {
2019              SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2020            } else if (tos_type == ftos) {
2021              SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2022            } else {
2023              SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2024              MORE_STACK(1);
2025            }
2026          } else {
2027            if (tos_type == atos) {
2028              VERIFY_OOP(obj->obj_field(field_offset));
2029              SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2030            } else if (tos_type == itos) {
2031              SET_STACK_INT(obj->int_field(field_offset), -1);
2032            } else if (tos_type == ltos) {
2033              SET_STACK_LONG(obj->long_field(field_offset), 0);
2034              MORE_STACK(1);
2035            } else if (tos_type == btos || tos_type == ztos) {
2036              SET_STACK_INT(obj->byte_field(field_offset), -1);
2037            } else if (tos_type == ctos) {
2038              SET_STACK_INT(obj->char_field(field_offset), -1);
2039            } else if (tos_type == stos) {
2040              SET_STACK_INT(obj->short_field(field_offset), -1);
2041            } else if (tos_type == ftos) {
2042              SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2043            } else {
2044              SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2045              MORE_STACK(1);
2046            }
2047          }
2048
2049          UPDATE_PC_AND_CONTINUE(3);
2050         }
2051
2052      CASE(_putfield):
2053      CASE(_putstatic):
2054        {
2055          u2 index = Bytes::get_native_u2(pc+1);
2056          ConstantPoolCacheEntry* cache = cp->entry_at(index);
2057          if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2058            CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2059                    handle_exception);
2060            cache = cp->entry_at(index);
2061          }
2062
2063#ifdef VM_JVMTI
2064          if (_jvmti_interp_events) {
2065            int *count_addr;
2066            oop obj;
2067            // Check to see if a field modification watch has been set
2068            // before we take the time to call into the VM.
2069            count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2070            if ( *count_addr > 0 ) {
2071              if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2072                obj = (oop)NULL;
2073              }
2074              else {
2075                if (cache->is_long() || cache->is_double()) {
2076                  obj = (oop) STACK_OBJECT(-3);
2077                } else {
2078                  obj = (oop) STACK_OBJECT(-2);
2079                }
2080                VERIFY_OOP(obj);
2081              }
2082
2083              CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2084                                          obj,
2085                                          cache,
2086                                          (jvalue *)STACK_SLOT(-1)),
2087                                          handle_exception);
2088            }
2089          }
2090#endif /* VM_JVMTI */
2091
2092          // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2093          // out so c++ compiler has a chance for constant prop to fold everything possible away.
2094
2095          oop obj;
2096          int count;
2097          TosState tos_type = cache->flag_state();
2098
2099          count = -1;
2100          if (tos_type == ltos || tos_type == dtos) {
2101            --count;
2102          }
2103          if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2104            Klass* k = cache->f1_as_klass();
2105            obj = k->java_mirror();
2106          } else {
2107            --count;
2108            obj = (oop) STACK_OBJECT(count);
2109            CHECK_NULL(obj);
2110          }
2111
2112          //
2113          // Now store the result
2114          //
2115          int field_offset = cache->f2_as_index();
2116          if (cache->is_volatile()) {
2117            if (tos_type == itos) {
2118              obj->release_int_field_put(field_offset, STACK_INT(-1));
2119            } else if (tos_type == atos) {
2120              VERIFY_OOP(STACK_OBJECT(-1));
2121              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2122            } else if (tos_type == btos) {
2123              obj->release_byte_field_put(field_offset, STACK_INT(-1));
2124            } else if (tos_type == ztos) {
2125              int bool_field = STACK_INT(-1);  // only store LSB
2126              obj->release_byte_field_put(field_offset, (bool_field & 1));
2127            } else if (tos_type == ltos) {
2128              obj->release_long_field_put(field_offset, STACK_LONG(-1));
2129            } else if (tos_type == ctos) {
2130              obj->release_char_field_put(field_offset, STACK_INT(-1));
2131            } else if (tos_type == stos) {
2132              obj->release_short_field_put(field_offset, STACK_INT(-1));
2133            } else if (tos_type == ftos) {
2134              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2135            } else {
2136              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2137            }
2138            OrderAccess::storeload();
2139          } else {
2140            if (tos_type == itos) {
2141              obj->int_field_put(field_offset, STACK_INT(-1));
2142            } else if (tos_type == atos) {
2143              VERIFY_OOP(STACK_OBJECT(-1));
2144              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2145            } else if (tos_type == btos) {
2146              obj->byte_field_put(field_offset, STACK_INT(-1));
2147            } else if (tos_type == ztos) {
2148              int bool_field = STACK_INT(-1);  // only store LSB
2149              obj->byte_field_put(field_offset, (bool_field & 1));
2150            } else if (tos_type == ltos) {
2151              obj->long_field_put(field_offset, STACK_LONG(-1));
2152            } else if (tos_type == ctos) {
2153              obj->char_field_put(field_offset, STACK_INT(-1));
2154            } else if (tos_type == stos) {
2155              obj->short_field_put(field_offset, STACK_INT(-1));
2156            } else if (tos_type == ftos) {
2157              obj->float_field_put(field_offset, STACK_FLOAT(-1));
2158            } else {
2159              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2160            }
2161          }
2162
2163          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2164        }
2165
2166      CASE(_new): {
2167        u2 index = Bytes::get_Java_u2(pc+1);
2168        ConstantPool* constants = istate->method()->constants();
2169        if (!constants->tag_at(index).is_unresolved_klass()) {
2170          // Make sure klass is initialized and doesn't have a finalizer
2171          Klass* entry = constants->resolved_klass_at(index);
2172          InstanceKlass* ik = InstanceKlass::cast(entry);
2173          if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2174            size_t obj_size = ik->size_helper();
2175            oop result = NULL;
2176            // If the TLAB isn't pre-zeroed then we'll have to do it
2177            bool need_zero = !ZeroTLAB;
2178            if (UseTLAB) {
2179              result = (oop) THREAD->tlab().allocate(obj_size);
2180            }
2181            // Disable non-TLAB-based fast-path, because profiling requires that all
2182            // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2183            // returns NULL.
