blockOffsetTable.hpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
26#define SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
27
28#include "memory/memRegion.hpp"
29#include "memory/virtualspace.hpp"
30#include "utilities/globalDefinitions.hpp"
31
32// The CollectedHeap type requires subtypes to implement a method
33// "block_start".  For some subtypes, notably generational
34// systems using card-table-based write barriers, the efficiency of this
35// operation may be important.  Implementations of the "BlockOffsetArray"
36// class may be useful in providing such efficient implementations.
37//
38// BlockOffsetTable (abstract)
39//   - BlockOffsetArray (abstract)
40//     - BlockOffsetArrayNonContigSpace
41//     - BlockOffsetArrayContigSpace
42//
43
44class ContiguousSpace;
45
46//////////////////////////////////////////////////////////////////////////
47// The BlockOffsetTable "interface"
48//////////////////////////////////////////////////////////////////////////
49class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
50  friend class VMStructs;
51protected:
52  // These members describe the region covered by the table.
53
54  // The space this table is covering.
55  HeapWord* _bottom;    // == reserved.start
56  HeapWord* _end;       // End of currently allocated region.
57
58public:
59  // Initialize the table to cover the given space.
60  // The contents of the initial table are undefined.
61  BlockOffsetTable(HeapWord* bottom, HeapWord* end):
62    _bottom(bottom), _end(end) {
63    assert(_bottom <= _end, "arguments out of order");
64  }
65
66  // Note that the committed size of the covered space may have changed,
67  // so the table size might also wish to change.
68  virtual void resize(size_t new_word_size) = 0;
69
70  virtual void set_bottom(HeapWord* new_bottom) {
71    assert(new_bottom <= _end, "new_bottom > _end");
72    _bottom = new_bottom;
73    resize(pointer_delta(_end, _bottom));
74  }
75
76  // Requires "addr" to be contained by a block, and returns the address of
77  // the start of that block.
78  virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
79
80  // Returns the address of the start of the block containing "addr", or
81  // else "null" if it is covered by no block.
82  HeapWord* block_start(const void* addr) const;
83};
84
85//////////////////////////////////////////////////////////////////////////
86// One implementation of "BlockOffsetTable," the BlockOffsetArray,
87// divides the covered region into "N"-word subregions (where
88// "N" = 2^"LogN".  An array with an entry for each such subregion
89// indicates how far back one must go to find the start of the
90// chunk that includes the first word of the subregion.
91//
92// Each BlockOffsetArray is owned by a Space.  However, the actual array
93// may be shared by several BlockOffsetArrays; this is useful
94// when a single resizable area (such as a generation) is divided up into
95// several spaces in which contiguous allocation takes place.  (Consider,
96// for example, the garbage-first generation.)
97
98// Here is the shared array type.
99//////////////////////////////////////////////////////////////////////////
100// BlockOffsetSharedArray
101//////////////////////////////////////////////////////////////////////////
102class BlockOffsetSharedArray: public CHeapObj<mtGC> {
103  friend class BlockOffsetArray;
104  friend class BlockOffsetArrayNonContigSpace;
105  friend class BlockOffsetArrayContigSpace;
106  friend class VMStructs;
107
108 private:
109  enum SomePrivateConstants {
110    LogN = 9,
111    LogN_words = LogN - LogHeapWordSize,
112    N_bytes = 1 << LogN,
113    N_words = 1 << LogN_words
114  };
115
116  bool _init_to_zero;
117
118  // The reserved region covered by the shared array.
119  MemRegion _reserved;
120
121  // End of the current committed region.
122  HeapWord* _end;
123
124  // Array for keeping offsets for retrieving object start fast given an
125  // address.
126  VirtualSpace _vs;
127  u_char* _offset_array;          // byte array keeping backwards offsets
128
129 protected:
130  // Bounds checking accessors:
131  // For performance these have to devolve to array accesses in product builds.
132  u_char offset_array(size_t index) const {
133    assert(index < _vs.committed_size(), "index out of range");
134    return _offset_array[index];
135  }
136  // An assertion-checking helper method for the set_offset_array() methods below.
