cardTableRS.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/cardTableRS.hpp"
27#include "gc/shared/genCollectedHeap.hpp"
28#include "gc/shared/generation.hpp"
29#include "gc/shared/space.inline.hpp"
30#include "memory/allocation.inline.hpp"
31#include "oops/oop.inline.hpp"
32#include "runtime/atomic.inline.hpp"
33#include "runtime/java.hpp"
34#include "runtime/os.hpp"
35#include "utilities/macros.hpp"
36
37CardTableRS::CardTableRS(MemRegion whole_heap) :
38  GenRemSet(),
39  _cur_youngergen_card_val(youngergenP1_card)
40{
41  _ct_bs = new CardTableModRefBSForCTRS(whole_heap);
42  _ct_bs->initialize();
43  set_bs(_ct_bs);
44  // max_gens is really GenCollectedHeap::heap()->gen_policy()->number_of_generations()
45  // (which is always 2, young & old), but GenCollectedHeap has not been initialized yet.
46  uint max_gens = 2;
47  _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, max_gens + 1,
48                         mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
49  if (_last_cur_val_in_gen == NULL) {
50    vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
51  }
52  for (uint i = 0; i < max_gens + 1; i++) {
53    _last_cur_val_in_gen[i] = clean_card_val();
54  }
55  _ct_bs->set_CTRS(this);
56}
57
58CardTableRS::~CardTableRS() {
59  if (_ct_bs) {
60    delete _ct_bs;
61    _ct_bs = NULL;
62  }
63  if (_last_cur_val_in_gen) {
64    FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen);
65  }
66}
67
68void CardTableRS::resize_covered_region(MemRegion new_region) {
69  _ct_bs->resize_covered_region(new_region);
70}
71
72jbyte CardTableRS::find_unused_youngergenP_card_value() {
73  for (jbyte v = youngergenP1_card;
74       v < cur_youngergen_and_prev_nonclean_card;
75       v++) {
76    bool seen = false;
77    for (int g = 0; g < _regions_to_iterate; g++) {
78      if (_last_cur_val_in_gen[g] == v) {
79        seen = true;
80        break;
81      }
82    }
83    if (!seen) {
84      return v;
85    }
86  }
87  ShouldNotReachHere();
88  return 0;
89}
90
91void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
92  // Parallel or sequential, we must always set the prev to equal the
93  // last one written.
94  if (parallel) {
95    // Find a parallel value to be used next.
96    jbyte next_val = find_unused_youngergenP_card_value();
97    set_cur_youngergen_card_val(next_val);
98
99  } else {
100    // In an sequential traversal we will always write youngergen, so that
101    // the inline barrier is  correct.
102    set_cur_youngergen_card_val(youngergen_card);
103  }
104}
105
106void CardTableRS::younger_refs_iterate(Generation* g,
107                                       OopsInGenClosure* blk,
108                                       uint n_threads) {
109  // The indexing in this array is slightly odd. We want to access
110  // the old generation record here, which is at index 2.
111  _last_cur_val_in_gen[2] = cur_youngergen_card_val();
112  g->younger_refs_iterate(blk, n_threads);
113}
114
115inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
116  if (_is_par) {
117    return clear_card_parallel(entry);
118  } else {
119    return clear_card_serial(entry);
120  }
121}
122
123inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
124  while (true) {
125    // In the parallel case, we may have to do this several times.
126    jbyte entry_val = *entry;
127    assert(entry_val != CardTableRS::clean_card_val(),
128           "We shouldn't be looking at clean cards, and this should "
129           "be the only place they get cleaned.");
130    if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
131        || _ct->is_prev_youngergen_card_val(entry_val)) {
132      jbyte res =
133        Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
134      if (res == entry_val) {
135        break;
136      } else {
137        assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
138               "The CAS above should only fail if another thread did "
139               "a GC write barrier.");
140      }
141    } else if (entry_val ==
142               CardTableRS::cur_youngergen_and_prev_nonclean_card) {
143      // Parallelism shouldn't matter in this case.  Only the thread
144      // assigned to scan the card should change this value.
145      *entry = _ct->cur_youngergen_card_val();
146      break;
147    } else {
148      assert(entry_val == _ct->cur_youngergen_card_val(),
149             "Should be the only possibility.");
150      // In this case, the card was clean before, and become
151      // cur_youngergen only because of processing of a promoted object.
152      // We don't have to look at the card.