2184#ifndef CC_INTERP_PROFILE
2185            if (result == NULL) {
2186              need_zero = true;
2187              // Try allocate in shared eden
2188            retry:
2189              HeapWord* compare_to = *Universe::heap()->top_addr();
2190              HeapWord* new_top = compare_to + obj_size;
2191              if (new_top <= *Universe::heap()->end_addr()) {
2192                if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2193                  goto retry;
2194                }
2195                result = (oop) compare_to;
2196              }
2197            }
2198#endif
2199            if (result != NULL) {
2200              // Initialize object (if nonzero size and need) and then the header
2201              if (need_zero ) {
2202                HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2203                obj_size -= sizeof(oopDesc) / oopSize;
2204                if (obj_size > 0 ) {
2205                  memset(to_zero, 0, obj_size * HeapWordSize);
2206                }
2207              }
2208              if (UseBiasedLocking) {
2209                result->set_mark(ik->prototype_header());
2210              } else {
2211                result->set_mark(markOopDesc::prototype());
2212              }
2213              result->set_klass_gap(0);
2214              result->set_klass(ik);
2215              // Must prevent reordering of stores for object initialization
2216              // with stores that publish the new object.
2217              OrderAccess::storestore();
2218              SET_STACK_OBJECT(result, 0);
2219              UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2220            }
2221          }
2222        }
2223        // Slow case allocation
2224        CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2225                handle_exception);
2226        // Must prevent reordering of stores for object initialization
2227        // with stores that publish the new object.
2228        OrderAccess::storestore();
2229        SET_STACK_OBJECT(THREAD->vm_result(), 0);
2230        THREAD->set_vm_result(NULL);
2231        UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2232      }
2233      CASE(_anewarray): {
2234        u2 index = Bytes::get_Java_u2(pc+1);
2235        jint size = STACK_INT(-1);
2236        CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2237                handle_exception);
2238        // Must prevent reordering of stores for object initialization
2239        // with stores that publish the new object.
2240        OrderAccess::storestore();
2241        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2242        THREAD->set_vm_result(NULL);
2243        UPDATE_PC_AND_CONTINUE(3);
2244      }
2245      CASE(_multianewarray): {
2246        jint dims = *(pc+3);
2247        jint size = STACK_INT(-1);
2248        // stack grows down, dimensions are up!
2249        jint *dimarray =
2250                   (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2251                                      Interpreter::stackElementWords-1];
2252        //adjust pointer to start of stack element
2253        CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2254                handle_exception);
2255        // Must prevent reordering of stores for object initialization
2256        // with stores that publish the new object.
2257        OrderAccess::storestore();
2258        SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2259        THREAD->set_vm_result(NULL);
2260        UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2261      }
2262      CASE(_checkcast):
2263          if (STACK_OBJECT(-1) != NULL) {
2264            VERIFY_OOP(STACK_OBJECT(-1));
2265            u2 index = Bytes::get_Java_u2(pc+1);
2266            // Constant pool may have actual klass or unresolved klass. If it is
2267            // unresolved we must resolve it.
2268            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2269              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2270            }
2271            Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2272            Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2273            //
2274            // Check for compatibilty. This check must not GC!!
2275            // Seems way more expensive now that we must dispatch.
2276            //
2277            if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2278              // Decrement counter at checkcast.
2279              BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2280              ResourceMark rm(THREAD);
2281              char* message = SharedRuntime::generate_class_cast_message(
2282                objKlass, klassOf);
2283              VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2284            }
2285            // Profile checkcast with null_seen and receiver.
2286            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2287          } else {
2288            // Profile checkcast with null_seen and receiver.
2289            BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2290          }
2291          UPDATE_PC_AND_CONTINUE(3);
2292
2293      CASE(_instanceof):
2294          if (STACK_OBJECT(-1) == NULL) {
2295            SET_STACK_INT(0, -1);
2296            // Profile instanceof with null_seen and receiver.
2297            BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2298          } else {
2299            VERIFY_OOP(STACK_OBJECT(-1));
2300            u2 index = Bytes::get_Java_u2(pc+1);
2301            // Constant pool may have actual klass or unresolved klass. If it is
2302            // unresolved we must resolve it.
2303            if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2304              CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2305            }
2306            Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2307            Klass* objKlass = STACK_OBJECT(-1)->klass();
2308            //
2309            // Check for compatibilty. This check must not GC!!
2310            // Seems way more expensive now that we must dispatch.
2311            //
2312            if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2313              SET_STACK_INT(1, -1);
2314            } else {
2315              SET_STACK_INT(0, -1);
2316              // Decrement counter at checkcast.
2317              BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2318            }
2319            // Profile instanceof with null_seen and receiver.
