referenceProcessor.hpp revision 9727:f944761a3ce3
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
26#define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
27
28#include "gc/shared/gcTrace.hpp"
29#include "gc/shared/referencePolicy.hpp"
30#include "gc/shared/referenceProcessorStats.hpp"
31#include "memory/referenceType.hpp"
32#include "oops/instanceRefKlass.hpp"
33
34class GCTimer;
35
36// ReferenceProcessor class encapsulates the per-"collector" processing
37// of java.lang.Reference objects for GC. The interface is useful for supporting
38// a generational abstraction, in particular when there are multiple
39// generations that are being independently collected -- possibly
40// concurrently and/or incrementally.  Note, however, that the
41// ReferenceProcessor class abstracts away from a generational setting
42// by using only a heap interval (called "span" below), thus allowing
43// its use in a straightforward manner in a general, non-generational
44// setting.
45//
46// The basic idea is that each ReferenceProcessor object concerns
47// itself with ("weak") reference processing in a specific "span"
48// of the heap of interest to a specific collector. Currently,
49// the span is a convex interval of the heap, but, efficiency
50// apart, there seems to be no reason it couldn't be extended
51// (with appropriate modifications) to any "non-convex interval".
52
53// forward references
54class ReferencePolicy;
55class AbstractRefProcTaskExecutor;
56
57// List of discovered references.
58class DiscoveredList {
59public:
60  DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
61  oop head() const     {
62     return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
63                                _oop_head;
64  }
65  HeapWord* adr_head() {
66    return UseCompressedOops ? (HeapWord*)&_compressed_head :
67                               (HeapWord*)&_oop_head;
68  }
69  void set_head(oop o) {
70    if (UseCompressedOops) {
71      // Must compress the head ptr.
72      _compressed_head = oopDesc::encode_heap_oop(o);
73    } else {
74      _oop_head = o;
75    }
76  }
77  bool   is_empty() const       { return head() == NULL; }
78  size_t length()               { return _len; }
79  void   set_length(size_t len) { _len = len;  }
80  void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
81  void   dec_length(size_t dec) { _len -= dec; }
82private:
83  // Set value depending on UseCompressedOops. This could be a template class
84  // but then we have to fix all the instantiations and declarations that use this class.
85  oop       _oop_head;
86  narrowOop _compressed_head;
87  size_t _len;
88};
89
90// Iterator for the list of discovered references.
91class DiscoveredListIterator {
92private:
93  DiscoveredList&    _refs_list;
94  HeapWord*          _prev_next;
95  oop                _prev;
96  oop                _ref;
97  HeapWord*          _discovered_addr;
98  oop                _next;
99  HeapWord*          _referent_addr;
100  oop                _referent;
101  OopClosure*        _keep_alive;
102  BoolObjectClosure* _is_alive;
103
104  DEBUG_ONLY(
105  oop                _first_seen; // cyclic linked list check
106  )
107
108  NOT_PRODUCT(
109  size_t             _processed;
110  size_t             _removed;
111  )
112
113public:
114  inline DiscoveredListIterator(DiscoveredList&    refs_list,
115                                OopClosure*        keep_alive,
116                                BoolObjectClosure* is_alive):
117    _refs_list(refs_list),
118    _prev_next(refs_list.adr_head()),
119    _prev(NULL),
120    _ref(refs_list.head()),
121#ifdef ASSERT
122    _first_seen(refs_list.head()),
123#endif
124#ifndef PRODUCT
125    _processed(0),
126    _removed(0),
127#endif
128    _next(NULL),
129    _keep_alive(keep_alive),
130    _is_alive(is_alive)
131{ }
132
133  // End Of List.
134  inline bool has_next() const { return _ref != NULL; }
135
136  // Get oop to the Reference object.
137  inline oop obj() const { return _ref; }
138
139  // Get oop to the referent object.
140  inline oop referent() const { return _referent; }
141
142  // Returns true if referent is alive.
143  inline bool is_referent_alive() const {
144    return _is_alive->do_object_b(_referent);
145  }
146
147  // Loads data for the current reference.
148  // The "allow_null_referent" argument tells us to allow for the possibility
149  // of a NULL referent in the discovered Reference object. This typically
150  // happens in the case of concurrent collectors that may have done the
151  // discovery concurrently, or interleaved, with mutator execution.
152  void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
153
154  // Move to the next discovered reference.
