referenceProcessor.cpp revision 9149:a8a8604f890f
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/javaClasses.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "gc/shared/collectedHeap.hpp"
29#include "gc/shared/collectedHeap.inline.hpp"
30#include "gc/shared/gcTimer.hpp"
31#include "gc/shared/gcTraceTime.hpp"
32#include "gc/shared/referencePolicy.hpp"
33#include "gc/shared/referenceProcessor.hpp"
34#include "memory/allocation.hpp"
35#include "oops/oop.inline.hpp"
36#include "runtime/java.hpp"
37#include "runtime/jniHandles.hpp"
38
39ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
40ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
41jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
42
43void referenceProcessor_init() {
44  ReferenceProcessor::init_statics();
45}
46
47void ReferenceProcessor::init_statics() {
48  // We need a monotonically non-decreasing time in ms but
49  // os::javaTimeMillis() does not guarantee monotonicity.
50  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
51
52  // Initialize the soft ref timestamp clock.
53  _soft_ref_timestamp_clock = now;
54  // Also update the soft ref clock in j.l.r.SoftReference
55  java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
56
57  _always_clear_soft_ref_policy = new AlwaysClearPolicy();
58#if defined(COMPILER2) || INCLUDE_JVMCI
59  _default_soft_ref_policy      = new LRUMaxHeapPolicy();
60#else
61  _default_soft_ref_policy      = new LRUCurrentHeapPolicy();
62#endif
63  if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
64    vm_exit_during_initialization("Could not allocate reference policy object");
65  }
66  guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
67            RefDiscoveryPolicy == ReferentBasedDiscovery,
68            "Unrecognized RefDiscoveryPolicy");
69}
70
71void ReferenceProcessor::enable_discovery(bool check_no_refs) {
72#ifdef ASSERT
73  // Verify that we're not currently discovering refs
74  assert(!_discovering_refs, "nested call?");
75
76  if (check_no_refs) {
77    // Verify that the discovered lists are empty
78    verify_no_references_recorded();
79  }
80#endif // ASSERT
81
82  // Someone could have modified the value of the static
83  // field in the j.l.r.SoftReference class that holds the
84  // soft reference timestamp clock using reflection or
85  // Unsafe between GCs. Unconditionally update the static
86  // field in ReferenceProcessor here so that we use the new
87  // value during reference discovery.
88
89  _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
90  _discovering_refs = true;
91}
92
93ReferenceProcessor::ReferenceProcessor(MemRegion span,
94                                       bool      mt_processing,
95                                       uint      mt_processing_degree,
96                                       bool      mt_discovery,
97                                       uint      mt_discovery_degree,
98                                       bool      atomic_discovery,
99                                       BoolObjectClosure* is_alive_non_header)  :
100  _discovering_refs(false),
101  _enqueuing_is_done(false),
102  _is_alive_non_header(is_alive_non_header),
103  _processing_is_mt(mt_processing),
104  _next_id(0)
105{
106  _span = span;
107  _discovery_is_atomic = atomic_discovery;
108  _discovery_is_mt     = mt_discovery;
109  _num_q               = MAX2(1U, mt_processing_degree);
110  _max_num_q           = MAX2(_num_q, mt_discovery_degree);
111  _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
112            _max_num_q * number_of_subclasses_of_ref(), mtGC);
113
114  if (_discovered_refs == NULL) {
115    vm_exit_during_initialization("Could not allocated RefProc Array");
116  }
117  _discoveredSoftRefs    = &_discovered_refs[0];
118  _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
119  _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
120  _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
121  _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
122
123  // Initialize all entries to NULL
124  for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
125    _discovered_refs[i].set_head(NULL);
126    _discovered_refs[i].set_length(0);
127  }
128
129  setup_policy(false /* default soft ref policy */);
130}
131
132#ifndef PRODUCT
133void ReferenceProcessor::verify_no_references_recorded() {
134  guarantee(!_discovering_refs, "Discovering refs?");
135  for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
136    guarantee(_discovered_refs[i].is_empty(),
137              "Found non-empty discovered list");
138  }
139}
140#endif
141
142void ReferenceProcessor::weak_oops_do(OopClosure* f) {
143  for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
144    if (UseCompressedOops) {
145      f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
146    } else {
147      f->do_oop((oop*)_discovered_refs[i].adr_head());
148    }
149  }
150}
151
152void ReferenceProcessor::update_soft_ref_master_clock() {
153  // Update (advance) the soft ref master clock field. This must be done
154  // after processing the soft ref list.
155
156  // We need a monotonically non-decreasing time in ms but
157  // os::javaTimeMillis() does not guarantee monotonicity.
158  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
159  jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
160  assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
161
162  NOT_PRODUCT(
163  if (now < _soft_ref_timestamp_clock) {
164    warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
165            _soft_ref_timestamp_clock, now);
166  }
167  )
168  // The values of now and _soft_ref_timestamp_clock are set using
169  // javaTimeNanos(), which is guaranteed to be monotonically
170  // non-decreasing provided the underlying platform provides such
171  // a time source (and it is bug free).
172  // In product mode, however, protect ourselves from non-monotonicity.
173  if (now > _soft_ref_timestamp_clock) {
174    _soft_ref_timestamp_clock = now;
175    java_lang_ref_SoftReference::set_clock(now);
176  }
177  // Else leave clock stalled at its old value until time progresses
178  // past clock value.