2320            BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2321          }
2322          UPDATE_PC_AND_CONTINUE(3);
2323
2324      CASE(_ldc_w):
2325      CASE(_ldc):
2326        {
2327          u2 index;
2328          bool wide = false;
2329          int incr = 2; // frequent case
2330          if (opcode == Bytecodes::_ldc) {
2331            index = pc[1];
2332          } else {
2333            index = Bytes::get_Java_u2(pc+1);
2334            incr = 3;
2335            wide = true;
2336          }
2337
2338          ConstantPool* constants = METHOD->constants();
2339          switch (constants->tag_at(index).value()) {
2340          case JVM_CONSTANT_Integer:
2341            SET_STACK_INT(constants->int_at(index), 0);
2342            break;
2343
2344          case JVM_CONSTANT_Float:
2345            SET_STACK_FLOAT(constants->float_at(index), 0);
2346            break;
2347
2348          case JVM_CONSTANT_String:
2349            {
2350              oop result = constants->resolved_references()->obj_at(index);
2351              if (result == NULL) {
2352                CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2353                SET_STACK_OBJECT(THREAD->vm_result(), 0);
2354                THREAD->set_vm_result(NULL);
2355              } else {
2356                VERIFY_OOP(result);
2357                SET_STACK_OBJECT(result, 0);
2358              }
2359            break;
2360            }
2361
2362          case JVM_CONSTANT_Class:
2363            VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2364            SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2365            break;
2366
2367          case JVM_CONSTANT_UnresolvedClass:
2368          case JVM_CONSTANT_UnresolvedClassInError:
2369            CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2370            SET_STACK_OBJECT(THREAD->vm_result(), 0);
2371            THREAD->set_vm_result(NULL);
2372            break;
2373
2374          default:  ShouldNotReachHere();
2375          }
2376          UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2377        }
2378
2379      CASE(_ldc2_w):
2380        {
2381          u2 index = Bytes::get_Java_u2(pc+1);
2382
2383          ConstantPool* constants = METHOD->constants();
2384          switch (constants->tag_at(index).value()) {
2385
2386          case JVM_CONSTANT_Long:
2387             SET_STACK_LONG(constants->long_at(index), 1);
2388            break;
2389
2390          case JVM_CONSTANT_Double:
2391             SET_STACK_DOUBLE(constants->double_at(index), 1);
2392            break;
2393          default:  ShouldNotReachHere();
2394          }
2395          UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2396        }
2397
2398      CASE(_fast_aldc_w):
2399      CASE(_fast_aldc): {
2400        u2 index;
2401        int incr;
2402        if (opcode == Bytecodes::_fast_aldc) {
2403          index = pc[1];
2404          incr = 2;
2405        } else {
2406          index = Bytes::get_native_u2(pc+1);
2407          incr = 3;
2408        }
2409
2410        // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2411        // This kind of CP cache entry does not need to match the flags byte, because
2412        // there is a 1-1 relation between bytecode type and CP entry type.
2413        ConstantPool* constants = METHOD->constants();
2414        oop result = constants->resolved_references()->obj_at(index);
2415        if (result == NULL) {
2416          CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2417                  handle_exception);
2418          result = THREAD->vm_result();
2419        }
2420
2421        VERIFY_OOP(result);
2422        SET_STACK_OBJECT(result, 0);
2423        UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2424      }
2425
2426      CASE(_invokedynamic): {
2427
2428        u4 index = Bytes::get_native_u4(pc+1);
2429        ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2430
2431        // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2432        // This kind of CP cache entry does not need to match the flags byte, because
2433        // there is a 1-1 relation between bytecode type and CP entry type.
2434        if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2435          CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2436                  handle_exception);
2437          cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2438        }
2439
2440        Method* method = cache->f1_as_method();
2441        if (VerifyOops) method->verify();
2442
2443        if (cache->has_appendix()) {
2444          ConstantPool* constants = METHOD->constants();
2445          SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2446          MORE_STACK(1);
2447        }
2448
2449        istate->set_msg(call_method);
2450        istate->set_callee(method);
2451        istate->set_callee_entry_point(method->from_interpreted_entry());
2452        istate->set_bcp_advance(5);
2453
2454        // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2455        BI_PROFILE_UPDATE_CALL();
2456
2457        UPDATE_PC_AND_RETURN(0); // I'll be back...
2458      }
2459
2460      CASE(_invokehandle): {
2461
2462        u2 index = Bytes::get_native_u2(pc+1);
2463        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2464
2465        if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2466          CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2467                  handle_exception);
2468          cache = cp->entry_at(index);
2469        }
2470
2471        Method* method = cache->f1_as_method();
2472        if (VerifyOops) method->verify();
2473
2474        if (cache->has_appendix()) {
2475          ConstantPool* constants = METHOD->constants();
2476          SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2477          MORE_STACK(1);
2478        }
2479
2480        istate->set_msg(call_method);
2481        istate->set_callee(method);
2482        istate->set_callee_entry_point(method->from_interpreted_entry());
2483        istate->set_bcp_advance(3);
2484
2485        // Invokehandle has got a call counter, just like a final call -> increment!
2486        BI_PROFILE_UPDATE_FINALCALL();
2487
2488        UPDATE_PC_AND_RETURN(0); // I'll be back...
2489      }
2490
2491      CASE(_invokeinterface): {
2492        u2 index = Bytes::get_native_u2(pc+1);
2493
2494        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2495        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2496
2497        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2498        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2499          CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2500                  handle_exception);
2501          cache = cp->entry_at(index);
2502        }
2503
2504        istate->set_msg(call_method);
2505
2506        // Special case of invokeinterface called for virtual method of
2507        // java.lang.Object.  See cpCacheOop.cpp for details.
2508        // This code isn't produced by javac, but could be produced by
2509        // another compliant java compiler.
2510        if (cache->is_forced_virtual()) {
2511          Method* callee;
2512          CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2513          if (cache->is_vfinal()) {
2514            callee = cache->f2_as_vfinal_method();
2515            // Profile 'special case of invokeinterface' final call.
2516            BI_PROFILE_UPDATE_FINALCALL();
2517          } else {
2518            // Get receiver.
2519            int parms = cache->parameter_size();
2520            // Same comments as invokevirtual apply here.
2521            oop rcvr = STACK_OBJECT(-parms);
2522            VERIFY_OOP(rcvr);
2523            Klass* rcvrKlass = rcvr->klass();
2524            callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2525            // Profile 'special case of invokeinterface' virtual call.