155  inline void next() {
156    _prev_next = _discovered_addr;
157    _prev = _ref;
158    move_to_next();
159  }
160
161  // Remove the current reference from the list
162  void remove();
163
164  // Make the referent alive.
165  inline void make_referent_alive() {
166    if (UseCompressedOops) {
167      _keep_alive->do_oop((narrowOop*)_referent_addr);
168    } else {
169      _keep_alive->do_oop((oop*)_referent_addr);
170    }
171  }
172
173  // NULL out referent pointer.
174  void clear_referent();
175
176  // Statistics
177  NOT_PRODUCT(
178  inline size_t processed() const { return _processed; }
179  inline size_t removed() const   { return _removed; }
180  )
181
182  inline void move_to_next() {
183    if (_ref == _next) {
184      // End of the list.
185      _ref = NULL;
186    } else {
187      _ref = _next;
188    }
189    assert(_ref != _first_seen, "cyclic ref_list found");
190    NOT_PRODUCT(_processed++);
191  }
192};
193
194class ReferenceProcessor : public CHeapObj<mtGC> {
195
196 private:
197  size_t total_count(DiscoveredList lists[]);
198
199 protected:
200  // The SoftReference master timestamp clock
201  static jlong _soft_ref_timestamp_clock;
202
203  MemRegion   _span;                    // (right-open) interval of heap
204                                        // subject to wkref discovery
205
206  bool        _discovering_refs;        // true when discovery enabled
207  bool        _discovery_is_atomic;     // if discovery is atomic wrt
208                                        // other collectors in configuration
209  bool        _discovery_is_mt;         // true if reference discovery is MT.
210
211  bool        _enqueuing_is_done;       // true if all weak references enqueued
212  bool        _processing_is_mt;        // true during phases when
213                                        // reference processing is MT.
214  uint        _next_id;                 // round-robin mod _num_q counter in
215                                        // support of work distribution
216
217  // For collectors that do not keep GC liveness information
218  // in the object header, this field holds a closure that
219  // helps the reference processor determine the reachability
220  // of an oop. It is currently initialized to NULL for all
221  // collectors except for CMS and G1.
222  BoolObjectClosure* _is_alive_non_header;
223
224  // Soft ref clearing policies
225  // . the default policy
226  static ReferencePolicy*   _default_soft_ref_policy;
227  // . the "clear all" policy
228  static ReferencePolicy*   _always_clear_soft_ref_policy;
229  // . the current policy below is either one of the above
230  ReferencePolicy*          _current_soft_ref_policy;
231
232  // The discovered ref lists themselves
233
234  // The active MT'ness degree of the queues below
235  uint             _num_q;
236  // The maximum MT'ness degree of the queues below
237  uint             _max_num_q;
238
239  // Master array of discovered oops
240  DiscoveredList* _discovered_refs;
241
242  // Arrays of lists of oops, one per thread (pointers into master array above)
243  DiscoveredList* _discoveredSoftRefs;
244  DiscoveredList* _discoveredWeakRefs;
245  DiscoveredList* _discoveredFinalRefs;
246  DiscoveredList* _discoveredPhantomRefs;
247  DiscoveredList* _discoveredCleanerRefs;
248
249 public:
250  static int number_of_subclasses_of_ref() { return (REF_CLEANER - REF_OTHER); }
251
252  uint num_q()                             { return _num_q; }
253  uint max_num_q()                         { return _max_num_q; }
254  void set_active_mt_degree(uint v)        { _num_q = v; }
255
256  DiscoveredList* discovered_refs()        { return _discovered_refs; }
257
258  ReferencePolicy* setup_policy(bool always_clear) {
259    _current_soft_ref_policy = always_clear ?
260      _always_clear_soft_ref_policy : _default_soft_ref_policy;
261    _current_soft_ref_policy->setup();   // snapshot the policy threshold
262    return _current_soft_ref_policy;
263  }
264
265  // Process references with a certain reachability level.
266  void process_discovered_reflist(DiscoveredList               refs_lists[],
267                                  ReferencePolicy*             policy,
268                                  bool                         clear_referent,
269                                  BoolObjectClosure*           is_alive,
270                                  OopClosure*                  keep_alive,
271                                  VoidClosure*                 complete_gc,
272                                  AbstractRefProcTaskExecutor* task_executor);
273
274  void process_phaseJNI(BoolObjectClosure* is_alive,
275                        OopClosure*        keep_alive,
276                        VoidClosure*       complete_gc);
277
278  // Work methods used by the method process_discovered_reflist
279  // Phase1: keep alive all those referents that are otherwise
280  // dead but which must be kept alive by policy (and their closure).