179}
180
181size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
182  size_t total = 0;
183  for (uint i = 0; i < _max_num_q; ++i) {
184    total += lists[i].length();
185  }
186  return total;
187}
188
189static void log_ref_count(size_t count, bool doit) {
190  if (doit) {
191    gclog_or_tty->print(", " SIZE_FORMAT " refs", count);
192  }
193}
194
195class GCRefTraceTime : public StackObj {
196  GCTraceTimeImpl _gc_trace_time;
197 public:
198  GCRefTraceTime(const char* title, bool doit, GCTimer* timer, size_t count) :
199    _gc_trace_time(title, doit, false, timer) {
200    log_ref_count(count, doit);
201  }
202};
203
204ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
205  BoolObjectClosure*           is_alive,
206  OopClosure*                  keep_alive,
207  VoidClosure*                 complete_gc,
208  AbstractRefProcTaskExecutor* task_executor,
209  GCTimer*                     gc_timer) {
210
211  assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
212  // Stop treating discovered references specially.
213  disable_discovery();
214
215  // If discovery was concurrent, someone could have modified
216  // the value of the static field in the j.l.r.SoftReference
217  // class that holds the soft reference timestamp clock using
218  // reflection or Unsafe between when discovery was enabled and
219  // now. Unconditionally update the static field in ReferenceProcessor
220  // here so that we use the new value during processing of the
221  // discovered soft refs.
222
223  _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
224
225  bool trace_time = PrintGCDetails && PrintReferenceGC;
226
227  // Include cleaners in phantom statistics.  We expect Cleaner
228  // references to be temporary, and don't want to deal with
229  // possible incompatibilities arising from making it more visible.
230  ReferenceProcessorStats stats(
231      total_count(_discoveredSoftRefs),
232      total_count(_discoveredWeakRefs),
233      total_count(_discoveredFinalRefs),
234      total_count(_discoveredPhantomRefs) + total_count(_discoveredCleanerRefs));
235
236  // Soft references
237  {
238    GCRefTraceTime tt("SoftReference", trace_time, gc_timer, stats.soft_count());
239    process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
240                               is_alive, keep_alive, complete_gc, task_executor);
241  }
242
243  update_soft_ref_master_clock();
244
245  // Weak references
246  {
247    GCRefTraceTime tt("WeakReference", trace_time, gc_timer, stats.weak_count());
248    process_discovered_reflist(_discoveredWeakRefs, NULL, true,
249                               is_alive, keep_alive, complete_gc, task_executor);
250  }
251
252  // Final references
253  {
254    GCRefTraceTime tt("FinalReference", trace_time, gc_timer, stats.final_count());
255    process_discovered_reflist(_discoveredFinalRefs, NULL, false,
256                               is_alive, keep_alive, complete_gc, task_executor);
257  }
258
259  // Phantom references
260  {
261    GCRefTraceTime tt("PhantomReference", trace_time, gc_timer, stats.phantom_count());
262    process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
263                               is_alive, keep_alive, complete_gc, task_executor);
264
265    // Process cleaners, but include them in phantom timing.  We expect
266    // Cleaner references to be temporary, and don't want to deal with
267    // possible incompatibilities arising from making it more visible.
268    process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
269                                 is_alive, keep_alive, complete_gc, task_executor);
270  }
271
272  // Weak global JNI references. It would make more sense (semantically) to
273  // traverse these simultaneously with the regular weak references above, but
274  // that is not how the JDK1.2 specification is. See #4126360. Native code can
275  // thus use JNI weak references to circumvent the phantom references and
276  // resurrect a "post-mortem" object.
277  {
278    GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
279    NOT_PRODUCT(log_ref_count(count_jni_refs(), trace_time);)
280    if (task_executor != NULL) {
281      task_executor->set_single_threaded_mode();
282    }
283    process_phaseJNI(is_alive, keep_alive, complete_gc);
284  }
285
286  return stats;
287}
288
289#ifndef PRODUCT
290// Calculate the number of jni handles.
291uint ReferenceProcessor::count_jni_refs() {
292  class AlwaysAliveClosure: public BoolObjectClosure {
293  public:
294    virtual bool do_object_b(oop obj) { return true; }
295  };
296
297  class CountHandleClosure: public OopClosure {
298  private:
299    int _count;
300  public:
301    CountHandleClosure(): _count(0) {}
302    void do_oop(oop* unused)       { _count++; }
303    void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
304    int count() { return _count; }
305  };
306  CountHandleClosure global_handle_count;
307  AlwaysAliveClosure always_alive;
308  JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
309  return global_handle_count.count();
310}
311#endif
312
313void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
314                                          OopClosure*        keep_alive,
315                                          VoidClosure*       complete_gc) {
316  JNIHandles::weak_oops_do(is_alive, keep_alive);
317  complete_gc->do_void();
318}
319
320
321template <class T>
322bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
323                                   AbstractRefProcTaskExecutor* task_executor) {
324
325  // Remember old value of pending references list
326  T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
327  T old_pending_list_value = *pending_list_addr;
328
329  // Enqueue references that are not made active again, and
330  // clear the decks for the next collection (cycle).
331  ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
332  // Do the post-barrier on pending_list_addr missed in
333  // enqueue_discovered_reflist.
334  oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
335
336  // Stop treating discovered references specially.