2526            BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2527          }
2528          istate->set_callee(callee);
2529          istate->set_callee_entry_point(callee->from_interpreted_entry());
2530#ifdef VM_JVMTI
2531          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2532            istate->set_callee_entry_point(callee->interpreter_entry());
2533          }
2534#endif /* VM_JVMTI */
2535          istate->set_bcp_advance(5);
2536          UPDATE_PC_AND_RETURN(0); // I'll be back...
2537        }
2538
2539        // this could definitely be cleaned up QQQ
2540        Method* callee;
2541        Klass* iclass = cache->f1_as_klass();
2542        // InstanceKlass* interface = (InstanceKlass*) iclass;
2543        // get receiver
2544        int parms = cache->parameter_size();
2545        oop rcvr = STACK_OBJECT(-parms);
2546        CHECK_NULL(rcvr);
2547        InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2548        itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2549        int i;
2550        for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2551          if (ki->interface_klass() == iclass) break;
2552        }
2553        // If the interface isn't found, this class doesn't implement this
2554        // interface.  The link resolver checks this but only for the first
2555        // time this interface is called.
2556        if (i == int2->itable_length()) {
2557          VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2558        }
2559        int mindex = cache->f2_as_index();
2560        itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2561        callee = im[mindex].method();
2562        if (callee == NULL) {
2563          VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2564        }
2565
2566        // Profile virtual call.
2567        BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2568
2569        istate->set_callee(callee);
2570        istate->set_callee_entry_point(callee->from_interpreted_entry());
2571#ifdef VM_JVMTI
2572        if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2573          istate->set_callee_entry_point(callee->interpreter_entry());
2574        }
2575#endif /* VM_JVMTI */
2576        istate->set_bcp_advance(5);
2577        UPDATE_PC_AND_RETURN(0); // I'll be back...
2578      }
2579
2580      CASE(_invokevirtual):
2581      CASE(_invokespecial):
2582      CASE(_invokestatic): {
2583        u2 index = Bytes::get_native_u2(pc+1);
2584
2585        ConstantPoolCacheEntry* cache = cp->entry_at(index);
2586        // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2587        // out so c++ compiler has a chance for constant prop to fold everything possible away.
2588
2589        if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2590          CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2591                  handle_exception);
2592          cache = cp->entry_at(index);
2593        }
2594
2595        istate->set_msg(call_method);
2596        {
2597          Method* callee;
2598          if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2599            CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2600            if (cache->is_vfinal()) {
2601              callee = cache->f2_as_vfinal_method();
2602              // Profile final call.
2603              BI_PROFILE_UPDATE_FINALCALL();
2604            } else {
2605              // get receiver
2606              int parms = cache->parameter_size();
2607              // this works but needs a resourcemark and seems to create a vtable on every call:
2608              // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2609              //
2610              // this fails with an assert
2611              // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2612              // but this works
2613              oop rcvr = STACK_OBJECT(-parms);
2614              VERIFY_OOP(rcvr);
2615              Klass* rcvrKlass = rcvr->klass();
2616              /*
2617                Executing this code in java.lang.String:
2618                    public String(char value[]) {
2619                          this.count = value.length;
2620                          this.value = (char[])value.clone();
2621                     }
2622
2623                 a find on rcvr->klass() reports:
2624                 {type array char}{type array class}
2625                  - klass: {other class}
2626
2627                  but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2628                  because rcvr->klass()->is_instance_klass() == 0
2629                  However it seems to have a vtable in the right location. Huh?
2630                  Because vtables have the same offset for ArrayKlass and InstanceKlass.
2631              */
2632              callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2633              // Profile virtual call.
2634              BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2635            }
2636          } else {
2637            if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2638              CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2639            }
2640            callee = cache->f1_as_method();
2641
2642            // Profile call.
2643            BI_PROFILE_UPDATE_CALL();
2644          }
2645
2646          istate->set_callee(callee);
2647          istate->set_callee_entry_point(callee->from_interpreted_entry());
2648#ifdef VM_JVMTI
2649          if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2650            istate->set_callee_entry_point(callee->interpreter_entry());
2651          }
2652#endif /* VM_JVMTI */
2653          istate->set_bcp_advance(3);
2654          UPDATE_PC_AND_RETURN(0); // I'll be back...
2655        }
2656      }
2657
2658      /* Allocate memory for a new java object. */
2659
2660      CASE(_newarray): {
2661        BasicType atype = (BasicType) *(pc+1);
2662        jint size = STACK_INT(-1);
2663        CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2664                handle_exception);
2665        // Must prevent reordering of stores for object initialization
2666        // with stores that publish the new object.
2667        OrderAccess::storestore();
2668        SET_STACK_OBJECT(THREAD->vm_result(), -1);
2669        THREAD->set_vm_result(NULL);
2670
2671        UPDATE_PC_AND_CONTINUE(2);
2672      }
2673
2674      /* Throw an exception. */
2675
2676      CASE(_athrow): {
2677          oop except_oop = STACK_OBJECT(-1);
2678          CHECK_NULL(except_oop);
2679          // set pending_exception so we use common code
2680          THREAD->set_pending_exception(except_oop, NULL, 0);
2681          goto handle_exception;
2682      }
2683
2684      /* goto and jsr. They are exactly the same except jsr pushes
2685       * the address of the next instruction first.
2686       */
2687
2688      CASE(_jsr): {
2689          /* push bytecode index on stack */
2690          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2691          MORE_STACK(1);
2692          /* FALL THROUGH */
2693      }
2694
2695      CASE(_goto):
2696      {
2697          int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2698          // Profile jump.