281  void process_phase1(DiscoveredList&     refs_list,
282                      ReferencePolicy*    policy,
283                      BoolObjectClosure*  is_alive,
284                      OopClosure*         keep_alive,
285                      VoidClosure*        complete_gc);
286  // Phase2: remove all those references whose referents are
287  // reachable.
288  inline void process_phase2(DiscoveredList&    refs_list,
289                             BoolObjectClosure* is_alive,
290                             OopClosure*        keep_alive,
291                             VoidClosure*       complete_gc) {
292    if (discovery_is_atomic()) {
293      // complete_gc is ignored in this case for this phase
294      pp2_work(refs_list, is_alive, keep_alive);
295    } else {
296      assert(complete_gc != NULL, "Error");
297      pp2_work_concurrent_discovery(refs_list, is_alive,
298                                    keep_alive, complete_gc);
299    }
300  }
301  // Work methods in support of process_phase2
302  void pp2_work(DiscoveredList&    refs_list,
303                BoolObjectClosure* is_alive,
304                OopClosure*        keep_alive);
305  void pp2_work_concurrent_discovery(
306                DiscoveredList&    refs_list,
307                BoolObjectClosure* is_alive,
308                OopClosure*        keep_alive,
309                VoidClosure*       complete_gc);
310  // Phase3: process the referents by either clearing them
311  // or keeping them alive (and their closure)
312  void process_phase3(DiscoveredList&    refs_list,
313                      bool               clear_referent,
314                      BoolObjectClosure* is_alive,
315                      OopClosure*        keep_alive,
316                      VoidClosure*       complete_gc);
317
318  // Enqueue references with a certain reachability level
319  void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
320
321  // "Preclean" all the discovered reference lists
322  // by removing references with strongly reachable referents.
323  // The first argument is a predicate on an oop that indicates
324  // its (strong) reachability and the second is a closure that
325  // may be used to incrementalize or abort the precleaning process.
326  // The caller is responsible for taking care of potential
327  // interference with concurrent operations on these lists
328  // (or predicates involved) by other threads. Currently
329  // only used by the CMS collector.
330  void preclean_discovered_references(BoolObjectClosure* is_alive,
331                                      OopClosure*        keep_alive,
332                                      VoidClosure*       complete_gc,
333                                      YieldClosure*      yield,
334                                      GCTimer*           gc_timer);
335
336  // Returns the name of the discovered reference list
337  // occupying the i / _num_q slot.
338  const char* list_name(uint i);
339
340  void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
341
342 protected:
343  // "Preclean" the given discovered reference list
344  // by removing references with strongly reachable referents.
345  // Currently used in support of CMS only.
346  void preclean_discovered_reflist(DiscoveredList&    refs_list,
347                                   BoolObjectClosure* is_alive,
348                                   OopClosure*        keep_alive,
349                                   VoidClosure*       complete_gc,
350                                   YieldClosure*      yield);
351
352  // round-robin mod _num_q (not: _not_ mode _max_num_q)
353  uint next_id() {
354    uint id = _next_id;
355    if (++_next_id == _num_q) {
356      _next_id = 0;
357    }
358    return id;
359  }
360  DiscoveredList* get_discovered_list(ReferenceType rt);
361  inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
362                                        HeapWord* discovered_addr);
363
364  void clear_discovered_references(DiscoveredList& refs_list);
365
366  // Calculate the number of jni handles.
367  size_t count_jni_refs();
368
369  void log_reflist_counts(DiscoveredList ref_lists[], size_t total_count) PRODUCT_RETURN;
370
371  // Balances reference queues.
372  void balance_queues(DiscoveredList ref_lists[]);
373
374  // Update (advance) the soft ref master clock field.
375  void update_soft_ref_master_clock();
376
377 public:
378  // Default parameters give you a vanilla reference processor.