337  ref->disable_discovery();
338
339  // Return true if new pending references were added
340  return old_pending_list_value != *pending_list_addr;
341}
342
343bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
344  if (UseCompressedOops) {
345    return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
346  } else {
347    return enqueue_discovered_ref_helper<oop>(this, task_executor);
348  }
349}
350
351void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
352                                                    HeapWord* pending_list_addr) {
353  // Given a list of refs linked through the "discovered" field
354  // (java.lang.ref.Reference.discovered), self-loop their "next" field
355  // thus distinguishing them from active References, then
356  // prepend them to the pending list.
357  //
358  // The Java threads will see the Reference objects linked together through
359  // the discovered field. Instead of trying to do the write barrier updates
360  // in all places in the reference processor where we manipulate the discovered
361  // field we make sure to do the barrier here where we anyway iterate through
362  // all linked Reference objects. Note that it is important to not dirty any
363  // cards during reference processing since this will cause card table
364  // verification to fail for G1.
365  if (TraceReferenceGC && PrintGCDetails) {
366    gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
367                           INTPTR_FORMAT, p2i(refs_list.head()));
368  }
369
370  oop obj = NULL;
371  oop next_d = refs_list.head();
372  // Walk down the list, self-looping the next field
373  // so that the References are not considered active.
374  while (obj != next_d) {
375    obj = next_d;
376    assert(obj->is_instanceRef(), "should be reference object");
377    next_d = java_lang_ref_Reference::discovered(obj);
378    if (TraceReferenceGC && PrintGCDetails) {
379      gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
380                             p2i(obj), p2i(next_d));
381    }
382    assert(java_lang_ref_Reference::next(obj) == NULL,
383           "Reference not active; should not be discovered");
384    // Self-loop next, so as to make Ref not active.
385    java_lang_ref_Reference::set_next_raw(obj, obj);
386    if (next_d != obj) {
387      oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
388    } else {
389      // This is the last object.
390      // Swap refs_list into pending_list_addr and
391      // set obj's discovered to what we read from pending_list_addr.
392      oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
393      // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
394      java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
395      oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
396    }
397  }
398}
399
400// Parallel enqueue task
401class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
402public:
403  RefProcEnqueueTask(ReferenceProcessor& ref_processor,
404                     DiscoveredList      discovered_refs[],
405                     HeapWord*           pending_list_addr,
406                     int                 n_queues)
407    : EnqueueTask(ref_processor, discovered_refs,
408                  pending_list_addr, n_queues)
409  { }
410
411  virtual void work(unsigned int work_id) {
412    assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
413    // Simplest first cut: static partitioning.
414    int index = work_id;
415    // The increment on "index" must correspond to the maximum number of queues
416    // (n_queues) with which that ReferenceProcessor was created.  That
417    // is because of the "clever" way the discovered references lists were
418    // allocated and are indexed into.
419    assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
420    for (int j = 0;
421         j < ReferenceProcessor::number_of_subclasses_of_ref();
422         j++, index += _n_queues) {
423      _ref_processor.enqueue_discovered_reflist(
424        _refs_lists[index], _pending_list_addr);
425      _refs_lists[index].set_head(NULL);
426      _refs_lists[index].set_length(0);
427    }
428  }
429};
430
431// Enqueue references that are not made active again
432void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
433  AbstractRefProcTaskExecutor* task_executor) {
434  if (_processing_is_mt && task_executor != NULL) {
435    // Parallel code
436    RefProcEnqueueTask tsk(*this, _discovered_refs,
437                           pending_list_addr, _max_num_q);
438    task_executor->execute(tsk);
439  } else {
440    // Serial code: call the parent class's implementation
441    for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
442      enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
443      _discovered_refs[i].set_head(NULL);
444      _discovered_refs[i].set_length(0);
445    }
446  }
447}
448
449void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
450  _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
451  oop discovered = java_lang_ref_Reference::discovered(_ref);
452  assert(_discovered_addr && discovered->is_oop_or_null(),
453         "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
454  _next = discovered;
455  _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
456  _referent = java_lang_ref_Reference::referent(_ref);
457  assert(Universe::heap()->is_in_reserved_or_null(_referent),
458         "Wrong oop found in java.lang.Reference object");
459  assert(allow_null_referent ?
460             _referent->is_oop_or_null()
461           : _referent->is_oop(),
462         "Expected an oop%s for referent field at " PTR_FORMAT,
463         (allow_null_referent ? " or NULL" : ""),
464         p2i(_referent));
465}
466
467void DiscoveredListIterator::remove() {
468  assert(_ref->is_oop(), "Dropping a bad reference");
469  oop_store_raw(_discovered_addr, NULL);
470
471  // First _prev_next ref actually points into DiscoveredList (gross).
472  oop new_next;
473  if (_next == _ref) {
474    // At the end of the list, we should make _prev point to itself.
475    // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
476    // and _prev will be NULL.
477    new_next = _prev;
478  } else {
479    new_next = _next;
480  }
481  // Remove Reference object from discovered list. Note that G1 does not need a
482  // pre-barrier here because we know the Reference has already been found/marked,
483  // that's how it ended up in the discovered list in the first place.