2699          BI_PROFILE_UPDATE_JUMP();
2700          address branch_pc = pc;
2701          UPDATE_PC(offset);
2702          DO_BACKEDGE_CHECKS(offset, branch_pc);
2703          CONTINUE;
2704      }
2705
2706      CASE(_jsr_w): {
2707          /* push return address on the stack */
2708          SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2709          MORE_STACK(1);
2710          /* FALL THROUGH */
2711      }
2712
2713      CASE(_goto_w):
2714      {
2715          int32_t offset = Bytes::get_Java_u4(pc + 1);
2716          // Profile jump.
2717          BI_PROFILE_UPDATE_JUMP();
2718          address branch_pc = pc;
2719          UPDATE_PC(offset);
2720          DO_BACKEDGE_CHECKS(offset, branch_pc);
2721          CONTINUE;
2722      }
2723
2724      /* return from a jsr or jsr_w */
2725
2726      CASE(_ret): {
2727          // Profile ret.
2728          BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2729          // Now, update the pc.
2730          pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2731          UPDATE_PC_AND_CONTINUE(0);
2732      }
2733
2734      /* debugger breakpoint */
2735
2736      CASE(_breakpoint): {
2737          Bytecodes::Code original_bytecode;
2738          DECACHE_STATE();
2739          SET_LAST_JAVA_FRAME();
2740          original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2741                              METHOD, pc);
2742          RESET_LAST_JAVA_FRAME();
2743          CACHE_STATE();
2744          if (THREAD->has_pending_exception()) goto handle_exception;
2745            CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2746                                                    handle_exception);
2747
2748          opcode = (jubyte)original_bytecode;
2749          goto opcode_switch;
2750      }
2751
2752      DEFAULT:
2753          fatal("Unimplemented opcode %d = %s", opcode,
2754                Bytecodes::name((Bytecodes::Code)opcode));
2755          goto finish;
2756
2757      } /* switch(opc) */
2758
2759
2760#ifdef USELABELS
2761    check_for_exception:
2762#endif
2763    {
2764      if (!THREAD->has_pending_exception()) {
2765        CONTINUE;
2766      }
2767      /* We will be gcsafe soon, so flush our state. */
2768      DECACHE_PC();
2769      goto handle_exception;
2770    }
2771  do_continue: ;
2772
2773  } /* while (1) interpreter loop */
2774
2775
2776  // An exception exists in the thread state see whether this activation can handle it
2777  handle_exception: {
2778
2779    HandleMarkCleaner __hmc(THREAD);
2780    Handle except_oop(THREAD, THREAD->pending_exception());
2781    // Prevent any subsequent HandleMarkCleaner in the VM
2782    // from freeing the except_oop handle.
2783    HandleMark __hm(THREAD);
2784
2785    THREAD->clear_pending_exception();
2786    assert(except_oop(), "No exception to process");
2787    intptr_t continuation_bci;
2788    // expression stack is emptied
2789    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2790    CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2791            handle_exception);
2792
2793    except_oop = THREAD->vm_result();
2794    THREAD->set_vm_result(NULL);
2795    if (continuation_bci >= 0) {
2796      // Place exception on top of stack
2797      SET_STACK_OBJECT(except_oop(), 0);
2798      MORE_STACK(1);
2799      pc = METHOD->code_base() + continuation_bci;
2800      if (log_is_enabled(Info, exceptions)) {
2801        ResourceMark rm(THREAD);
2802        stringStream tempst;
2803        tempst.print("interpreter method <%s>\n"
2804                     " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2805                     METHOD->print_value_string(),
2806                     (int)(istate->bcp() - METHOD->code_base()),
2807                     (int)continuation_bci, p2i(THREAD));
2808        Exceptions::log_exception(except_oop, tempst);
2809      }
2810      // for AbortVMOnException flag
2811      Exceptions::debug_check_abort(except_oop);
2812
2813      // Update profiling data.
2814      BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2815      goto run;
2816    }
2817    if (log_is_enabled(Info, exceptions)) {
2818      ResourceMark rm;
2819      stringStream tempst;
2820      tempst.print("interpreter method <%s>\n"
2821             " at bci %d, unwinding for thread " INTPTR_FORMAT,
2822             METHOD->print_value_string(),
2823             (int)(istate->bcp() - METHOD->code_base()),
2824             p2i(THREAD));
2825      Exceptions::log_exception(except_oop, tempst);
2826    }
2827    // for AbortVMOnException flag
2828    Exceptions::debug_check_abort(except_oop);
2829
2830    // No handler in this activation, unwind and try again
2831    THREAD->set_pending_exception(except_oop(), NULL, 0);
2832    goto handle_return;
2833  }  // handle_exception:
2834
2835  // Return from an interpreter invocation with the result of the interpretation
2836  // on the top of the Java Stack (or a pending exception)
2837
2838  handle_Pop_Frame: {
2839
2840    // We don't really do anything special here except we must be aware
2841    // that we can get here without ever locking the method (if sync).
2842    // Also we skip the notification of the exit.
2843
2844    istate->set_msg(popping_frame);
2845    // Clear pending so while the pop is in process
2846    // we don't start another one if a call_vm is done.
2847    THREAD->clr_pop_frame_pending();
2848    // Let interpreter (only) see the we're in the process of popping a frame
2849    THREAD->set_pop_frame_in_process();
2850
2851    goto handle_return;
2852
2853  } // handle_Pop_Frame
2854
2855  // ForceEarlyReturn ends a method, and returns to the caller with a return value
2856  // given by the invoker of the early return.
2857  handle_Early_Return: {
2858
2859    istate->set_msg(early_return);
2860
2861    // Clear expression stack.
2862    topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2863
2864    JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2865
2866    // Push the value to be returned.