153      return false;
154    }
155  }
156  return true;
157}
158
159
160inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
161  jbyte entry_val = *entry;
162  assert(entry_val != CardTableRS::clean_card_val(),
163         "We shouldn't be looking at clean cards, and this should "
164         "be the only place they get cleaned.");
165  assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
166         "This should be possible in the sequential case.");
167  *entry = CardTableRS::clean_card_val();
168  return true;
169}
170
171ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
172  DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct, bool is_par) :
173    _dirty_card_closure(dirty_card_closure), _ct(ct), _is_par(is_par) {
174}
175
176bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
177  return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
178}
179
180// The regions are visited in *decreasing* address order.
181// This order aids with imprecise card marking, where a dirty
182// card may cause scanning, and summarization marking, of objects
183// that extend onto subsequent cards.
184void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
185  assert(mr.word_size() > 0, "Error");
186  assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
187  // mr.end() may not necessarily be card aligned.
188  jbyte* cur_entry = _ct->byte_for(mr.last());
189  const jbyte* limit = _ct->byte_for(mr.start());
190  HeapWord* end_of_non_clean = mr.end();
191  HeapWord* start_of_non_clean = end_of_non_clean;
192  while (cur_entry >= limit) {
193    HeapWord* cur_hw = _ct->addr_for(cur_entry);
194    if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
195      // Continue the dirty range by opening the
196      // dirty window one card to the left.
197      start_of_non_clean = cur_hw;
198    } else {
199      // We hit a "clean" card; process any non-empty
200      // "dirty" range accumulated so far.
201      if (start_of_non_clean < end_of_non_clean) {
202        const MemRegion mrd(start_of_non_clean, end_of_non_clean);
203        _dirty_card_closure->do_MemRegion(mrd);
204      }
205
206      // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
207      if (is_word_aligned(cur_entry)) {
208        jbyte* cur_row = cur_entry - BytesPerWord;
209        while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
210          cur_row -= BytesPerWord;
211        }
212        cur_entry = cur_row + BytesPerWord;
213        cur_hw = _ct->addr_for(cur_entry);
214      }
215
216      // Reset the dirty window, while continuing to look
217      // for the next dirty card that will start a
218      // new dirty window.
219      end_of_non_clean = cur_hw;
220      start_of_non_clean = cur_hw;
221    }
222    // Note that "cur_entry" leads "start_of_non_clean" in
223    // its leftward excursion after this point
224    // in the loop and, when we hit the left end of "mr",
225    // will point off of the left end of the card-table
226    // for "mr".
227    cur_entry--;
228  }
229  // If the first card of "mr" was dirty, we will have
230  // been left with a dirty window, co-initial with "mr",
231  // which we now process.
232  if (start_of_non_clean < end_of_non_clean) {
233    const MemRegion mrd(start_of_non_clean, end_of_non_clean);
234    _dirty_card_closure->do_MemRegion(mrd);
235  }
236}
237
238// clean (by dirty->clean before) ==> cur_younger_gen
239// dirty                          ==> cur_youngergen_and_prev_nonclean_card
240// precleaned                     ==> cur_youngergen_and_prev_nonclean_card
241// prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
242// cur-younger-gen                ==> cur_younger_gen
243// cur_youngergen_and_prev_nonclean_card ==> no change.
244void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
245  jbyte* entry = _ct_bs->byte_for(field);
246  do {
247    jbyte entry_val = *entry;
248    // We put this first because it's probably the most common case.
249    if (entry_val == clean_card_val()) {
250      // No threat of contention with cleaning threads.
251      *entry = cur_youngergen_card_val();
252      return;
253    } else if (card_is_dirty_wrt_gen_iter(entry_val)
254               || is_prev_youngergen_card_val(entry_val)) {
255      // Mark it as both cur and prev youngergen; card cleaning thread will
256      // eventually remove the previous stuff.
257      jbyte new_val = cur_youngergen_and_prev_nonclean_card;
258      jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
259      // Did the CAS succeed?
260      if (res == entry_val) return;
261      // Otherwise, retry, to see the new value.
262      continue;
263    } else {
264      assert(entry_val == cur_youngergen_and_prev_nonclean_card
265             || entry_val == cur_youngergen_card_val(),
266             "should be only possibilities.");
267      return;
268    }
269  } while (true);
270}
271
272void CardTableRS::younger_refs_in_space_iterate(Space* sp,
273                                                OopsInGenClosure* cl,
274                                                uint n_threads) {
275  const MemRegion urasm = sp->used_region_at_save_marks();
276#ifdef ASSERT
277  // Convert the assertion check to a warning if we are running
278  // CMS+ParNew until related bug is fixed.
