space.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "gc/serial/defNewGeneration.hpp"
29#include "gc/shared/blockOffsetTable.inline.hpp"
30#include "gc/shared/collectedHeap.inline.hpp"
31#include "gc/shared/genCollectedHeap.hpp"
32#include "gc/shared/genOopClosures.inline.hpp"
33#include "gc/shared/liveRange.hpp"
34#include "gc/shared/space.hpp"
35#include "gc/shared/space.inline.hpp"
36#include "gc/shared/spaceDecorator.hpp"
37#include "memory/universe.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "runtime/atomic.inline.hpp"
40#include "runtime/java.hpp"
41#include "runtime/orderAccess.inline.hpp"
42#include "runtime/prefetch.inline.hpp"
43#include "runtime/safepoint.hpp"
44#include "utilities/copy.hpp"
45#include "utilities/globalDefinitions.hpp"
46#include "utilities/macros.hpp"
47
48HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
49                                                HeapWord* top_obj) {
50  if (top_obj != NULL) {
51    if (_sp->block_is_obj(top_obj)) {
52      if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
53        if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
54          // An arrayOop is starting on the dirty card - since we do exact
55          // store checks for objArrays we are done.
56        } else {
57          // Otherwise, it is possible that the object starting on the dirty
58          // card spans the entire card, and that the store happened on a
59          // later card.  Figure out where the object ends.
60          // Use the block_size() method of the space over which
61          // the iteration is being done.  That space (e.g. CMS) may have
62          // specific requirements on object sizes which will
63          // be reflected in the block_size() method.
64          top = top_obj + oop(top_obj)->size();
65        }
66      }
67    } else {
68      top = top_obj;
69    }
70  } else {
71    assert(top == _sp->end(), "only case where top_obj == NULL");
72  }
73  return top;
74}
75
76void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
77                                            HeapWord* bottom,
78                                            HeapWord* top) {
79  // 1. Blocks may or may not be objects.
80  // 2. Even when a block_is_obj(), it may not entirely
81  //    occupy the block if the block quantum is larger than
82  //    the object size.
83  // We can and should try to optimize by calling the non-MemRegion
84  // version of oop_iterate() for all but the extremal objects
85  // (for which we need to call the MemRegion version of
86  // oop_iterate()) To be done post-beta XXX
87  for (; bottom < top; bottom += _sp->block_size(bottom)) {
88    // As in the case of contiguous space above, we'd like to
89    // just use the value returned by oop_iterate to increment the
90    // current pointer; unfortunately, that won't work in CMS because
91    // we'd need an interface change (it seems) to have the space
92    // "adjust the object size" (for instance pad it up to its
93    // block alignment or minimum block size restrictions. XXX
94    if (_sp->block_is_obj(bottom) &&
95        !_sp->obj_allocated_since_save_marks(oop(bottom))) {
96      oop(bottom)->oop_iterate(_cl, mr);
97    }
98  }
99}
100
101// We get called with "mr" representing the dirty region
102// that we want to process. Because of imprecise marking,
103// we may need to extend the incoming "mr" to the right,
104// and scan more. However, because we may already have
105// scanned some of that extended region, we may need to
106// trim its right-end back some so we do not scan what
107// we (or another worker thread) may already have scanned
108// or planning to scan.
109void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
110
111  // Some collectors need to do special things whenever their dirty
112  // cards are processed. For instance, CMS must remember mutator updates
113  // (i.e. dirty cards) so as to re-scan mutated objects.
114  // Such work can be piggy-backed here on dirty card scanning, so as to make
115  // it slightly more efficient than doing a complete non-destructive pre-scan
116  // of the card table.