2867    switch (istate->method()->result_type()) {
2868      case T_BOOLEAN:
2869      case T_SHORT:
2870      case T_BYTE:
2871      case T_CHAR:
2872      case T_INT:
2873        SET_STACK_INT(ts->earlyret_value().i, 0);
2874        MORE_STACK(1);
2875        break;
2876      case T_LONG:
2877        SET_STACK_LONG(ts->earlyret_value().j, 1);
2878        MORE_STACK(2);
2879        break;
2880      case T_FLOAT:
2881        SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2882        MORE_STACK(1);
2883        break;
2884      case T_DOUBLE:
2885        SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2886        MORE_STACK(2);
2887        break;
2888      case T_ARRAY:
2889      case T_OBJECT:
2890        SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2891        MORE_STACK(1);
2892        break;
2893    }
2894
2895    ts->clr_earlyret_value();
2896    ts->set_earlyret_oop(NULL);
2897    ts->clr_earlyret_pending();
2898
2899    // Fall through to handle_return.
2900
2901  } // handle_Early_Return
2902
2903  handle_return: {
2904    // A storestore barrier is required to order initialization of
2905    // final fields with publishing the reference to the object that
2906    // holds the field. Without the barrier the value of final fields
2907    // can be observed to change.
2908    OrderAccess::storestore();
2909
2910    DECACHE_STATE();
2911
2912    bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2913    bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2914    Handle original_exception(THREAD, THREAD->pending_exception());
2915    Handle illegal_state_oop(THREAD, NULL);
2916
2917    // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2918    // in any following VM entries from freeing our live handles, but illegal_state_oop
2919    // isn't really allocated yet and so doesn't become live until later and
2920    // in unpredicatable places. Instead we must protect the places where we enter the
2921    // VM. It would be much simpler (and safer) if we could allocate a real handle with
2922    // a NULL oop in it and then overwrite the oop later as needed. This isn't
2923    // unfortunately isn't possible.
2924
2925    THREAD->clear_pending_exception();
2926
2927    //
2928    // As far as we are concerned we have returned. If we have a pending exception
2929    // that will be returned as this invocation's result. However if we get any
2930    // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2931    // will be our final result (i.e. monitor exception trumps a pending exception).
2932    //
2933
2934    // If we never locked the method (or really passed the point where we would have),
2935    // there is no need to unlock it (or look for other monitors), since that
2936    // could not have happened.
2937
2938    if (THREAD->do_not_unlock()) {
2939
2940      // Never locked, reset the flag now because obviously any caller must
2941      // have passed their point of locking for us to have gotten here.
2942
2943      THREAD->clr_do_not_unlock();
2944    } else {
2945      // At this point we consider that we have returned. We now check that the
2946      // locks were properly block structured. If we find that they were not
2947      // used properly we will return with an illegal monitor exception.
2948      // The exception is checked by the caller not the callee since this
2949      // checking is considered to be part of the invocation and therefore
2950      // in the callers scope (JVM spec 8.13).
2951      //
2952      // Another weird thing to watch for is if the method was locked
2953      // recursively and then not exited properly. This means we must
2954      // examine all the entries in reverse time(and stack) order and
2955      // unlock as we find them. If we find the method monitor before
2956      // we are at the initial entry then we should throw an exception.
2957      // It is not clear the template based interpreter does this
2958      // correctly
2959
2960      BasicObjectLock* base = istate->monitor_base();
2961      BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2962      bool method_unlock_needed = METHOD->is_synchronized();
2963      // We know the initial monitor was used for the method don't check that
2964      // slot in the loop
2965      if (method_unlock_needed) base--;
2966
2967      // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2968      while (end < base) {
2969        oop lockee = end->obj();
2970        if (lockee != NULL) {
2971          BasicLock* lock = end->lock();
2972          markOop header = lock->displaced_header();
2973          end->set_obj(NULL);
2974
2975          if (!lockee->mark()->has_bias_pattern()) {
2976            // If it isn't recursive we either must swap old header or call the runtime
2977            if (header != NULL) {
2978              if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2979                // restore object for the slow case
2980                end->set_obj(lockee);
2981                {
2982                  // Prevent any HandleMarkCleaner from freeing our live handles
2983                  HandleMark __hm(THREAD);
2984                  CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2985                }
2986              }
2987            }
2988          }
2989          // One error is plenty
2990          if (illegal_state_oop() == NULL && !suppress_error) {
2991            {
2992              // Prevent any HandleMarkCleaner from freeing our live handles
2993              HandleMark __hm(THREAD);
2994              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2995            }
2996            assert(THREAD->has_pending_exception(), "Lost our exception!");
2997            illegal_state_oop = THREAD->pending_exception();
2998            THREAD->clear_pending_exception();
2999          }
3000        }
3001        end++;
3002      }
3003      // Unlock the method if needed
3004      if (method_unlock_needed) {
3005        if (base->obj() == NULL) {
3006          // The method is already unlocked this is not good.
3007          if (illegal_state_oop() == NULL && !suppress_error) {
3008            {
3009              // Prevent any HandleMarkCleaner from freeing our live handles
3010              HandleMark __hm(THREAD);
3011              CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3012            }
3013            assert(THREAD->has_pending_exception(), "Lost our exception!");
3014            illegal_state_oop = THREAD->pending_exception();
3015            THREAD->clear_pending_exception();
3016          }
3017        } else {
3018          //
3019          // The initial monitor is always used for the method
3020          // However if that slot is no longer the oop for the method it was unlocked
3021          // and reused by something that wasn't unlocked!
3022          //
3023          // deopt can come in with rcvr dead because c2 knows
3024          // its value is preserved in the monitor. So we can't use locals[0] at all
3025          // and must use first monitor slot.
3026          //
3027          oop rcvr = base->obj();
3028          if (rcvr == NULL) {
3029            if (!suppress_error) {
3030              VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3031              illegal_state_oop = THREAD->pending_exception();
3032              THREAD->clear_pending_exception();
3033            }
3034          } else if (UseHeavyMonitors) {
3035            {
3036              // Prevent any HandleMarkCleaner from freeing our live handles.