484  oop_store_raw(_prev_next, new_next);
485  NOT_PRODUCT(_removed++);
486  _refs_list.dec_length(1);
487}
488
489void DiscoveredListIterator::clear_referent() {
490  oop_store_raw(_referent_addr, NULL);
491}
492
493// NOTE: process_phase*() are largely similar, and at a high level
494// merely iterate over the extant list applying a predicate to
495// each of its elements and possibly removing that element from the
496// list and applying some further closures to that element.
497// We should consider the possibility of replacing these
498// process_phase*() methods by abstracting them into
499// a single general iterator invocation that receives appropriate
500// closures that accomplish this work.
501
502// (SoftReferences only) Traverse the list and remove any SoftReferences whose
503// referents are not alive, but that should be kept alive for policy reasons.
504// Keep alive the transitive closure of all such referents.
505void
506ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
507                                   ReferencePolicy*   policy,
508                                   BoolObjectClosure* is_alive,
509                                   OopClosure*        keep_alive,
510                                   VoidClosure*       complete_gc) {
511  assert(policy != NULL, "Must have a non-NULL policy");
512  DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
513  // Decide which softly reachable refs should be kept alive.
514  while (iter.has_next()) {
515    iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
516    bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
517    if (referent_is_dead &&
518        !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
519      if (TraceReferenceGC) {
520        gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
521                               p2i(iter.obj()), iter.obj()->klass()->internal_name());
522      }
523      // Remove Reference object from list
524      iter.remove();
525      // keep the referent around
526      iter.make_referent_alive();
527      iter.move_to_next();
528    } else {
529      iter.next();
530    }
531  }
532  // Close the reachable set
533  complete_gc->do_void();
534  NOT_PRODUCT(
535    if (PrintGCDetails && TraceReferenceGC) {
536      gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT
537        " discovered Refs by policy, from list " INTPTR_FORMAT,
538        iter.removed(), iter.processed(), p2i(refs_list.head()));
539    }
540  )
541}
542
543// Traverse the list and remove any Refs that are not active, or
544// whose referents are either alive or NULL.
545void
546ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
547                             BoolObjectClosure* is_alive,
548                             OopClosure*        keep_alive) {
549  assert(discovery_is_atomic(), "Error");
550  DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
551  while (iter.has_next()) {
552    iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
553    DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
554    assert(next == NULL, "Should not discover inactive Reference");
555    if (iter.is_referent_alive()) {
556      if (TraceReferenceGC) {
557        gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
558                               p2i(iter.obj()), iter.obj()->klass()->internal_name());
559      }
560      // The referent is reachable after all.
561      // Remove Reference object from list.
562      iter.remove();
563      // Update the referent pointer as necessary: Note that this
564      // should not entail any recursive marking because the
565      // referent must already have been traversed.
566      iter.make_referent_alive();
567      iter.move_to_next();
568    } else {
569      iter.next();
570    }
571  }
572  NOT_PRODUCT(
573    if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
574      gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
575        " Refs in discovered list " INTPTR_FORMAT,
576        iter.removed(), iter.processed(), p2i(refs_list.head()));
577    }
578  )
579}
580
581void
582ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
583                                                  BoolObjectClosure* is_alive,
584                                                  OopClosure*        keep_alive,
585                                                  VoidClosure*       complete_gc) {
586  assert(!discovery_is_atomic(), "Error");
587  DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
588  while (iter.has_next()) {
589    iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
590    HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
591    oop next = java_lang_ref_Reference::next(iter.obj());
592    if ((iter.referent() == NULL || iter.is_referent_alive() ||
593         next != NULL)) {
594      assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
595      // Remove Reference object from list
596      iter.remove();
597      // Trace the cohorts
598      iter.make_referent_alive();
599      if (UseCompressedOops) {
600        keep_alive->do_oop((narrowOop*)next_addr);
601      } else {
602        keep_alive->do_oop((oop*)next_addr);
603      }
604      iter.move_to_next();
605    } else {
606      iter.next();
607    }
608  }
609  // Now close the newly reachable set
610  complete_gc->do_void();
611  NOT_PRODUCT(
612    if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
613      gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
614        " Refs in discovered list " INTPTR_FORMAT,
615        iter.removed(), iter.processed(), p2i(refs_list.head()));
616    }
617  )
618}
619
620// Traverse the list and process the referents, by either
621// clearing them or keeping them (and their reachable
622// closure) alive.