379  ReferenceProcessor(MemRegion span,
380                     bool mt_processing = false, uint mt_processing_degree = 1,
381                     bool mt_discovery  = false, uint mt_discovery_degree  = 1,
382                     bool atomic_discovery = true,
383                     BoolObjectClosure* is_alive_non_header = NULL);
384
385  // RefDiscoveryPolicy values
386  enum DiscoveryPolicy {
387    ReferenceBasedDiscovery = 0,
388    ReferentBasedDiscovery  = 1,
389    DiscoveryPolicyMin      = ReferenceBasedDiscovery,
390    DiscoveryPolicyMax      = ReferentBasedDiscovery
391  };
392
393  static void init_statics();
394
395 public:
396  // get and set "is_alive_non_header" field
397  BoolObjectClosure* is_alive_non_header() {
398    return _is_alive_non_header;
399  }
400  void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
401    _is_alive_non_header = is_alive_non_header;
402  }
403
404  // get and set span
405  MemRegion span()                   { return _span; }
406  void      set_span(MemRegion span) { _span = span; }
407
408  // start and stop weak ref discovery
409  void enable_discovery(bool check_no_refs = true);
410  void disable_discovery()  { _discovering_refs = false; }
411  bool discovery_enabled()  { return _discovering_refs;  }
412
413  // whether discovery is atomic wrt other collectors
414  bool discovery_is_atomic() const { return _discovery_is_atomic; }
415  void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
416
417  // whether discovery is done by multiple threads same-old-timeously
418  bool discovery_is_mt() const { return _discovery_is_mt; }
419  void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
420
421  // Whether we are in a phase when _processing_ is MT.
422  bool processing_is_mt() const { return _processing_is_mt; }
423  void set_mt_processing(bool mt) { _processing_is_mt = mt; }
424
425  // whether all enqueueing of weak references is complete
426  bool enqueuing_is_done()  { return _enqueuing_is_done; }
427  void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
428
429  // iterate over oops
430  void weak_oops_do(OopClosure* f);       // weak roots
431
432  // Balance each of the discovered lists.
433  void balance_all_queues();
434  void verify_list(DiscoveredList& ref_list);
435
436  // Discover a Reference object, using appropriate discovery criteria
437  bool discover_reference(oop obj, ReferenceType rt);
438
439  // Process references found during GC (called by the garbage collector)
440  ReferenceProcessorStats
441  process_discovered_references(BoolObjectClosure*           is_alive,
442                                OopClosure*                  keep_alive,
443                                VoidClosure*                 complete_gc,
444                                AbstractRefProcTaskExecutor* task_executor,
445                                GCTimer *gc_timer);
446
447  // Enqueue references at end of GC (called by the garbage collector)
448  bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
449
450  // If a discovery is in process that is being superceded, abandon it: all
451  // the discovered lists will be empty, and all the objects on them will
452  // have NULL discovered fields.  Must be called only at a safepoint.
453  void abandon_partial_discovery();
454
455  // debugging
456  void verify_no_references_recorded() PRODUCT_RETURN;
457  void verify_referent(oop obj)        PRODUCT_RETURN;
458};
459
460// A utility class to disable reference discovery in
461// the scope which contains it, for given ReferenceProcessor.
462class NoRefDiscovery: StackObj {
463 private:
464  ReferenceProcessor* _rp;
465  bool _was_discovering_refs;
466 public:
467  NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
468    _was_discovering_refs = _rp->discovery_enabled();
469    if (_was_discovering_refs) {
470      _rp->disable_discovery();
471    }
472  }
473
474  ~NoRefDiscovery() {
475    if (_was_discovering_refs) {
476      _rp->enable_discovery(false /*check_no_refs*/);
477    }
478  }
479};
480
481
482// A utility class to temporarily mutate the span of the
483// given ReferenceProcessor in the scope that contains it.
484class ReferenceProcessorSpanMutator: StackObj {
485 private:
486  ReferenceProcessor* _rp;
487  MemRegion           _saved_span;
488
489 public:
490  ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
491                                MemRegion span):
492    _rp(rp) {
493    _saved_span = _rp->span();
494    _rp->set_span(span);
495  }
496
497  ~ReferenceProcessorSpanMutator() {
498    _rp->set_span(_saved_span);
499  }
500};
501
502// A utility class to temporarily change the MT'ness of
503// reference discovery for the given ReferenceProcessor
504// in the scope that contains it.