3037              HandleMark __hm(THREAD);
3038              CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3039            }
3040            if (THREAD->has_pending_exception()) {
3041              if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3042              THREAD->clear_pending_exception();
3043            }
3044          } else {
3045            BasicLock* lock = base->lock();
3046            markOop header = lock->displaced_header();
3047            base->set_obj(NULL);
3048
3049            if (!rcvr->mark()->has_bias_pattern()) {
3050              base->set_obj(NULL);
3051              // If it isn't recursive we either must swap old header or call the runtime
3052              if (header != NULL) {
3053                if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3054                  // restore object for the slow case
3055                  base->set_obj(rcvr);
3056                  {
3057                    // Prevent any HandleMarkCleaner from freeing our live handles
3058                    HandleMark __hm(THREAD);
3059                    CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3060                  }
3061                  if (THREAD->has_pending_exception()) {
3062                    if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3063                    THREAD->clear_pending_exception();
3064                  }
3065                }
3066              }
3067            }
3068          }
3069        }
3070      }
3071    }
3072    // Clear the do_not_unlock flag now.
3073    THREAD->clr_do_not_unlock();
3074
3075    //
3076    // Notify jvmti/jvmdi
3077    //
3078    // NOTE: we do not notify a method_exit if we have a pending exception,
3079    // including an exception we generate for unlocking checks.  In the former
3080    // case, JVMDI has already been notified by our call for the exception handler
3081    // and in both cases as far as JVMDI is concerned we have already returned.
3082    // If we notify it again JVMDI will be all confused about how many frames
3083    // are still on the stack (4340444).
3084    //
3085    // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3086    // method_exit events whenever we leave an activation unless it was done
3087    // for popframe. This is nothing like jvmdi. However we are passing the
3088    // tests at the moment (apparently because they are jvmdi based) so rather
3089    // than change this code and possibly fail tests we will leave it alone
3090    // (with this note) in anticipation of changing the vm and the tests
3091    // simultaneously.
3092
3093
3094    //
3095    suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3096
3097
3098
3099#ifdef VM_JVMTI
3100      if (_jvmti_interp_events) {
3101        // Whenever JVMTI puts a thread in interp_only_mode, method
3102        // entry/exit events are sent for that thread to track stack depth.
3103        if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3104          {
3105            // Prevent any HandleMarkCleaner from freeing our live handles
3106            HandleMark __hm(THREAD);
3107            CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3108          }
3109        }
3110      }
3111#endif /* VM_JVMTI */
3112
3113    //
3114    // See if we are returning any exception
3115    // A pending exception that was pending prior to a possible popping frame
3116    // overrides the popping frame.
3117    //
3118    assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3119    if (illegal_state_oop() != NULL || original_exception() != NULL) {
3120      // Inform the frame manager we have no result.
3121      istate->set_msg(throwing_exception);
3122      if (illegal_state_oop() != NULL)
3123        THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3124      else
3125        THREAD->set_pending_exception(original_exception(), NULL, 0);
3126      UPDATE_PC_AND_RETURN(0);
3127    }
3128
3129    if (istate->msg() == popping_frame) {
3130      // Make it simpler on the assembly code and set the message for the frame pop.
3131      // returns
3132      if (istate->prev() == NULL) {
3133        // We must be returning to a deoptimized frame (because popframe only happens between
3134        // two interpreted frames). We need to save the current arguments in C heap so that
3135        // the deoptimized frame when it restarts can copy the arguments to its expression
3136        // stack and re-execute the call. We also have to notify deoptimization that this
3137        // has occurred and to pick the preserved args copy them to the deoptimized frame's
3138        // java expression stack. Yuck.
3139        //
3140        THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3141                                LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3142        THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3143      }
3144    } else {
3145      istate->set_msg(return_from_method);
3146    }
3147
3148    // Normal return
3149    // Advance the pc and return to frame manager
3150    UPDATE_PC_AND_RETURN(1);
3151  } /* handle_return: */
3152
3153// This is really a fatal error return
3154
3155finish:
3156  DECACHE_TOS();
3157  DECACHE_PC();
3158
3159  return;
3160}
3161
3162/*
3163 * All the code following this point is only produced once and is not present
3164 * in the JVMTI version of the interpreter
3165*/
3166
3167#ifndef VM_JVMTI
3168
3169// This constructor should only be used to contruct the object to signal
3170// interpreter initialization. All other instances should be created by
3171// the frame manager.
3172BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3173  if (msg != initialize) ShouldNotReachHere();
3174  _msg = msg;
3175  _self_link = this;
3176  _prev_link = NULL;
3177}
3178
3179// Inline static functions for Java Stack and Local manipulation
3180
3181// The implementations are platform dependent. We have to worry about alignment
3182// issues on some machines which can change on the same platform depending on
3183// whether it is an LP64 machine also.
3184address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3185  return (address) tos[Interpreter::expr_index_at(-offset)];
3186}
3187
3188jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3189  return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3190}
3191
3192jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3193  return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3194}
3195
3196oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3197  return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3198}
3199
3200jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3201  return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3202}
3203
3204jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3205  return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3206}
3207
3208// only used for value types
3209void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3210                                                        int offset) {
3211  *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3212}
3213
3214void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3215                                                       int offset) {
3216  *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3217}
3218
3219void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3220                                                         int offset) {
3221  *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3222}
3223
3224void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3225                                                          int offset) {
3226  *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3227}
3228
3229// needs to be platform dep for the 32 bit platforms.
