workgroup.cpp revision 13477:4d61110c6046
1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/gcId.hpp"
27#include "gc/shared/workgroup.hpp"
28#include "gc/shared/workerManager.hpp"
29#include "memory/allocation.hpp"
30#include "memory/allocation.inline.hpp"
31#include "runtime/atomic.hpp"
32#include "runtime/os.hpp"
33#include "runtime/semaphore.hpp"
34#include "runtime/thread.inline.hpp"
35
36// Definitions of WorkGang methods.
37
38// The current implementation will exit if the allocation
39// of any worker fails.
40void  AbstractWorkGang::initialize_workers() {
41  log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
42  _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
43  if (_workers == NULL) {
44    vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
45  }
46
47  add_workers(true);
48}
49
50
51AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
52  AbstractGangWorker* new_worker = allocate_worker(worker_id);
53  set_thread(worker_id, new_worker);
54  return new_worker;
55}
56
57void AbstractWorkGang::add_workers(bool initializing) {
58  add_workers(_active_workers, initializing);
59}
60
61void AbstractWorkGang::add_workers(uint active_workers, bool initializing) {
62
63  os::ThreadType worker_type;
64  if (are_ConcurrentGC_threads()) {
65    worker_type = os::cgc_thread;
66  } else {
67    worker_type = os::pgc_thread;
68  }
69  uint previous_created_workers = _created_workers;
70
71  _created_workers = WorkerManager::add_workers(this,
72                                                active_workers,
73                                                _total_workers,
74                                                _created_workers,
75                                                worker_type,
76                                                initializing);
77  _active_workers = MIN2(_created_workers, _active_workers);
78
79  WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing);
80}
81
82AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
83  // Array index bounds checking.
84  AbstractGangWorker* result = NULL;
85  assert(_workers != NULL, "No workers for indexing");
86  assert(i < total_workers(), "Worker index out of bounds");
87  result = _workers[i];
88  assert(result != NULL, "Indexing to null worker");
89  return result;
90}
91
92void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
93  uint workers = created_workers();
94  for (uint i = 0; i < workers; i++) {
95    worker(i)->print_on(st);
96    st->cr();
97  }
98}
99
100void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
101  assert(tc != NULL, "Null ThreadClosure");
102  uint workers = created_workers();
103  for (uint i = 0; i < workers; i++) {
104    tc->do_thread(worker(i));
105  }
106}
107
108// WorkGang dispatcher implemented with semaphores.
109//
110// Semaphores don't require the worker threads to re-claim the lock when they wake up.
111// This helps lowering the latency when starting and stopping the worker threads.
112class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
113  // The task currently being dispatched to the GangWorkers.
114  AbstractGangTask* _task;
115
116  volatile uint _started;
117  volatile uint _not_finished;
118
119  // Semaphore used to start the GangWorkers.
120  Semaphore* _start_semaphore;
121  // Semaphore used to notify the coordinator that all workers are done.
122  Semaphore* _end_semaphore;
123
124public:
125  SemaphoreGangTaskDispatcher() :
126      _task(NULL),
127      _started(0),
128      _not_finished(0),
129      _start_semaphore(new Semaphore()),
130      _end_semaphore(new Semaphore())
131{ }
132
133  ~SemaphoreGangTaskDispatcher() {
134    delete _start_semaphore;
135    delete _end_semaphore;
136  }
137
138  void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
139    // No workers are allowed to read the state variables until they have been signaled.
140    _task         = task;
141    _not_finished = num_workers;
142
143    // Dispatch 'num_workers' number of tasks.
144    _start_semaphore->signal(num_workers);
145
146    // Wait for the last worker to signal the coordinator.
147    _end_semaphore->wait();
148
149    // No workers are allowed to read the state variables after the coordinator has been signaled.
150    assert(_not_finished == 0, "%d not finished workers?", _not_finished);
151    _task    = NULL;
152    _started = 0;
153
154  }
155
156  WorkData worker_wait_for_task() {
157    // Wait for the coordinator to dispatch a task.
158    _start_semaphore->wait();
159
160    uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started);
161
162    // Subtract one to get a zero-indexed worker id.
163    uint worker_id = num_started - 1;
164
165    return WorkData(_task, worker_id);
166  }
167
168  void worker_done_with_task() {
169    // Mark that the worker is done with the task.
170    // The worker is not allowed to read the state variables after this line.
171    uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished);
172
173    // The last worker signals to the coordinator that all work is completed.