623void
624ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
625                                   bool               clear_referent,
626                                   BoolObjectClosure* is_alive,
627                                   OopClosure*        keep_alive,
628                                   VoidClosure*       complete_gc) {
629  ResourceMark rm;
630  DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
631  while (iter.has_next()) {
632    iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
633    if (clear_referent) {
634      // NULL out referent pointer
635      iter.clear_referent();
636    } else {
637      // keep the referent around
638      iter.make_referent_alive();
639    }
640    if (TraceReferenceGC) {
641      gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
642                             clear_referent ? "cleared " : "",
643                             p2i(iter.obj()), iter.obj()->klass()->internal_name());
644    }
645    assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
646    iter.next();
647  }
648  // Close the reachable set
649  complete_gc->do_void();
650}
651
652void
653ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
654  oop obj = NULL;
655  oop next = refs_list.head();
656  while (next != obj) {
657    obj = next;
658    next = java_lang_ref_Reference::discovered(obj);
659    java_lang_ref_Reference::set_discovered_raw(obj, NULL);
660  }
661  refs_list.set_head(NULL);
662  refs_list.set_length(0);
663}
664
665void ReferenceProcessor::abandon_partial_discovery() {
666  // loop over the lists
667  for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
668    if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
669      gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
670    }
671    clear_discovered_references(_discovered_refs[i]);
672  }
673}
674
675class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
676public:
677  RefProcPhase1Task(ReferenceProcessor& ref_processor,
678                    DiscoveredList      refs_lists[],
679                    ReferencePolicy*    policy,
680                    bool                marks_oops_alive)
681    : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
682      _policy(policy)
683  { }
684  virtual void work(unsigned int i, BoolObjectClosure& is_alive,
685                    OopClosure& keep_alive,
686                    VoidClosure& complete_gc)
687  {
688    Thread* thr = Thread::current();
689    int refs_list_index = ((WorkerThread*)thr)->id();
690    _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
691                                  &is_alive, &keep_alive, &complete_gc);
692  }
693private:
694  ReferencePolicy* _policy;
695};
696
697class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
698public:
699  RefProcPhase2Task(ReferenceProcessor& ref_processor,
700                    DiscoveredList      refs_lists[],
701                    bool                marks_oops_alive)
702    : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
703  { }
704  virtual void work(unsigned int i, BoolObjectClosure& is_alive,
705                    OopClosure& keep_alive,
706                    VoidClosure& complete_gc)
707  {
708    _ref_processor.process_phase2(_refs_lists[i],
709                                  &is_alive, &keep_alive, &complete_gc);
710  }
711};
712
713class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
714public:
715  RefProcPhase3Task(ReferenceProcessor& ref_processor,
716                    DiscoveredList      refs_lists[],
717                    bool                clear_referent,
718                    bool                marks_oops_alive)
719    : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
720      _clear_referent(clear_referent)
721  { }
722  virtual void work(unsigned int i, BoolObjectClosure& is_alive,
723                    OopClosure& keep_alive,
724                    VoidClosure& complete_gc)
725  {
726    // Don't use "refs_list_index" calculated in this way because
727    // balance_queues() has moved the Ref's into the first n queues.
728    // Thread* thr = Thread::current();
729    // int refs_list_index = ((WorkerThread*)thr)->id();
730    // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
731    _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
732                                  &is_alive, &keep_alive, &complete_gc);
733  }
734private:
735  bool _clear_referent;
736};
737
738// Balances reference queues.
739// Move entries from all queues[0, 1, ..., _max_num_q-1] to
740// queues[0, 1, ..., _num_q-1] because only the first _num_q
741// corresponding to the active workers will be processed.
742void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
743{
744  // calculate total length
745  size_t total_refs = 0;
746  if (TraceReferenceGC && PrintGCDetails) {
747    gclog_or_tty->print_cr("\nBalance ref_lists ");
748  }
749
750  for (uint i = 0; i < _max_num_q; ++i) {
751    total_refs += ref_lists[i].length();
752    if (TraceReferenceGC && PrintGCDetails) {
753      gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
754    }
755  }
756  if (TraceReferenceGC && PrintGCDetails) {
757    gclog_or_tty->print_cr(" = " SIZE_FORMAT, total_refs);
758  }
759  size_t avg_refs = total_refs / _num_q + 1;
760  uint to_idx = 0;
761  for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
762    bool move_all = false;
763    if (from_idx >= _num_q) {
764      move_all = ref_lists[from_idx].length() > 0;
765    }
766    while ((ref_lists[from_idx].length() > avg_refs) ||
767           move_all) {
768      assert(to_idx < _num_q, "Sanity Check!");
769      if (ref_lists[to_idx].length() < avg_refs) {
770        // move superfluous refs
771        size_t refs_to_move;
772        // Move all the Ref's if the from queue will not be processed.
773        if (move_all) {
774          refs_to_move = MIN2(ref_lists[from_idx].length(),
775                              avg_refs - ref_lists[to_idx].length());
776        } else {
777          refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
778                              avg_refs - ref_lists[to_idx].length());
779        }
780
781        assert(refs_to_move > 0, "otherwise the code below will fail");
782
783        oop move_head = ref_lists[from_idx].head();
784        oop move_tail = move_head;
785        oop new_head  = move_head;
786        // find an element to split the list on
787        for (size_t j = 0; j < refs_to_move; ++j) {
788          move_tail = new_head;
789          new_head = java_lang_ref_Reference::discovered(new_head);
790        }
791
792        // Add the chain to the to list.
793        if (ref_lists[to_idx].head() == NULL) {
794          // to list is empty. Make a loop at the end.
795          java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
796        } else {
797          java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
798        }
799        ref_lists[to_idx].set_head(move_head);
800        ref_lists[to_idx].inc_length(refs_to_move);
801
802        // Remove the chain from the from list.
803        if (move_tail == new_head) {
804          // We found the end of the from list.