3230void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3231                                                          int offset) {
3232  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3233}
3234
3235void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3236                                              address addr, int offset) {
3237  (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3238                        ((VMJavaVal64*)addr)->d);
3239}
3240
3241void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3242                                                        int offset) {
3243  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3244  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3245}
3246
3247void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3248                                            address addr, int offset) {
3249  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3250  ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3251                        ((VMJavaVal64*)addr)->l;
3252}
3253
3254// Locals
3255
3256address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3257  return (address)locals[Interpreter::local_index_at(-offset)];
3258}
3259jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3260  return (jint)locals[Interpreter::local_index_at(-offset)];
3261}
3262jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3263  return (jfloat)locals[Interpreter::local_index_at(-offset)];
3264}
3265oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3266  return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3267}
3268jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3269  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3270}
3271jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3272  return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3273}
3274
3275// Returns the address of locals value.
3276address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3277  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3278}
3279address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3280  return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3281}
3282
3283// Used for local value or returnAddress
3284void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3285                                   address value, int offset) {
3286  *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3287}
3288void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3289                                   jint value, int offset) {
3290  *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3291}
3292void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3293                                   jfloat value, int offset) {
3294  *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3295}
3296void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3297                                   oop value, int offset) {
3298  *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3299}
3300void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3301                                   jdouble value, int offset) {
3302  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3303}
3304void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3305                                   jlong value, int offset) {
3306  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3307}
3308void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3309                                   address addr, int offset) {
3310  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3311}
3312void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3313                                   address addr, int offset) {
3314  ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3315}
3316
3317void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3318                          intptr_t* locals, int locals_offset) {
3319  intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3320  locals[Interpreter::local_index_at(-locals_offset)] = value;
3321}
3322
3323
3324void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3325                                   int to_offset) {
3326  tos[Interpreter::expr_index_at(-to_offset)] =
3327                      (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3328}
3329
3330void BytecodeInterpreter::dup(intptr_t *tos) {
3331  copy_stack_slot(tos, -1, 0);
3332}
3333void BytecodeInterpreter::dup2(intptr_t *tos) {
3334  copy_stack_slot(tos, -2, 0);
3335  copy_stack_slot(tos, -1, 1);
3336}
3337
3338void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3339  /* insert top word two down */
3340  copy_stack_slot(tos, -1, 0);
3341  copy_stack_slot(tos, -2, -1);
3342  copy_stack_slot(tos, 0, -2);
3343}
3344
3345void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3346  /* insert top word three down  */
3347  copy_stack_slot(tos, -1, 0);
3348  copy_stack_slot(tos, -2, -1);
3349  copy_stack_slot(tos, -3, -2);
3350  copy_stack_slot(tos, 0, -3);
3351}
3352void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3353  /* insert top 2 slots three down */
3354  copy_stack_slot(tos, -1, 1);
3355  copy_stack_slot(tos, -2, 0);
3356  copy_stack_slot(tos, -3, -1);
3357  copy_stack_slot(tos, 1, -2);
3358  copy_stack_slot(tos, 0, -3);
3359}
3360void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3361  /* insert top 2 slots four down */
3362  copy_stack_slot(tos, -1, 1);
3363  copy_stack_slot(tos, -2, 0);
3364  copy_stack_slot(tos, -3, -1);
3365  copy_stack_slot(tos, -4, -2);
3366  copy_stack_slot(tos, 1, -3);
3367  copy_stack_slot(tos, 0, -4);
3368}
3369
3370
3371void BytecodeInterpreter::swap(intptr_t *tos) {
3372  // swap top two elements
3373  intptr_t val = tos[Interpreter::expr_index_at(1)];
3374  // Copy -2 entry to -1
3375  copy_stack_slot(tos, -2, -1);
3376  // Store saved -1 entry into -2
3377  tos[Interpreter::expr_index_at(2)] = val;
3378}
3379// --------------------------------------------------------------------------------
3380// Non-product code
3381#ifndef PRODUCT
3382
3383const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3384  switch (msg) {
3385     case BytecodeInterpreter::no_request:  return("no_request");
3386     case BytecodeInterpreter::initialize:  return("initialize");
3387     // status message to C++ interpreter
3388     case BytecodeInterpreter::method_entry:  return("method_entry");
3389     case BytecodeInterpreter::method_resume:  return("method_resume");
3390     case BytecodeInterpreter::got_monitors:  return("got_monitors");
3391     case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3392     // requests to frame manager from C++ interpreter
3393     case BytecodeInterpreter::call_method:  return("call_method");
3394     case BytecodeInterpreter::return_from_method:  return("return_from_method");
3395     case BytecodeInterpreter::more_monitors:  return("more_monitors");
3396     case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3397     case BytecodeInterpreter::popping_frame:  return("popping_frame");
3398     case BytecodeInterpreter::do_osr:  return("do_osr");
3399     // deopt
3400     case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3401     case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3402     default: return("BAD MSG");
3403  }
3404}
3405void
3406BytecodeInterpreter::print() {
3407  tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3408  tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3409  tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3410  tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3411  {
3412    ResourceMark rm;
3413    char *method_name = _method->name_and_sig_as_C_string();
3414    tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3415  }
3416  tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3417  tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3418  tty->print_cr("msg: %s", C_msg(this->_msg));
3419  tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3420  tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3421  tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3422  tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3423  tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3424  tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3425  tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3426  tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3427  tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3428  tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3429#ifdef SPARC
3430  tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3431  tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3432  tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3433  tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3434#endif
3435#if !defined(ZERO) && defined(PPC)
3436  tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3437#endif // !ZERO
3438  tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3439}
3440
3441extern "C" {
3442  void PI(uintptr_t arg) {
3443    ((BytecodeInterpreter*)arg)->print();
3444  }
3445}
3446#endif // PRODUCT
3447
3448#endif // JVMTI
3449#endif // CC_INTERP
3450