174    if (not_finished == 0) {
175      _end_semaphore->signal();
176    }
177  }
178};
179
180class MutexGangTaskDispatcher : public GangTaskDispatcher {
181  AbstractGangTask* _task;
182
183  volatile uint _started;
184  volatile uint _finished;
185  volatile uint _num_workers;
186
187  Monitor* _monitor;
188
189 public:
190  MutexGangTaskDispatcher()
191      : _task(NULL),
192        _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)),
193        _started(0),
194        _finished(0),
195        _num_workers(0) {}
196
197  ~MutexGangTaskDispatcher() {
198    delete _monitor;
199  }
200
201  void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
202    MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
203
204    _task        = task;
205    _num_workers = num_workers;
206
207    // Tell the workers to get to work.
208    _monitor->notify_all();
209
210    // Wait for them to finish.
211    while (_finished < _num_workers) {
212      _monitor->wait(/* no_safepoint_check */ true);
213    }
214
215    _task        = NULL;
216    _num_workers = 0;
217    _started     = 0;
218    _finished    = 0;
219  }
220
221  WorkData worker_wait_for_task() {
222    MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
223
224    while (_num_workers == 0 || _started == _num_workers) {
225      _monitor->wait(/* no_safepoint_check */ true);
226    }
227
228    _started++;
229
230    // Subtract one to get a zero-indexed worker id.
231    uint worker_id = _started - 1;
232
233    return WorkData(_task, worker_id);
234  }
235
236  void worker_done_with_task() {
237    MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
238
239    _finished++;
240
241    if (_finished == _num_workers) {
242      // This will wake up all workers and not only the coordinator.
243      _monitor->notify_all();
244    }
245  }
246};
247
248static GangTaskDispatcher* create_dispatcher() {
249  if (UseSemaphoreGCThreadsSynchronization) {
250    return new SemaphoreGangTaskDispatcher();
251  }
252
253  return new MutexGangTaskDispatcher();
254}
255
256WorkGang::WorkGang(const char* name,
257                   uint  workers,
258                   bool  are_GC_task_threads,
259                   bool  are_ConcurrentGC_threads) :
260    AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
261    _dispatcher(create_dispatcher())
262{ }
263
264AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
265  return new GangWorker(this, worker_id);
266}
267
268void WorkGang::run_task(AbstractGangTask* task) {
269  run_task(task, active_workers());
270}
271
272void WorkGang::run_task(AbstractGangTask* task, uint num_workers) {
273  guarantee(num_workers <= total_workers(),
274            "Trying to execute task %s with %u workers which is more than the amount of total workers %u.",
275            task->name(), num_workers, total_workers());
276  guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name());
277  uint old_num_workers = _active_workers;
278  update_active_workers(num_workers);
279  _dispatcher->coordinator_execute_on_workers(task, num_workers);
280  update_active_workers(old_num_workers);
281}
282
283AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
284  _gang = gang;
285  set_id(id);
286  set_name("%s#%d", gang->name(), id);
287}
288
289void AbstractGangWorker::run() {
290  initialize();
291  loop();
292}
293
294void AbstractGangWorker::initialize() {
295  this->record_stack_base_and_size();
296  this->initialize_named_thread();
297  assert(_gang != NULL, "No gang to run in");
298  os::set_priority(this, NearMaxPriority);
299  log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
300  // The VM thread should not execute here because MutexLocker's are used
301  // as (opposed to MutexLockerEx's).
302  assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
303         " of a work gang");
304}
305
306bool AbstractGangWorker::is_GC_task_thread() const {
307  return gang()->are_GC_task_threads();
308}
309
310bool AbstractGangWorker::is_ConcurrentGC_thread() const {
311  return gang()->are_ConcurrentGC_threads();
312}
313
314void AbstractGangWorker::print_on(outputStream* st) const {
315  st->print("\"%s\" ", name());
316  Thread::print_on(st);
317  st->cr();
318}
319
320WorkData GangWorker::wait_for_task() {
321  return gang()->dispatcher()->worker_wait_for_task();
322}
323
324void GangWorker::signal_task_done() {
325  gang()->dispatcher()->worker_done_with_task();
326}
327
328void GangWorker::run_task(WorkData data) {
329  GCIdMark gc_id_mark(data._task->gc_id());
330  log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
331
332  data._task->work(data._worker_id);
333
334  log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
335                                  name(), data._task->name(), data._worker_id, p2i(Thread::current()));
336}
337
338void GangWorker::loop() {
339  while (true) {
340    WorkData data = wait_for_task();
341
342    run_task(data);
343
344    signal_task_done();
345  }
346}
347
348// *** WorkGangBarrierSync
349
350WorkGangBarrierSync::WorkGangBarrierSync()
351  : _monitor(Mutex::safepoint, "work gang barrier sync", true,
352             Monitor::_safepoint_check_never),
353    _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
354}
355
356WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
357  : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
358    _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
359}
360
361void WorkGangBarrierSync::set_n_workers(uint n_workers) {
362  _n_workers    = n_workers;
363  _n_completed  = 0;
364  _should_reset = false;
365  _aborted      = false;
366}
367
368bool WorkGangBarrierSync::enter() {
369  MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
370  if (should_reset()) {
371    // The should_reset() was set and we are the first worker to enter
372    // the sync barrier. We will zero the n_completed() count which
373    // effectively resets the barrier.