505class ReferenceProcessorMTDiscoveryMutator: StackObj {
506 private:
507  ReferenceProcessor* _rp;
508  bool                _saved_mt;
509
510 public:
511  ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
512                                       bool mt):
513    _rp(rp) {
514    _saved_mt = _rp->discovery_is_mt();
515    _rp->set_mt_discovery(mt);
516  }
517
518  ~ReferenceProcessorMTDiscoveryMutator() {
519    _rp->set_mt_discovery(_saved_mt);
520  }
521};
522
523
524// A utility class to temporarily change the disposition
525// of the "is_alive_non_header" closure field of the
526// given ReferenceProcessor in the scope that contains it.
527class ReferenceProcessorIsAliveMutator: StackObj {
528 private:
529  ReferenceProcessor* _rp;
530  BoolObjectClosure*  _saved_cl;
531
532 public:
533  ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
534                                   BoolObjectClosure*  cl):
535    _rp(rp) {
536    _saved_cl = _rp->is_alive_non_header();
537    _rp->set_is_alive_non_header(cl);
538  }
539
540  ~ReferenceProcessorIsAliveMutator() {
541    _rp->set_is_alive_non_header(_saved_cl);
542  }
543};
544
545// A utility class to temporarily change the disposition
546// of the "discovery_is_atomic" field of the
547// given ReferenceProcessor in the scope that contains it.
548class ReferenceProcessorAtomicMutator: StackObj {
549 private:
550  ReferenceProcessor* _rp;
551  bool                _saved_atomic_discovery;
552
553 public:
554  ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
555                                  bool atomic):
556    _rp(rp) {
557    _saved_atomic_discovery = _rp->discovery_is_atomic();
558    _rp->set_atomic_discovery(atomic);
559  }
560
561  ~ReferenceProcessorAtomicMutator() {
562    _rp->set_atomic_discovery(_saved_atomic_discovery);
563  }
564};
565
566
567// A utility class to temporarily change the MT processing
568// disposition of the given ReferenceProcessor instance
569// in the scope that contains it.
570class ReferenceProcessorMTProcMutator: StackObj {
571 private:
572  ReferenceProcessor* _rp;
573  bool  _saved_mt;
574
575 public:
576  ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
577                                  bool mt):
578    _rp(rp) {
579    _saved_mt = _rp->processing_is_mt();
580    _rp->set_mt_processing(mt);
581  }
582
583  ~ReferenceProcessorMTProcMutator() {
584    _rp->set_mt_processing(_saved_mt);
585  }
586};
587
588
589// This class is an interface used to implement task execution for the
590// reference processing.
591class AbstractRefProcTaskExecutor {
592public:
593
594  // Abstract tasks to execute.
595  class ProcessTask;
596  class EnqueueTask;
597
598  // Executes a task using worker threads.
599  virtual void execute(ProcessTask& task) = 0;
600  virtual void execute(EnqueueTask& task) = 0;
601
602  // Switch to single threaded mode.
603  virtual void set_single_threaded_mode() { };
604};
605
606// Abstract reference processing task to execute.
607class AbstractRefProcTaskExecutor::ProcessTask {
608protected:
609  ProcessTask(ReferenceProcessor& ref_processor,
610              DiscoveredList      refs_lists[],
611              bool                marks_oops_alive)
612    : _ref_processor(ref_processor),
613      _refs_lists(refs_lists),
614      _marks_oops_alive(marks_oops_alive)
615  { }
616
617public:
618  virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
619                    OopClosure& keep_alive,
620                    VoidClosure& complete_gc) = 0;
621
622  // Returns true if a task marks some oops as alive.
623  bool marks_oops_alive() const
624  { return _marks_oops_alive; }
625
626protected:
627  ReferenceProcessor& _ref_processor;
628  DiscoveredList*     _refs_lists;
629  const bool          _marks_oops_alive;
630};
631
632// Abstract reference processing task to execute.
633class AbstractRefProcTaskExecutor::EnqueueTask {
634protected:
635  EnqueueTask(ReferenceProcessor& ref_processor,
636              DiscoveredList      refs_lists[],
637              HeapWord*           pending_list_addr,
638              int                 n_queues)
639    : _ref_processor(ref_processor),
640      _refs_lists(refs_lists),
641      _pending_list_addr(pending_list_addr),
642      _n_queues(n_queues)
643  { }
644
645public:
646  virtual void work(unsigned int work_id) = 0;
647
648protected:
649  ReferenceProcessor& _ref_processor;
650  DiscoveredList*     _refs_lists;
651  HeapWord*           _pending_list_addr;
652  int                 _n_queues;
653};
654
655#endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
656