805          ref_lists[from_idx].set_head(NULL);
806        } else {
807          ref_lists[from_idx].set_head(new_head);
808        }
809        ref_lists[from_idx].dec_length(refs_to_move);
810        if (ref_lists[from_idx].length() == 0) {
811          break;
812        }
813      } else {
814        to_idx = (to_idx + 1) % _num_q;
815      }
816    }
817  }
818#ifdef ASSERT
819  size_t balanced_total_refs = 0;
820  for (uint i = 0; i < _max_num_q; ++i) {
821    balanced_total_refs += ref_lists[i].length();
822    if (TraceReferenceGC && PrintGCDetails) {
823      gclog_or_tty->print(SIZE_FORMAT " ", ref_lists[i].length());
824    }
825  }
826  if (TraceReferenceGC && PrintGCDetails) {
827    gclog_or_tty->print_cr(" = " SIZE_FORMAT, balanced_total_refs);
828    gclog_or_tty->flush();
829  }
830  assert(total_refs == balanced_total_refs, "Balancing was incomplete");
831#endif
832}
833
834void ReferenceProcessor::balance_all_queues() {
835  balance_queues(_discoveredSoftRefs);
836  balance_queues(_discoveredWeakRefs);
837  balance_queues(_discoveredFinalRefs);
838  balance_queues(_discoveredPhantomRefs);
839  balance_queues(_discoveredCleanerRefs);
840}
841
842void ReferenceProcessor::process_discovered_reflist(
843  DiscoveredList               refs_lists[],
844  ReferencePolicy*             policy,
845  bool                         clear_referent,
846  BoolObjectClosure*           is_alive,
847  OopClosure*                  keep_alive,
848  VoidClosure*                 complete_gc,
849  AbstractRefProcTaskExecutor* task_executor)
850{
851  bool mt_processing = task_executor != NULL && _processing_is_mt;
852  // If discovery used MT and a dynamic number of GC threads, then
853  // the queues must be balanced for correctness if fewer than the
854  // maximum number of queues were used.  The number of queue used
855  // during discovery may be different than the number to be used
856  // for processing so don't depend of _num_q < _max_num_q as part
857  // of the test.
858  bool must_balance = _discovery_is_mt;
859
860  if ((mt_processing && ParallelRefProcBalancingEnabled) ||
861      must_balance) {
862    balance_queues(refs_lists);
863  }
864
865  // Phase 1 (soft refs only):
866  // . Traverse the list and remove any SoftReferences whose
867  //   referents are not alive, but that should be kept alive for
868  //   policy reasons. Keep alive the transitive closure of all
869  //   such referents.
870  if (policy != NULL) {
871    if (mt_processing) {
872      RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
873      task_executor->execute(phase1);
874    } else {
875      for (uint i = 0; i < _max_num_q; i++) {
876        process_phase1(refs_lists[i], policy,
877                       is_alive, keep_alive, complete_gc);
878      }
879    }
880  } else { // policy == NULL
881    assert(refs_lists != _discoveredSoftRefs,
882           "Policy must be specified for soft references.");
883  }
884
885  // Phase 2:
886  // . Traverse the list and remove any refs whose referents are alive.
887  if (mt_processing) {
888    RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
889    task_executor->execute(phase2);
890  } else {
891    for (uint i = 0; i < _max_num_q; i++) {
892      process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
893    }
894  }
895
896  // Phase 3:
897  // . Traverse the list and process referents as appropriate.
898  if (mt_processing) {
899    RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
900    task_executor->execute(phase3);
901  } else {
902    for (uint i = 0; i < _max_num_q; i++) {
903      process_phase3(refs_lists[i], clear_referent,
904                     is_alive, keep_alive, complete_gc);
905    }
906  }
907}
908
909inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
910  uint id = 0;
911  // Determine the queue index to use for this object.
912  if (_discovery_is_mt) {
913    // During a multi-threaded discovery phase,
914    // each thread saves to its "own" list.
915    Thread* thr = Thread::current();
916    id = thr->as_Worker_thread()->id();
917  } else {
918    // single-threaded discovery, we save in round-robin
919    // fashion to each of the lists.
920    if (_processing_is_mt) {
921      id = next_id();
922    }
923  }
924  assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
925
926  // Get the discovered queue to which we will add
927  DiscoveredList* list = NULL;
928  switch (rt) {
929    case REF_OTHER:
930      // Unknown reference type, no special treatment
931      break;
932    case REF_SOFT:
933      list = &_discoveredSoftRefs[id];
934      break;
935    case REF_WEAK:
936      list = &_discoveredWeakRefs[id];
937      break;
938    case REF_FINAL:
939      list = &_discoveredFinalRefs[id];
940      break;
941    case REF_PHANTOM:
942      list = &_discoveredPhantomRefs[id];
943      break;
944    case REF_CLEANER:
945      list = &_discoveredCleanerRefs[id];
946      break;
947    case REF_NONE:
948      // we should not reach here if we are an InstanceRefKlass
949    default:
950      ShouldNotReachHere();
951  }
952  if (TraceReferenceGC && PrintGCDetails) {
953    gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
954  }
955  return list;
956}
957
958inline void
959ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
960                                              oop             obj,
961                                              HeapWord*       discovered_addr) {
962  assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
963  // First we must make sure this object is only enqueued once. CAS in a non null
964  // discovered_addr.
965  oop current_head = refs_list.head();
966  // The last ref must have its discovered field pointing to itself.
967  oop next_discovered = (current_head != NULL) ? current_head : obj;
968
969  oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
970                                                    NULL);
971  if (retest == NULL) {
972    // This thread just won the right to enqueue the object.
973    // We have separate lists for enqueueing, so no synchronization
974    // is necessary.
975    refs_list.set_head(obj);
976    refs_list.inc_length(1);
977
978    if (TraceReferenceGC) {
979      gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
980                             p2i(obj), obj->klass()->internal_name());
981    }
982  } else {
983    // If retest was non NULL, another thread beat us to it:
984    // The reference has already been discovered...