137  void check_reducing_assertion(bool reducing);
138
139  void set_offset_array(size_t index, u_char offset, bool reducing = false) {
140    check_reducing_assertion(reducing);
141    assert(index < _vs.committed_size(), "index out of range");
142    assert(!reducing || _offset_array[index] >= offset, "Not reducing");
143    _offset_array[index] = offset;
144  }
145
146  void set_offset_array(size_t index, HeapWord* high, HeapWord* low, bool reducing = false) {
147    check_reducing_assertion(reducing);
148    assert(index < _vs.committed_size(), "index out of range");
149    assert(high >= low, "addresses out of order");
150    assert(pointer_delta(high, low) <= N_words, "offset too large");
151    assert(!reducing || _offset_array[index] >=  (u_char)pointer_delta(high, low),
152           "Not reducing");
153    _offset_array[index] = (u_char)pointer_delta(high, low);
154  }
155
156  void set_offset_array(HeapWord* left, HeapWord* right, u_char offset, bool reducing = false) {
157    check_reducing_assertion(reducing);
158    assert(index_for(right - 1) < _vs.committed_size(),
159           "right address out of range");
160    assert(left  < right, "Heap addresses out of order");
161    size_t num_cards = pointer_delta(right, left) >> LogN_words;
162
163    // Below, we may use an explicit loop instead of memset()
164    // because on certain platforms memset() can give concurrent
165    // readers "out-of-thin-air," phantom zeros; see 6948537.
166    if (UseMemSetInBOT) {
167      memset(&_offset_array[index_for(left)], offset, num_cards);
168    } else {
169      size_t i = index_for(left);
170      const size_t end = i + num_cards;
171      for (; i < end; i++) {
172        // Elided until CR 6977974 is fixed properly.
173        // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
174        _offset_array[i] = offset;
175      }
176    }
177  }
178
179  void set_offset_array(size_t left, size_t right, u_char offset, bool reducing = false) {
180    check_reducing_assertion(reducing);
181    assert(right < _vs.committed_size(), "right address out of range");
182    assert(left  <= right, "indexes out of order");
183    size_t num_cards = right - left + 1;
184
185    // Below, we may use an explicit loop instead of memset
186    // because on certain platforms memset() can give concurrent
187    // readers "out-of-thin-air," phantom zeros; see 6948537.
188    if (UseMemSetInBOT) {
189      memset(&_offset_array[left], offset, num_cards);
190    } else {
191      size_t i = left;
192      const size_t end = i + num_cards;
193      for (; i < end; i++) {
194        // Elided until CR 6977974 is fixed properly.
195        // assert(!reducing || _offset_array[i] >= offset, "Not reducing");
196        _offset_array[i] = offset;
197      }
198    }
199  }
200
201  void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
202    assert(index < _vs.committed_size(), "index out of range");
203    assert(high >= low, "addresses out of order");
204    assert(pointer_delta(high, low) <= N_words, "offset too large");
205    assert(_offset_array[index] == pointer_delta(high, low),
206           "Wrong offset");
207  }
208
209  bool is_card_boundary(HeapWord* p) const;
210
211  // Return the number of slots needed for an offset array
212  // that covers mem_region_words words.
213  // We always add an extra slot because if an object
214  // ends on a card boundary we put a 0 in the next
215  // offset array slot, so we want that slot always
216  // to be reserved.
217
218  size_t compute_size(size_t mem_region_words) {
219    size_t number_of_slots = (mem_region_words / N_words) + 1;
220    return ReservedSpace::allocation_align_size_up(number_of_slots);
221  }
222
223public:
224  // Initialize the table to cover from "base" to (at least)
225  // "base + init_word_size".  In the future, the table may be expanded
226  // (see "resize" below) up to the size of "_reserved" (which must be at
227  // least "init_word_size".)  The contents of the initial table are
228  // undefined; it is the responsibility of the constituent
229  // BlockOffsetTable(s) to initialize cards.
230  BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
231
232  // Notes a change in the committed size of the region covered by the
233  // table.  The "new_word_size" may not be larger than the size of the
234  // reserved region this table covers.