117  MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
118  if (pCl != NULL) {
119    pCl->do_MemRegion(mr);
120  }
121
122  HeapWord* bottom = mr.start();
123  HeapWord* last = mr.last();
124  HeapWord* top = mr.end();
125  HeapWord* bottom_obj;
126  HeapWord* top_obj;
127
128  assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
129         _precision == CardTableModRefBS::Precise,
130         "Only ones we deal with for now.");
131
132  assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
133         _cl->idempotent() || _last_bottom == NULL ||
134         top <= _last_bottom,
135         "Not decreasing");
136  NOT_PRODUCT(_last_bottom = mr.start());
137
138  bottom_obj = _sp->block_start(bottom);
139  top_obj    = _sp->block_start(last);
140
141  assert(bottom_obj <= bottom, "just checking");
142  assert(top_obj    <= top,    "just checking");
143
144  // Given what we think is the top of the memory region and
145  // the start of the object at the top, get the actual
146  // value of the top.
147  top = get_actual_top(top, top_obj);
148
149  // If the previous call did some part of this region, don't redo.
150  if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
151      _min_done != NULL &&
152      _min_done < top) {
153    top = _min_done;
154  }
155
156  // Top may have been reset, and in fact may be below bottom,
157  // e.g. the dirty card region is entirely in a now free object
158  // -- something that could happen with a concurrent sweeper.
159  bottom = MIN2(bottom, top);
160  MemRegion extended_mr = MemRegion(bottom, top);
161  assert(bottom <= top &&
162         (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
163          _min_done == NULL ||
164          top <= _min_done),
165         "overlap!");
166
167  // Walk the region if it is not empty; otherwise there is nothing to do.
168  if (!extended_mr.is_empty()) {
169    walk_mem_region(extended_mr, bottom_obj, top);
170  }
171
172  // An idempotent closure might be applied in any order, so we don't
173  // record a _min_done for it.
174  if (!_cl->idempotent()) {
175    _min_done = bottom;
176  } else {
177    assert(_min_done == _last_explicit_min_done,
178           "Don't update _min_done for idempotent cl");
179  }
180}
181
182DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
183                                          CardTableModRefBS::PrecisionStyle precision,
184                                          HeapWord* boundary) {
185  return new DirtyCardToOopClosure(this, cl, precision, boundary);
186}
187
188HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
189                                               HeapWord* top_obj) {
190  if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
191    if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
192      if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
193        // An arrayOop is starting on the dirty card - since we do exact
194        // store checks for objArrays we are done.
195      } else {
196        // Otherwise, it is possible that the object starting on the dirty
197        // card spans the entire card, and that the store happened on a
198        // later card.  Figure out where the object ends.
199        assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
200          "Block size and object size mismatch");
201        top = top_obj + oop(top_obj)->size();
202      }
203    }
204  } else {
205    top = (_sp->toContiguousSpace())->top();
206  }
207  return top;
208}
209
210void Filtering_DCTOC::walk_mem_region(MemRegion mr,
211                                      HeapWord* bottom,
212                                      HeapWord* top) {
213  // Note that this assumption won't hold if we have a concurrent
214  // collector in this space, which may have freed up objects after
215  // they were dirtied and before the stop-the-world GC that is
216  // examining cards here.
217  assert(bottom < top, "ought to be at least one obj on a dirty card.");
218
219  if (_boundary != NULL) {
220    // We have a boundary outside of which we don't want to look
221    // at objects, so create a filtering closure around the
222    // oop closure before walking the region.
223    FilteringClosure filter(_boundary, _cl);
224    walk_mem_region_with_cl(mr, bottom, top, &filter);
225  } else {
226    // No boundary, simply walk the heap with the oop closure.
227    walk_mem_region_with_cl(mr, bottom, top, _cl);
228  }
229
230}
231
232// We must replicate this so that the static type of "FilteringClosure"
233// (see above) is apparent at the oop_iterate calls.
234#define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
235void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
236                                                   HeapWord* bottom,    \
237                                                   HeapWord* top,       \
238                                                   ClosureType* cl) {   \
239  bottom += oop(bottom)->oop_iterate(cl, mr);                           \
240  if (bottom < top) {                                                   \
241    HeapWord* next_obj = bottom + oop(bottom)->size();                  \
242    while (next_obj < top) {                                            \
243      /* Bottom lies entirely below top, so we can call the */          \
244      /* non-memRegion version of oop_iterate below. */                 \
245      oop(bottom)->oop_iterate(cl);                                     \
246      bottom = next_obj;                                                \
247      next_obj = bottom + oop(bottom)->size();                          \
248    }                                                                   \
249    /* Last object. */                                                  \
250    oop(bottom)->oop_iterate(cl, mr);                                   \
251  }                                                                     \
252}
253
254// (There are only two of these, rather than N, because the split is due
255// only to the introduction of the FilteringClosure, a local part of the
256// impl of this abstraction.)
257ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
258ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
259
260DirtyCardToOopClosure*
261ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
262                             CardTableModRefBS::PrecisionStyle precision,
263                             HeapWord* boundary) {
264  return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
265}
266
267void Space::initialize(MemRegion mr,
268                       bool clear_space,
269                       bool mangle_space) {
270  HeapWord* bottom = mr.start();
271  HeapWord* end    = mr.end();
272  assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
273         "invalid space boundaries");
274  set_bottom(bottom);
275  set_end(end);
276  if (clear_space) clear(mangle_space);
277}
278
279void Space::clear(bool mangle_space) {
280  if (ZapUnusedHeapArea && mangle_space) {
281    mangle_unused_area();
282  }
283}
284
285ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
286    _concurrent_iteration_safe_limit(NULL) {
287  _mangler = new GenSpaceMangler(this);
288}
289
290ContiguousSpace::~ContiguousSpace() {
291  delete _mangler;
292}
293
294void ContiguousSpace::initialize(MemRegion mr,
295                                 bool clear_space,
296                                 bool mangle_space)
297{
298  CompactibleSpace::initialize(mr, clear_space, mangle_space);
299  set_concurrent_iteration_safe_limit(top());
300}
301
302void ContiguousSpace::clear(bool mangle_space) {
303  set_top(bottom());
304  set_saved_mark();
305  CompactibleSpace::clear(mangle_space);
306}
307
308bool ContiguousSpace::is_free_block(const HeapWord* p) const {
309  return p >= _top;
310}
311
312void OffsetTableContigSpace::clear(bool mangle_space) {
313  ContiguousSpace::clear(mangle_space);
314  _offsets.initialize_threshold();
315}
316
317void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
318  Space::set_bottom(new_bottom);
319  _offsets.set_bottom(new_bottom);
320}
321
322void OffsetTableContigSpace::set_end(HeapWord* new_end) {
323  // Space should not advertise an increase in size
324  // until after the underlying offset table has been enlarged.
325  _offsets.resize(pointer_delta(new_end, bottom()));
326  Space::set_end(new_end);
327}
328
329#ifndef PRODUCT
330
331void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
332  mangler()->set_top_for_allocations(v);
333}
334void ContiguousSpace::set_top_for_allocations() {
335  mangler()->set_top_for_allocations(top());
336}
337void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
338  mangler()->check_mangled_unused_area(limit);
339}
340
341void ContiguousSpace::check_mangled_unused_area_complete() {
342  mangler()->check_mangled_unused_area_complete();
343}
344
345// Mangled only the unused space that has not previously
346// been mangled and that has not been allocated since being
347// mangled.
348void ContiguousSpace::mangle_unused_area() {
349  mangler()->mangle_unused_area();
350}
351void ContiguousSpace::mangle_unused_area_complete() {
352  mangler()->mangle_unused_area_complete();
353}
354#endif  // NOT_PRODUCT
355
356void CompactibleSpace::initialize(MemRegion mr,
357                                  bool clear_space,
358                                  bool mangle_space) {
359  Space::initialize(mr, clear_space, mangle_space);
360  set_compaction_top(bottom());
361  _next_compaction_space = NULL;
362}
363
364void CompactibleSpace::clear(bool mangle_space) {
365  Space::clear(mangle_space);
366  _compaction_top = bottom();
367}
368
369HeapWord* CompactibleSpace::forward(oop q, size_t size,
370                                    CompactPoint* cp, HeapWord* compact_top) {
371  // q is alive
372  // First check if we should switch compaction space
373  assert(this == cp->space, "'this' should be current compaction space.");
374  size_t compaction_max_size = pointer_delta(end(), compact_top);
375  while (size > compaction_max_size) {
376    // switch to next compaction space
377    cp->space->set_compaction_top(compact_top);
378    cp->space = cp->space->next_compaction_space();
379    if (cp->space == NULL) {
380      cp->gen = GenCollectedHeap::heap()->young_gen();
381      assert(cp->gen != NULL, "compaction must succeed");
382      cp->space = cp->gen->first_compaction_space();
383      assert(cp->space != NULL, "generation must have a first compaction space");
384    }
385    compact_top = cp->space->bottom();
386    cp->space->set_compaction_top(compact_top);
387    cp->threshold = cp->space->initialize_threshold();
388    compaction_max_size = pointer_delta(cp->space->end(), compact_top);
389  }
390
391  // store the forwarding pointer into the mark word
392  if ((HeapWord*)q != compact_top) {
393    q->forward_to(oop(compact_top));
394    assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
395  } else {
396    // if the object isn't moving we can just set the mark to the default
397    // mark and handle it specially later on.