985    if (TraceReferenceGC) {
986      gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
987                             p2i(obj), obj->klass()->internal_name());
988    }
989  }
990}
991
992#ifndef PRODUCT
993// Non-atomic (i.e. concurrent) discovery might allow us
994// to observe j.l.References with NULL referents, being those
995// cleared concurrently by mutators during (or after) discovery.
996void ReferenceProcessor::verify_referent(oop obj) {
997  bool da = discovery_is_atomic();
998  oop referent = java_lang_ref_Reference::referent(obj);
999  assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1000         "Bad referent " INTPTR_FORMAT " found in Reference "
1001         INTPTR_FORMAT " during %satomic discovery ",
1002         p2i(referent), p2i(obj), da ? "" : "non-");
1003}
1004#endif
1005
1006// We mention two of several possible choices here:
1007// #0: if the reference object is not in the "originating generation"
1008//     (or part of the heap being collected, indicated by our "span"
1009//     we don't treat it specially (i.e. we scan it as we would
1010//     a normal oop, treating its references as strong references).
1011//     This means that references can't be discovered unless their
1012//     referent is also in the same span. This is the simplest,
1013//     most "local" and most conservative approach, albeit one
1014//     that may cause weak references to be enqueued least promptly.
1015//     We call this choice the "ReferenceBasedDiscovery" policy.
1016// #1: the reference object may be in any generation (span), but if
1017//     the referent is in the generation (span) being currently collected
1018//     then we can discover the reference object, provided
1019//     the object has not already been discovered by
1020//     a different concurrently running collector (as may be the
1021//     case, for instance, if the reference object is in CMS and
1022//     the referent in DefNewGeneration), and provided the processing
1023//     of this reference object by the current collector will
1024//     appear atomic to every other collector in the system.
1025//     (Thus, for instance, a concurrent collector may not
1026//     discover references in other generations even if the
1027//     referent is in its own generation). This policy may,
1028//     in certain cases, enqueue references somewhat sooner than
1029//     might Policy #0 above, but at marginally increased cost
1030//     and complexity in processing these references.
1031//     We call this choice the "RefeferentBasedDiscovery" policy.
1032bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1033  // Make sure we are discovering refs (rather than processing discovered refs).
1034  if (!_discovering_refs || !RegisterReferences) {
1035    return false;
1036  }
1037  // We only discover active references.
1038  oop next = java_lang_ref_Reference::next(obj);
1039  if (next != NULL) {   // Ref is no longer active
1040    return false;
1041  }
1042
1043  HeapWord* obj_addr = (HeapWord*)obj;
1044  if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1045      !_span.contains(obj_addr)) {
1046    // Reference is not in the originating generation;
1047    // don't treat it specially (i.e. we want to scan it as a normal
1048    // object with strong references).
1049    return false;
1050  }
1051
1052  // We only discover references whose referents are not (yet)
1053  // known to be strongly reachable.
1054  if (is_alive_non_header() != NULL) {
1055    verify_referent(obj);
1056    if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1057      return false;  // referent is reachable
1058    }
1059  }
1060  if (rt == REF_SOFT) {
1061    // For soft refs we can decide now if these are not
1062    // current candidates for clearing, in which case we
1063    // can mark through them now, rather than delaying that
1064    // to the reference-processing phase. Since all current
1065    // time-stamp policies advance the soft-ref clock only
1066    // at a full collection cycle, this is always currently
1067    // accurate.
1068    if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1069      return false;
1070    }
1071  }
1072
1073  ResourceMark rm;      // Needed for tracing.
1074
1075  HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1076  const oop  discovered = java_lang_ref_Reference::discovered(obj);
1077  assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1078  if (discovered != NULL) {
1079    // The reference has already been discovered...
1080    if (TraceReferenceGC) {
1081      gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1082                             p2i(obj), obj->klass()->internal_name());
1083    }
1084    if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1085      // assumes that an object is not processed twice;
1086      // if it's been already discovered it must be on another
1087      // generation's discovered list; so we won't discover it.
1088      return false;
1089    } else {
1090      assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1091             "Unrecognized policy");
1092      // Check assumption that an object is not potentially
1093      // discovered twice except by concurrent collectors that potentially
1094      // trace the same Reference object twice.
1095      assert(UseConcMarkSweepGC || UseG1GC,
1096             "Only possible with a concurrent marking collector");
1097      return true;
1098    }
1099  }
1100
1101  if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1102    verify_referent(obj);
1103    // Discover if and only if EITHER:
1104    // .. reference is in our span, OR
1105    // .. we are an atomic collector and referent is in our span
1106    if (_span.contains(obj_addr) ||
1107        (discovery_is_atomic() &&
1108         _span.contains(java_lang_ref_Reference::referent(obj)))) {
1109      // should_enqueue = true;
1110    } else {
1111      return false;
1112    }
1113  } else {
1114    assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1115           _span.contains(obj_addr), "code inconsistency");
1116  }
1117
1118  // Get the right type of discovered queue head.
1119  DiscoveredList* list = get_discovered_list(rt);
1120  if (list == NULL) {
1121    return false;   // nothing special needs to be done
1122  }
1123
1124  if (_discovery_is_mt) {
1125    add_to_discovered_list_mt(*list, obj, discovered_addr);
1126  } else {
1127    // We do a raw store here: the field will be visited later when processing
1128    // the discovered references.