235  void resize(size_t new_word_size);
236
237  void set_bottom(HeapWord* new_bottom);
238
239  // Whether entries should be initialized to zero. Used currently only for
240  // error checking.
241  void set_init_to_zero(bool val) { _init_to_zero = val; }
242  bool init_to_zero() { return _init_to_zero; }
243
244  // Updates all the BlockOffsetArray's sharing this shared array to
245  // reflect the current "top"'s of their spaces.
246  void update_offset_arrays();   // Not yet implemented!
247
248  // Return the appropriate index into "_offset_array" for "p".
249  size_t index_for(const void* p) const;
250
251  // Return the address indicating the start of the region corresponding to
252  // "index" in "_offset_array".
253  HeapWord* address_for_index(size_t index) const;
254};
255
256//////////////////////////////////////////////////////////////////////////
257// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
258//////////////////////////////////////////////////////////////////////////
259class BlockOffsetArray: public BlockOffsetTable {
260  friend class VMStructs;
261  friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
262 protected:
263  // The following enums are used by do_block_internal() below
264  enum Action {
265    Action_single,      // BOT records a single block (see single_block())
266    Action_mark,        // BOT marks the start of a block (see mark_block())
267    Action_check        // Check that BOT records block correctly
268                        // (see verify_single_block()).
269  };
270
271  enum SomePrivateConstants {
272    N_words = BlockOffsetSharedArray::N_words,
273    LogN    = BlockOffsetSharedArray::LogN,
274    // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
275    // All entries are less than "N_words + N_powers".
276    LogBase = 4,
277    Base = (1 << LogBase),
278    N_powers = 14
279  };
280
281  static size_t power_to_cards_back(uint i) {
282    return (size_t)1 << (LogBase * i);
283  }
284  static size_t power_to_words_back(uint i) {
285    return power_to_cards_back(i) * N_words;
286  }
287  static size_t entry_to_cards_back(u_char entry) {
288    assert(entry >= N_words, "Precondition");
289    return power_to_cards_back(entry - N_words);
290  }
291  static size_t entry_to_words_back(u_char entry) {
292    assert(entry >= N_words, "Precondition");
293    return power_to_words_back(entry - N_words);
294  }
295
296  // The shared array, which is shared with other BlockOffsetArray's
297  // corresponding to different spaces within a generation or span of
298  // memory.
299  BlockOffsetSharedArray* _array;
300
301  // The space that owns this subregion.
302  Space* _sp;
303
304  // If true, array entries are initialized to 0; otherwise, they are
305  // initialized to point backwards to the beginning of the covered region.
306  bool _init_to_zero;
307
308  // An assertion-checking helper method for the set_remainder*() methods below.
309  void check_reducing_assertion(bool reducing) { _array->check_reducing_assertion(reducing); }
310
311  // Sets the entries
312  // corresponding to the cards starting at "start" and ending at "end"
313  // to point back to the card before "start": the interval [start, end)
314  // is right-open. The last parameter, reducing, indicates whether the
315  // updates to individual entries always reduce the entry from a higher
316  // to a lower value. (For example this would hold true during a temporal
317  // regime during which only block splits were updating the BOT.
318  void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing = false);
319  // Same as above, except that the args here are a card _index_ interval
320  // that is closed: [start_index, end_index]
321  void set_remainder_to_point_to_start_incl(size_t start, size_t end, bool reducing = false);
322
323  // A helper function for BOT adjustment/verification work
324  void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action, bool reducing = false);
325
326 public:
327  // The space may not have its bottom and top set yet, which is why the
328  // region is passed as a parameter.  If "init_to_zero" is true, the
329  // elements of the array are initialized to zero.  Otherwise, they are
330  // initialized to point backwards to the beginning.
331  BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
332                   bool init_to_zero_);
333
334  // Note: this ought to be part of the constructor, but that would require
335  // "this" to be passed as a parameter to a member constructor for
336  // the containing concrete subtype of Space.
337  // This would be legal C++, but MS VC++ doesn't allow it.
338  void set_space(Space* sp) { _sp = sp; }
339
340  // Resets the covered region to the given "mr".
341  void set_region(MemRegion mr) {
342    _bottom = mr.start();
343    _end = mr.end();
344  }
345
346  // Note that the committed size of the covered space may have changed,
347  // so the table size might also wish to change.