398    q->init_mark();
399    assert(q->forwardee() == NULL, "should be forwarded to NULL");
400  }
401
402  compact_top += size;
403
404  // we need to update the offset table so that the beginnings of objects can be
405  // found during scavenge.  Note that we are updating the offset table based on
406  // where the object will be once the compaction phase finishes.
407  if (compact_top > cp->threshold)
408    cp->threshold =
409      cp->space->cross_threshold(compact_top - size, compact_top);
410  return compact_top;
411}
412
413
414bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
415                                        HeapWord* q, size_t deadlength) {
416  if (allowed_deadspace_words >= deadlength) {
417    allowed_deadspace_words -= deadlength;
418    CollectedHeap::fill_with_object(q, deadlength);
419    oop(q)->set_mark(oop(q)->mark()->set_marked());
420    assert((int) deadlength == oop(q)->size(), "bad filler object size");
421    // Recall that we required "q == compaction_top".
422    return true;
423  } else {
424    allowed_deadspace_words = 0;
425    return false;
426  }
427}
428
429void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
430  scan_and_forward(this, cp);
431}
432
433void CompactibleSpace::adjust_pointers() {
434  // Check first is there is any work to do.
435  if (used() == 0) {
436    return;   // Nothing to do.
437  }
438
439  scan_and_adjust_pointers(this);
440}
441
442void CompactibleSpace::compact() {
443  scan_and_compact(this);
444}
445
446void Space::print_short() const { print_short_on(tty); }
447
448void Space::print_short_on(outputStream* st) const {
449  st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
450              (int) ((double) used() * 100 / capacity()));
451}
452
453void Space::print() const { print_on(tty); }
454
455void Space::print_on(outputStream* st) const {
456  print_short_on(st);
457  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
458                p2i(bottom()), p2i(end()));
459}
460
461void ContiguousSpace::print_on(outputStream* st) const {
462  print_short_on(st);
463  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
464                p2i(bottom()), p2i(top()), p2i(end()));
465}
466
467void OffsetTableContigSpace::print_on(outputStream* st) const {
468  print_short_on(st);
469  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
470                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
471              p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
472}
473
474void ContiguousSpace::verify() const {
475  HeapWord* p = bottom();
476  HeapWord* t = top();
477  HeapWord* prev_p = NULL;
478  while (p < t) {
479    oop(p)->verify();
480    prev_p = p;
481    p += oop(p)->size();
482  }
483  guarantee(p == top(), "end of last object must match end of space");
484  if (top() != end()) {
485    guarantee(top() == block_start_const(end()-1) &&
486              top() == block_start_const(top()),
487              "top should be start of unallocated block, if it exists");
488  }
489}
490
491void Space::oop_iterate(ExtendedOopClosure* blk) {
492  ObjectToOopClosure blk2(blk);
493  object_iterate(&blk2);
494}
495
496bool Space::obj_is_alive(const HeapWord* p) const {
497  assert (block_is_obj(p), "The address should point to an object");
498  return true;
499}
500
501#if INCLUDE_ALL_GCS
502#define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
503                                                                            \
504  void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
505    HeapWord* obj_addr = mr.start();                                        \
506    HeapWord* t = mr.end();                                                 \
507    while (obj_addr < t) {                                                  \
508      assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
509      obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
510    }                                                                       \
511  }
512
513  ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
514
515#undef ContigSpace_PAR_OOP_ITERATE_DEFN
516#endif // INCLUDE_ALL_GCS
517
518void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
519  if (is_empty()) return;
520  HeapWord* obj_addr = bottom();
521  HeapWord* t = top();
522  // Could call objects iterate, but this is easier.