279  MemRegion ur    = sp->used_region();
280  assert(ur.contains(urasm) || (UseConcMarkSweepGC),
281         err_msg("Did you forget to call save_marks()? "
282                 "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
283                 "[" PTR_FORMAT ", " PTR_FORMAT ")",
284                 p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
285  // In the case of CMS+ParNew, issue a warning
286  if (!ur.contains(urasm)) {
287    assert(UseConcMarkSweepGC, "Tautology: see assert above");
288    warning("CMS+ParNew: Did you forget to call save_marks()? "
289            "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
290            "[" PTR_FORMAT ", " PTR_FORMAT ")",
291             p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
292    MemRegion ur2 = sp->used_region();
293    MemRegion urasm2 = sp->used_region_at_save_marks();
294    if (!ur.equals(ur2)) {
295      warning("CMS+ParNew: Flickering used_region()!!");
296    }
297    if (!urasm.equals(urasm2)) {
298      warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
299    }
300    ShouldNotReachHere();
301  }
302#endif
303  _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this, n_threads);
304}
305
306void CardTableRS::clear_into_younger(Generation* old_gen) {
307  assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
308         "Should only be called for the old generation");
309  // The card tables for the youngest gen need never be cleared.
310  // There's a bit of subtlety in the clear() and invalidate()
311  // methods that we exploit here and in invalidate_or_clear()
312  // below to avoid missing cards at the fringes. If clear() or
313  // invalidate() are changed in the future, this code should
314  // be revisited. 20040107.ysr
315  clear(old_gen->prev_used_region());
316}
317
318void CardTableRS::invalidate_or_clear(Generation* old_gen) {
319  assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
320         "Should only be called for the old generation");
321  // Invalidate the cards for the currently occupied part of
322  // the old generation and clear the cards for the
323  // unoccupied part of the generation (if any, making use
324  // of that generation's prev_used_region to determine that
325  // region). No need to do anything for the youngest
326  // generation. Also see note#20040107.ysr above.
327  MemRegion used_mr = old_gen->used_region();
328  MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
329  if (!to_be_cleared_mr.is_empty()) {
330    clear(to_be_cleared_mr);
331  }
332  invalidate(used_mr);
333}
334
335
336class VerifyCleanCardClosure: public OopClosure {
337private:
338  HeapWord* _boundary;
339  HeapWord* _begin;
340  HeapWord* _end;
341protected:
342  template <class T> void do_oop_work(T* p) {
343    HeapWord* jp = (HeapWord*)p;
344    assert(jp >= _begin && jp < _end,
345           err_msg("Error: jp " PTR_FORMAT " should be within "
346                   "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
347                   p2i(jp), p2i(_begin), p2i(_end)));
348    oop obj = oopDesc::load_decode_heap_oop(p);
349    guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
350              err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
351                      "clean card crosses boundary" PTR_FORMAT,
352                      p2i(obj), p2i(jp), p2i(_boundary)));
353  }
354
355public:
356  VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
357    _boundary(b), _begin(begin), _end(end) {
358    assert(b <= begin,
359           err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
360                   p2i(b), p2i(begin)));
361    assert(begin <= end,
362           err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
363                   p2i(begin), p2i(end)));
364  }
365
366  virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
367  virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
368};
369
370class VerifyCTSpaceClosure: public SpaceClosure {
371private:
372  CardTableRS* _ct;
373  HeapWord* _boundary;
374public:
375  VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
376    _ct(ct), _boundary(boundary) {}
377  virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
378};
379
380class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
381  CardTableRS* _ct;
382public:
383  VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
384  void do_generation(Generation* gen) {
385    // Skip the youngest generation.
386    if (GenCollectedHeap::heap()->is_young_gen(gen)) {
387      return;
388    }
389    // Normally, we're interested in pointers to younger generations.
390    VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
391    gen->space_iterate(&blk, true);
392  }
393};
394
395void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
396  // We don't need to do young-gen spaces.
397  if (s->end() <= gen_boundary) return;
398  MemRegion used = s->used_region();
399
400  jbyte* cur_entry = byte_for(used.start());
401  jbyte* limit = byte_after(used.last());
402  while (cur_entry < limit) {
403    if (*cur_entry == clean_card_val()) {
404      jbyte* first_dirty = cur_entry+1;
405      while (first_dirty < limit &&
406             *first_dirty == clean_card_val()) {
407        first_dirty++;
408      }
409      // If the first object is a regular object, and it has a
410      // young-to-old field, that would mark the previous card.