374    zero_completed();
375    set_should_reset(false);
376  }
377  inc_completed();
378  if (n_completed() == n_workers()) {
379    // At this point we would like to reset the barrier to be ready in
380    // case it is used again. However, we cannot set n_completed() to
381    // 0, even after the notify_all(), given that some other workers
382    // might still be waiting for n_completed() to become ==
383    // n_workers(). So, if we set n_completed() to 0, those workers
384    // will get stuck (as they will wake up, see that n_completed() !=
385    // n_workers() and go back to sleep). Instead, we raise the
386    // should_reset() flag and the barrier will be reset the first
387    // time a worker enters it again.
388    set_should_reset(true);
389    monitor()->notify_all();
390  } else {
391    while (n_completed() != n_workers() && !aborted()) {
392      monitor()->wait(/* no_safepoint_check */ true);
393    }
394  }
395  return !aborted();
396}
397
398void WorkGangBarrierSync::abort() {
399  MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
400  set_aborted();
401  monitor()->notify_all();
402}
403
404// SubTasksDone functions.
405
406SubTasksDone::SubTasksDone(uint n) :
407  _n_tasks(n), _tasks(NULL) {
408  _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
409  guarantee(_tasks != NULL, "alloc failure");
410  clear();
411}
412
413bool SubTasksDone::valid() {
414  return _tasks != NULL;
415}
416
417void SubTasksDone::clear() {
418  for (uint i = 0; i < _n_tasks; i++) {
419    _tasks[i] = 0;
420  }
421  _threads_completed = 0;
422#ifdef ASSERT
423  _claimed = 0;
424#endif
425}
426
427bool SubTasksDone::is_task_claimed(uint t) {
428  assert(t < _n_tasks, "bad task id.");
429  uint old = _tasks[t];
430  if (old == 0) {
431    old = Atomic::cmpxchg(1u, &_tasks[t], 0u);
432  }
433  assert(_tasks[t] == 1, "What else?");
434  bool res = old != 0;
435#ifdef ASSERT
436  if (!res) {
437    assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
438    Atomic::inc((volatile jint*) &_claimed);
439  }
440#endif
441  return res;
442}
443
444void SubTasksDone::all_tasks_completed(uint n_threads) {
445  uint observed = _threads_completed;
446  uint old;
447  do {
448    old = observed;
449    observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
450  } while (observed != old);
451  // If this was the last thread checking in, clear the tasks.
452  uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
453  if (observed + 1 == adjusted_thread_count) {
454    clear();
455  }
456}
457
458
459SubTasksDone::~SubTasksDone() {
460  if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
461}
462
463// *** SequentialSubTasksDone
464
465void SequentialSubTasksDone::clear() {
466  _n_tasks   = _n_claimed   = 0;
467  _n_threads = _n_completed = 0;
468}
469
470bool SequentialSubTasksDone::valid() {
471  return _n_threads > 0;
472}
473
474bool SequentialSubTasksDone::is_task_claimed(uint& t) {
475  t = _n_claimed;
476  while (t < _n_tasks) {
477    uint res = Atomic::cmpxchg(t+1, &_n_claimed, t);
478    if (res == t) {
479      return false;
480    }
481    t = res;
482  }
483  return true;
484}
485
486bool SequentialSubTasksDone::all_tasks_completed() {
487  uint complete = _n_completed;
488  while (true) {
489    uint res = Atomic::cmpxchg(complete+1, &_n_completed, complete);
490    if (res == complete) {
491      break;
492    }
493    complete = res;
494  }
495  if (complete+1 == _n_threads) {
496    clear();
497    return true;
498  }
499  return false;
500}
501