348  virtual void resize(size_t new_word_size) {
349    HeapWord* new_end = _bottom + new_word_size;
350    if (_end < new_end && !init_to_zero()) {
351      // verify that the old and new boundaries are also card boundaries
352      assert(_array->is_card_boundary(_end),
353             "_end not a card boundary");
354      assert(_array->is_card_boundary(new_end),
355             "new _end would not be a card boundary");
356      // set all the newly added cards
357      _array->set_offset_array(_end, new_end, N_words);
358    }
359    _end = new_end;  // update _end
360  }
361
362  // Adjust the BOT to show that it has a single block in the
363  // range [blk_start, blk_start + size). All necessary BOT
364  // cards are adjusted, but _unallocated_block isn't.
365  void single_block(HeapWord* blk_start, HeapWord* blk_end);
366  void single_block(HeapWord* blk, size_t size) {
367    single_block(blk, blk + size);
368  }
369
370  // When the alloc_block() call returns, the block offset table should
371  // have enough information such that any subsequent block_start() call
372  // with an argument equal to an address that is within the range
373  // [blk_start, blk_end) would return the value blk_start, provided
374  // there have been no calls in between that reset this information
375  // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
376  // for an appropriate range covering the said interval).
377  // These methods expect to be called with [blk_start, blk_end)
378  // representing a block of memory in the heap.
379  virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
380  void alloc_block(HeapWord* blk, size_t size) {
381    alloc_block(blk, blk + size);
382  }
383
384  // If true, initialize array slots with no allocated blocks to zero.
385  // Otherwise, make them point back to the front.
386  bool init_to_zero() { return _init_to_zero; }
387  // Corresponding setter
388  void set_init_to_zero(bool val) {
389    _init_to_zero = val;
390    assert(_array != NULL, "_array should be non-NULL");
391    _array->set_init_to_zero(val);
392  }
393
394  // Debugging
395  // Return the index of the last entry in the "active" region.
396  virtual size_t last_active_index() const = 0;
397  // Verify the block offset table
398  void verify() const;
399  void check_all_cards(size_t left_card, size_t right_card) const;
400};
401
402////////////////////////////////////////////////////////////////////////////
403// A subtype of BlockOffsetArray that takes advantage of the fact
404// that its underlying space is a NonContiguousSpace, so that some
405// specialized interfaces can be made available for spaces that
406// manipulate the table.
407////////////////////////////////////////////////////////////////////////////
408class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
409  friend class VMStructs;
410 private:
411  // The portion [_unallocated_block, _sp.end()) of the space that
412  // is a single block known not to contain any objects.
413  // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
414  HeapWord* _unallocated_block;
415
416 public:
417  BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
418    BlockOffsetArray(array, mr, false),
419    _unallocated_block(_bottom) { }
420
421  // Accessor
422  HeapWord* unallocated_block() const {
423    assert(BlockOffsetArrayUseUnallocatedBlock,
424           "_unallocated_block is not being maintained");
425    return _unallocated_block;
426  }
427
428  void set_unallocated_block(HeapWord* block) {
429    assert(BlockOffsetArrayUseUnallocatedBlock,
430           "_unallocated_block is not being maintained");
431    assert(block >= _bottom && block <= _end, "out of range");
432    _unallocated_block = block;
433  }
434
435  // These methods expect to be called with [blk_start, blk_end)
436  // representing a block of memory in the heap.
437  void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
438  void alloc_block(HeapWord* blk, size_t size) {
439    alloc_block(blk, blk + size);
440  }
441
442  // The following methods are useful and optimized for a
443  // non-contiguous space.
444
445  // Given a block [blk_start, blk_start + full_blk_size), and
446  // a left_blk_size < full_blk_size, adjust the BOT to show two
447  // blocks [blk_start, blk_start + left_blk_size) and
448  // [blk_start + left_blk_size, blk_start + full_blk_size).
449  // It is assumed (and verified in the non-product VM) that the
450  // BOT was correct for the original block.