411      HeapWord* boundary = addr_for(cur_entry);
412      HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
413      HeapWord* boundary_block = s->block_start(boundary);
414      HeapWord* begin = boundary;             // Until proven otherwise.
415      HeapWord* start_block = boundary_block; // Until proven otherwise.
416      if (boundary_block < boundary) {
417        if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
418          oop boundary_obj = oop(boundary_block);
419          if (!boundary_obj->is_objArray() &&
420              !boundary_obj->is_typeArray()) {
421            guarantee(cur_entry > byte_for(used.start()),
422                      "else boundary would be boundary_block");
423            if (*byte_for(boundary_block) != clean_card_val()) {
424              begin = boundary_block + s->block_size(boundary_block);
425              start_block = begin;
426            }
427          }
428        }
429      }
430      // Now traverse objects until end.
431      if (begin < end) {
432        MemRegion mr(begin, end);
433        VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
434        for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
435          if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
436            oop(cur)->oop_iterate_no_header(&verify_blk, mr);
437          }
438        }
439      }
440      cur_entry = first_dirty;
441    } else {
442      // We'd normally expect that cur_youngergen_and_prev_nonclean_card
443      // is a transient value, that cannot be in the card table
444      // except during GC, and thus assert that:
445      // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
446      //        "Illegal CT value");
447      // That however, need not hold, as will become clear in the
448      // following...
449
450      // We'd normally expect that if we are in the parallel case,
451      // we can't have left a prev value (which would be different
452      // from the current value) in the card table, and so we'd like to
453      // assert that:
454      // guarantee(cur_youngergen_card_val() == youngergen_card
455      //           || !is_prev_youngergen_card_val(*cur_entry),
456      //           "Illegal CT value");
457      // That, however, may not hold occasionally, because of
458      // CMS or MSC in the old gen. To wit, consider the
459      // following two simple illustrative scenarios:
460      // (a) CMS: Consider the case where a large object L
461      //     spanning several cards is allocated in the old
462      //     gen, and has a young gen reference stored in it, dirtying
463      //     some interior cards. A young collection scans the card,
464      //     finds a young ref and installs a youngergenP_n value.
465      //     L then goes dead. Now a CMS collection starts,
466      //     finds L dead and sweeps it up. Assume that L is
467      //     abutting _unallocated_blk, so _unallocated_blk is
468      //     adjusted down to (below) L. Assume further that
469      //     no young collection intervenes during this CMS cycle.
470      //     The next young gen cycle will not get to look at this
471      //     youngergenP_n card since it lies in the unoccupied
472      //     part of the space.
473      //     Some young collections later the blocks on this
474      //     card can be re-allocated either due to direct allocation
475      //     or due to absorbing promotions. At this time, the
476      //     before-gc verification will fail the above assert.
477      // (b) MSC: In this case, an object L with a young reference
478      //     is on a card that (therefore) holds a youngergen_n value.
479      //     Suppose also that L lies towards the end of the used
480      //     the used space before GC. An MSC collection
481      //     occurs that compacts to such an extent that this
482      //     card is no longer in the occupied part of the space.
483      //     Since current code in MSC does not always clear cards
484      //     in the unused part of old gen, this stale youngergen_n
485      //     value is left behind and can later be covered by
486      //     an object when promotion or direct allocation
487      //     re-allocates that part of the heap.
488      //
489      // Fortunately, the presence of such stale card values is
490      // "only" a minor annoyance in that subsequent young collections
491      // might needlessly scan such cards, but would still never corrupt
492      // the heap as a result. However, it's likely not to be a significant
493      // performance inhibitor in practice. For instance,
494      // some recent measurements with unoccupied cards eagerly cleared
495      // out to maintain this invariant, showed next to no
496      // change in young collection times; of course one can construct
497      // degenerate examples where the cost can be significant.)
498      // Note, in particular, that if the "stale" card is modified
499      // after re-allocation, it would be dirty, not "stale". Thus,
500      // we can never have a younger ref in such a card and it is
501      // safe not to scan that card in any collection. [As we see
502      // below, we do some unnecessary scanning
503      // in some cases in the current parallel scanning algorithm.]
504      //
505      // The main point below is that the parallel card scanning code
506      // deals correctly with these stale card values. There are two main
507      // cases to consider where we have a stale "young gen" value and a
508      // "derivative" case to consider, where we have a stale
509      // "cur_younger_gen_and_prev_non_clean" value, as will become
510      // apparent in the case analysis below.
511      // o Case 1. If the stale value corresponds to a younger_gen_n
512      //   value other than the cur_younger_gen value then the code
513      //   treats this as being tantamount to a prev_younger_gen
514      //   card. This means that the card may be unnecessarily scanned.