1129    oop current_head = list->head();
1130    // The last ref must have its discovered field pointing to itself.
1131    oop next_discovered = (current_head != NULL) ? current_head : obj;
1132
1133    assert(discovered == NULL, "control point invariant");
1134    oop_store_raw(discovered_addr, next_discovered);
1135    list->set_head(obj);
1136    list->inc_length(1);
1137
1138    if (TraceReferenceGC) {
1139      gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1140                                p2i(obj), obj->klass()->internal_name());
1141    }
1142  }
1143  assert(obj->is_oop(), "Discovered a bad reference");
1144  verify_referent(obj);
1145  return true;
1146}
1147
1148// Preclean the discovered references by removing those
1149// whose referents are alive, and by marking from those that
1150// are not active. These lists can be handled here
1151// in any order and, indeed, concurrently.
1152void ReferenceProcessor::preclean_discovered_references(
1153  BoolObjectClosure* is_alive,
1154  OopClosure* keep_alive,
1155  VoidClosure* complete_gc,
1156  YieldClosure* yield,
1157  GCTimer* gc_timer) {
1158
1159  // Soft references
1160  {
1161    GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1162              false, gc_timer);
1163    for (uint i = 0; i < _max_num_q; i++) {
1164      if (yield->should_return()) {
1165        return;
1166      }
1167      preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1168                                  keep_alive, complete_gc, yield);
1169    }
1170  }
1171
1172  // Weak references
1173  {
1174    GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1175              false, gc_timer);
1176    for (uint i = 0; i < _max_num_q; i++) {
1177      if (yield->should_return()) {
1178        return;
1179      }
1180      preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1181                                  keep_alive, complete_gc, yield);
1182    }
1183  }
1184
1185  // Final references
1186  {
1187    GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1188              false, gc_timer);
1189    for (uint i = 0; i < _max_num_q; i++) {
1190      if (yield->should_return()) {
1191        return;
1192      }
1193      preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1194                                  keep_alive, complete_gc, yield);
1195    }
1196  }
1197
1198  // Phantom references
1199  {
1200    GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1201              false, gc_timer);
1202    for (uint i = 0; i < _max_num_q; i++) {
1203      if (yield->should_return()) {
1204        return;
1205      }
1206      preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1207                                  keep_alive, complete_gc, yield);
1208    }
1209
1210    // Cleaner references.  Included in timing for phantom references.  We
1211    // expect Cleaner references to be temporary, and don't want to deal with
1212    // possible incompatibilities arising from making it more visible.
1213    for (uint i = 0; i < _max_num_q; i++) {
1214      if (yield->should_return()) {
1215        return;
1216      }
1217      preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1218                                  keep_alive, complete_gc, yield);
1219    }
1220  }
1221}
1222
1223// Walk the given discovered ref list, and remove all reference objects
1224// whose referents are still alive, whose referents are NULL or which
1225// are not active (have a non-NULL next field). NOTE: When we are
1226// thus precleaning the ref lists (which happens single-threaded today),
1227// we do not disable refs discovery to honor the correct semantics of
1228// java.lang.Reference. As a result, we need to be careful below
1229// that ref removal steps interleave safely with ref discovery steps
1230// (in this thread).
1231void
1232ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1233                                                BoolObjectClosure* is_alive,
1234                                                OopClosure*        keep_alive,
1235                                                VoidClosure*       complete_gc,
1236                                                YieldClosure*      yield) {
1237  DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1238  while (iter.has_next()) {
1239    iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1240    oop obj = iter.obj();
1241    oop next = java_lang_ref_Reference::next(obj);
1242    if (iter.referent() == NULL || iter.is_referent_alive() ||
1243        next != NULL) {
1244      // The referent has been cleared, or is alive, or the Reference is not
1245      // active; we need to trace and mark its cohort.
1246      if (TraceReferenceGC) {
1247        gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1248                               p2i(iter.obj()), iter.obj()->klass()->internal_name());
1249      }
1250      // Remove Reference object from list
1251      iter.remove();
1252      // Keep alive its cohort.
1253      iter.make_referent_alive();
1254      if (UseCompressedOops) {
1255        narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1256        keep_alive->do_oop(next_addr);
1257      } else {
1258        oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1259        keep_alive->do_oop(next_addr);
1260      }
1261      iter.move_to_next();
1262    } else {
1263      iter.next();
1264    }
1265  }
1266  // Close the reachable set
1267  complete_gc->do_void();
1268
1269  NOT_PRODUCT(
1270    if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1271      gclog_or_tty->print_cr(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT
1272        " Refs in discovered list " INTPTR_FORMAT,
1273        iter.removed(), iter.processed(), p2i(refs_list.head()));
1274    }
1275  )
1276}
1277
1278const char* ReferenceProcessor::list_name(uint i) {
1279   assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1280          "Out of bounds index");
1281
1282   int j = i / _max_num_q;
1283   switch (j) {
1284     case 0: return "SoftRef";
1285     case 1: return "WeakRef";
1286     case 2: return "FinalRef";
1287     case 3: return "PhantomRef";
1288     case 4: return "CleanerRef";
1289   }
1290   ShouldNotReachHere();
1291   return NULL;
1292}
1293
1294