451  void split_block(HeapWord* blk_start, size_t full_blk_size,
452                           size_t left_blk_size);
453
454  // Adjust BOT to show that it has a block in the range
455  // [blk_start, blk_start + size). Only the first card
456  // of BOT is touched. It is assumed (and verified in the
457  // non-product VM) that the remaining cards of the block
458  // are correct.
459  void mark_block(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false);
460  void mark_block(HeapWord* blk, size_t size, bool reducing = false) {
461    mark_block(blk, blk + size, reducing);
462  }
463
464  // Adjust _unallocated_block to indicate that a particular
465  // block has been newly allocated or freed. It is assumed (and
466  // verified in the non-product VM) that the BOT is correct for
467  // the given block.
468  void allocated(HeapWord* blk_start, HeapWord* blk_end, bool reducing = false) {
469    // Verify that the BOT shows [blk, blk + blk_size) to be one block.
470    verify_single_block(blk_start, blk_end);
471    if (BlockOffsetArrayUseUnallocatedBlock) {
472      _unallocated_block = MAX2(_unallocated_block, blk_end);
473    }
474  }
475
476  void allocated(HeapWord* blk, size_t size, bool reducing = false) {
477    allocated(blk, blk + size, reducing);
478  }
479
480  void freed(HeapWord* blk_start, HeapWord* blk_end);
481  void freed(HeapWord* blk, size_t size);
482
483  HeapWord* block_start_unsafe(const void* addr) const;
484
485  // Requires "addr" to be the start of a card and returns the
486  // start of the block that contains the given address.
487  HeapWord* block_start_careful(const void* addr) const;
488
489  // Verification & debugging: ensure that the offset table reflects
490  // the fact that the block [blk_start, blk_end) or [blk, blk + size)
491  // is a single block of storage. NOTE: can't const this because of
492  // call to non-const do_block_internal() below.
493  void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
494    PRODUCT_RETURN;
495  void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
496
497  // Verify that the given block is before _unallocated_block
498  void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
499    const PRODUCT_RETURN;
500  void verify_not_unallocated(HeapWord* blk, size_t size)
501    const PRODUCT_RETURN;
502
503  // Debugging support
504  virtual size_t last_active_index() const;
505};
506
507////////////////////////////////////////////////////////////////////////////
508// A subtype of BlockOffsetArray that takes advantage of the fact
509// that its underlying space is a ContiguousSpace, so that its "active"
510// region can be more efficiently tracked (than for a non-contiguous space).
511////////////////////////////////////////////////////////////////////////////
512class BlockOffsetArrayContigSpace: public BlockOffsetArray {
513  friend class VMStructs;
514 private:
515  // allocation boundary at which offset array must be updated
516  HeapWord* _next_offset_threshold;
517  size_t    _next_offset_index;      // index corresponding to that boundary
518
519  // Work function when allocation start crosses threshold.
520  void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
521
522 public:
523  BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
524    BlockOffsetArray(array, mr, true) {
525    _next_offset_threshold = NULL;
526    _next_offset_index = 0;
527  }
528
529  void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
530
531  // Initialize the threshold for an empty heap.
532  HeapWord* initialize_threshold();
533  // Zero out the entry for _bottom (offset will be zero)
534  void      zero_bottom_entry();
535
536  // Return the next threshold, the point at which the table should be
537  // updated.
538  HeapWord* threshold() const { return _next_offset_threshold; }
539
540  // In general, these methods expect to be called with
541  // [blk_start, blk_end) representing a block of memory in the heap.
542  // In this implementation, however, we are OK even if blk_start and/or
543  // blk_end are NULL because NULL is represented as 0, and thus
544  // never exceeds the "_next_offset_threshold".
545  void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
546    if (blk_end > _next_offset_threshold) {
547      alloc_block_work(blk_start, blk_end);
548    }
549  }
550  void alloc_block(HeapWord* blk, size_t size) {
551    alloc_block(blk, blk + size);
552  }
553
554  HeapWord* block_start_unsafe(const void* addr) const;
555
556  // Debugging support
557  virtual size_t last_active_index() const;
558};
559
560#endif // SHARE_VM_GC_SHARED_BLOCKOFFSETTABLE_HPP
561