515      //   There are two sub-cases to consider:
516      //   o Case 1a. Let us say that the card is in the occupied part
517      //     of the generation at the time the collection begins. In
518      //     that case the card will be either cleared when it is scanned
519      //     for young pointers, or will be set to cur_younger_gen as a
520      //     result of promotion. (We have elided the normal case where
521      //     the scanning thread and the promoting thread interleave
522      //     possibly resulting in a transient
523      //     cur_younger_gen_and_prev_non_clean value before settling
524      //     to cur_younger_gen. [End Case 1a.]
525      //   o Case 1b. Consider now the case when the card is in the unoccupied
526      //     part of the space which becomes occupied because of promotions
527      //     into it during the current young GC. In this case the card
528      //     will never be scanned for young references. The current
529      //     code will set the card value to either
530      //     cur_younger_gen_and_prev_non_clean or leave
531      //     it with its stale value -- because the promotions didn't
532      //     result in any younger refs on that card. Of these two
533      //     cases, the latter will be covered in Case 1a during
534      //     a subsequent scan. To deal with the former case, we need
535      //     to further consider how we deal with a stale value of
536      //     cur_younger_gen_and_prev_non_clean in our case analysis
537      //     below. This we do in Case 3 below. [End Case 1b]
538      //   [End Case 1]
539      // o Case 2. If the stale value corresponds to cur_younger_gen being
540      //   a value not necessarily written by a current promotion, the
541      //   card will not be scanned by the younger refs scanning code.
542      //   (This is OK since as we argued above such cards cannot contain
543      //   any younger refs.) The result is that this value will be
544      //   treated as a prev_younger_gen value in a subsequent collection,
545      //   which is addressed in Case 1 above. [End Case 2]
546      // o Case 3. We here consider the "derivative" case from Case 1b. above
547      //   because of which we may find a stale
548      //   cur_younger_gen_and_prev_non_clean card value in the table.
549      //   Once again, as in Case 1, we consider two subcases, depending
550      //   on whether the card lies in the occupied or unoccupied part
551      //   of the space at the start of the young collection.
552      //   o Case 3a. Let us say the card is in the occupied part of
553      //     the old gen at the start of the young collection. In that
554      //     case, the card will be scanned by the younger refs scanning
555      //     code which will set it to cur_younger_gen. In a subsequent
556      //     scan, the card will be considered again and get its final
557      //     correct value. [End Case 3a]
558      //   o Case 3b. Now consider the case where the card is in the
559      //     unoccupied part of the old gen, and is occupied as a result
560      //     of promotions during thus young gc. In that case,
561      //     the card will not be scanned for younger refs. The presence
562      //     of newly promoted objects on the card will then result in
563      //     its keeping the value cur_younger_gen_and_prev_non_clean
564      //     value, which we have dealt with in Case 3 here. [End Case 3b]
565      //   [End Case 3]
566      //
567      // (Please refer to the code in the helper class
568      // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
569      //
570      // The informal arguments above can be tightened into a formal
571      // correctness proof and it behooves us to write up such a proof,
572      // or to use model checking to prove that there are no lingering
573      // concerns.
574      //
575      // Clearly because of Case 3b one cannot bound the time for
576      // which a card will retain what we have called a "stale" value.
577      // However, one can obtain a Loose upper bound on the redundant
578      // work as a result of such stale values. Note first that any
579      // time a stale card lies in the occupied part of the space at
580      // the start of the collection, it is scanned by younger refs
581      // code and we can define a rank function on card values that
582      // declines when this is so. Note also that when a card does not
583      // lie in the occupied part of the space at the beginning of a
584      // young collection, its rank can either decline or stay unchanged.
585      // In this case, no extra work is done in terms of redundant
586      // younger refs scanning of that card.
587      // Then, the case analysis above reveals that, in the worst case,
588      // any such stale card will be scanned unnecessarily at most twice.
589      //
590      // It is nonetheless advisable to try and get rid of some of this
591      // redundant work in a subsequent (low priority) re-design of
592      // the card-scanning code, if only to simplify the underlying
593      // state machine analysis/proof. ysr 1/28/2002. XXX
594      cur_entry++;
595    }
596  }
597}
598
599void CardTableRS::verify() {
600  // At present, we only know how to verify the card table RS for
601  // generational heaps.
602  VerifyCTGenClosure blk(this);
603  GenCollectedHeap::heap()->generation_iterate(&blk, false);
604  _ct_bs->verify();
605}
606