523  while (obj_addr < t) {
524    obj_addr += oop(obj_addr)->oop_iterate(blk);
525  }
526}
527
528void ContiguousSpace::object_iterate(ObjectClosure* blk) {
529  if (is_empty()) return;
530  WaterMark bm = bottom_mark();
531  object_iterate_from(bm, blk);
532}
533
534// For a ContiguousSpace object_iterate() and safe_object_iterate()
535// are the same.
536void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
537  object_iterate(blk);
538}
539
540void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
541  assert(mark.space() == this, "Mark does not match space");
542  HeapWord* p = mark.point();
543  while (p < top()) {
544    blk->do_object(oop(p));
545    p += oop(p)->size();
546  }
547}
548
549HeapWord*
550ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
551  HeapWord * limit = concurrent_iteration_safe_limit();
552  assert(limit <= top(), "sanity check");
553  for (HeapWord* p = bottom(); p < limit;) {
554    size_t size = blk->do_object_careful(oop(p));
555    if (size == 0) {
556      return p;  // failed at p
557    } else {
558      p += size;
559    }
560  }
561  return NULL; // all done
562}
563
564#define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
565                                                                          \
566void ContiguousSpace::                                                    \
567oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
568  HeapWord* t;                                                            \
569  HeapWord* p = saved_mark_word();                                        \
570  assert(p != NULL, "expected saved mark");                               \
571                                                                          \
572  const intx interval = PrefetchScanIntervalInBytes;                      \
573  do {                                                                    \
574    t = top();                                                            \
575    while (p < t) {                                                       \
576      Prefetch::write(p, interval);                                       \
577      debug_only(HeapWord* prev = p);                                     \
578      oop m = oop(p);                                                     \
579      p += m->oop_iterate(blk);                                           \
580    }                                                                     \
581  } while (t < top());                                                    \
582                                                                          \
583  set_saved_mark_word(p);                                                 \
584}
585
586ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
587
588#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
589
590// Very general, slow implementation.
591HeapWord* ContiguousSpace::block_start_const(const void* p) const {
592  assert(MemRegion(bottom(), end()).contains(p),
593         err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
594                  p2i(p), p2i(bottom()), p2i(end())));
595  if (p >= top()) {
596    return top();
597  } else {
598    HeapWord* last = bottom();
599    HeapWord* cur = last;
600    while (cur <= p) {
601      last = cur;
602      cur += oop(cur)->size();
603    }
604    assert(oop(last)->is_oop(),
605           err_msg(PTR_FORMAT " should be an object start", p2i(last)));
606    return last;
607  }
608}
609
610size_t ContiguousSpace::block_size(const HeapWord* p) const {
611  assert(MemRegion(bottom(), end()).contains(p),
612         err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
613                  p2i(p), p2i(bottom()), p2i(end())));
614  HeapWord* current_top = top();
615  assert(p <= current_top,
616         err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
617                  p2i(p), p2i(current_top)));
618  assert(p == current_top || oop(p)->is_oop(),
619         err_msg("p (" PTR_FORMAT ") is not a block start - "
620                 "current_top: " PTR_FORMAT ", is_oop: %s",
621                 p2i(p), p2i(current_top), BOOL_TO_STR(oop(p)->is_oop())));
622  if (p < current_top) {
623    return oop(p)->size();
624  } else {
625    assert(p == current_top, "just checking");
626    return pointer_delta(end(), (HeapWord*) p);
627  }
628}
629
630// This version requires locking.
631inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
632  assert(Heap_lock->owned_by_self() ||
633         (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
634         "not locked");
635  HeapWord* obj = top();
636  if (pointer_delta(end(), obj) >= size) {
637    HeapWord* new_top = obj + size;
638    set_top(new_top);
639    assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
640    return obj;
641  } else {
642    return NULL;
643  }
644}
645
646// This version is lock-free.
647inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
648  do {
649    HeapWord* obj = top();
650    if (pointer_delta(end(), obj) >= size) {
651      HeapWord* new_top = obj + size;
652      HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
653      // result can be one of two:
654      //  the old top value: the exchange succeeded
655      //  otherwise: the new value of the top is returned.
656      if (result == obj) {
657        assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
658        return obj;
659      }
660    } else {
661      return NULL;
662    }
663  } while (true);
664}
665
666HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
667  assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
668  HeapWord* end_value = end();
669
670  HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
671  if (obj == NULL) {
672    return NULL;
673  }
674
675  if (pointer_delta(end_value, obj) >= size) {
676    HeapWord* new_top = obj + size;
677    set_top(new_top);
678    assert(is_ptr_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
679      "checking alignment");
680    return obj;
681  } else {
682    set_top(obj);
683    return NULL;
684  }
685}
686
687// Requires locking.
688HeapWord* ContiguousSpace::allocate(size_t size) {
689  return allocate_impl(size);
690}
691
692// Lock-free.
693HeapWord* ContiguousSpace::par_allocate(size_t size) {
694  return par_allocate_impl(size);
695}
696
697void ContiguousSpace::allocate_temporary_filler(int factor) {
698  // allocate temporary type array decreasing free size with factor 'factor'
699  assert(factor >= 0, "just checking");
700  size_t size = pointer_delta(end(), top());
701
702  // if space is full, return
703  if (size == 0) return;
704
705  if (factor > 0) {
706    size -= size/factor;
707  }
708  size = align_object_size(size);
709
710  const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
711  if (size >= (size_t)align_object_size(array_header_size)) {
712    size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
713    // allocate uninitialized int array
714    typeArrayOop t = (typeArrayOop) allocate(size);
715    assert(t != NULL, "allocation should succeed");
716    t->set_mark(markOopDesc::prototype());
717    t->set_klass(Universe::intArrayKlassObj());
718    t->set_length((int)length);
719  } else {
720    assert(size == CollectedHeap::min_fill_size(),
721           "size for smallest fake object doesn't match");
722    instanceOop obj = (instanceOop) allocate(size);
723    obj->set_mark(markOopDesc::prototype());
724    obj->set_klass_gap(0);
725    obj->set_klass(SystemDictionary::Object_klass());
726  }
727}
728
729HeapWord* OffsetTableContigSpace::initialize_threshold() {
730  return _offsets.initialize_threshold();
731}
732
733HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
734  _offsets.alloc_block(start, end);
735  return _offsets.threshold();
736}
737
738OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
739                                               MemRegion mr) :
740  _offsets(sharedOffsetArray, mr),
741  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
742{
743  _offsets.set_contig_space(this);
744  initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
745}
746
747#define OBJ_SAMPLE_INTERVAL 0
748#define BLOCK_SAMPLE_INTERVAL 100
749
750void OffsetTableContigSpace::verify() const {
751  HeapWord* p = bottom();
752  HeapWord* prev_p = NULL;
753  int objs = 0;
754  int blocks = 0;
755
756  if (VerifyObjectStartArray) {
757    _offsets.verify();
758  }
759
760  while (p < top()) {
761    size_t size = oop(p)->size();
762    // For a sampling of objects in the space, find it using the
763    // block offset table.
764    if (blocks == BLOCK_SAMPLE_INTERVAL) {
765      guarantee(p == block_start_const(p + (size/2)),
766                "check offset computation");
767      blocks = 0;
768    } else {
769      blocks++;
770    }
771
772    if (objs == OBJ_SAMPLE_INTERVAL) {
773      oop(p)->verify();
774      objs = 0;
775    } else {
776      objs++;
777    }
778    prev_p = p;
779    p += size;
780  }
781  guarantee(p == top(), "end of last object must match end of space");
782}
783
784
785size_t TenuredSpace::allowed_dead_ratio() const {
786  return MarkSweepDeadRatio;
787}
788