blockOffsetTable.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/blockOffsetTable.inline.hpp"
27#include "gc/shared/collectedHeap.inline.hpp"
28#include "gc/shared/space.inline.hpp"
29#include "memory/iterator.hpp"
30#include "memory/universe.hpp"
31#include "oops/oop.inline.hpp"
32#include "runtime/java.hpp"
33#include "services/memTracker.hpp"
34
35//////////////////////////////////////////////////////////////////////
36// BlockOffsetSharedArray
37//////////////////////////////////////////////////////////////////////
38
39BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved,
40                                               size_t init_word_size):
41  _reserved(reserved), _end(NULL)
42{
43  size_t size = compute_size(reserved.word_size());
44  ReservedSpace rs(size);
45  if (!rs.is_reserved()) {
46    vm_exit_during_initialization("Could not reserve enough space for heap offset array");
47  }
48
49  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
50
51  if (!_vs.initialize(rs, 0)) {
52    vm_exit_during_initialization("Could not reserve enough space for heap offset array");
53  }
54  _offset_array = (u_char*)_vs.low_boundary();
55  resize(init_word_size);
56  if (TraceBlockOffsetTable) {
57    gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: ");
58    gclog_or_tty->print_cr("  "
59                  "  rs.base(): " INTPTR_FORMAT
60                  "  rs.size(): " INTPTR_FORMAT
61                  "  rs end(): " INTPTR_FORMAT,
62                  p2i(rs.base()), rs.size(), p2i(rs.base() + rs.size()));
63    gclog_or_tty->print_cr("  "
64                  "  _vs.low_boundary(): " INTPTR_FORMAT
65                  "  _vs.high_boundary(): " INTPTR_FORMAT,
66                  p2i(_vs.low_boundary()),
67                  p2i(_vs.high_boundary()));
68  }
69}
70
71void BlockOffsetSharedArray::resize(size_t new_word_size) {
72  assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
73  size_t new_size = compute_size(new_word_size);
74  size_t old_size = _vs.committed_size();
75  size_t delta;
76  char* high = _vs.high();
77  _end = _reserved.start() + new_word_size;
78  if (new_size > old_size) {
79    delta = ReservedSpace::page_align_size_up(new_size - old_size);
80    assert(delta > 0, "just checking");
81    if (!_vs.expand_by(delta)) {
82      // Do better than this for Merlin
83      vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion");
84    }
85    assert(_vs.high() == high + delta, "invalid expansion");
86  } else {
87    delta = ReservedSpace::page_align_size_down(old_size - new_size);
88    if (delta == 0) return;
89    _vs.shrink_by(delta);
90    assert(_vs.high() == high - delta, "invalid expansion");
91  }
92}
93
94bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
95  assert(p >= _reserved.start(), "just checking");
96  size_t delta = pointer_delta(p, _reserved.start());
97  return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
98}
99
100
101//////////////////////////////////////////////////////////////////////
102// BlockOffsetArray
103//////////////////////////////////////////////////////////////////////
104
105BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array,
106                                   MemRegion mr, bool init_to_zero_) :
107  BlockOffsetTable(mr.start(), mr.end()),
108  _array(array)
109{
110  assert(_bottom <= _end, "arguments out of order");
111  set_init_to_zero(init_to_zero_);
112  if (!init_to_zero_) {
113    // initialize cards to point back to mr.start()
114    set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
115    _array->set_offset_array(0, 0);  // set first card to 0
116  }
117}
118
119
120// The arguments follow the normal convention of denoting
121// a right-open interval: [start, end)
122void
123BlockOffsetArray::
124set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) {
125
126  check_reducing_assertion(reducing);
127  if (start >= end) {
128    // The start address is equal to the end address (or to
129    // the right of the end address) so there are not cards
130    // that need to be updated..
131    return;
132  }
133
134  // Write the backskip value for each region.
135  //
136  //    offset
137  //    card             2nd                       3rd
138  //     | +- 1st        |                         |
139  //     v v             v                         v
140  //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
141  //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
142  //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
143  //    11              19                        75
144  //      12
145  //
146  //    offset card is the card that points to the start of an object
147  //      x - offset value of offset card
148  //    1st - start of first logarithmic region
149  //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
150  //    2nd - start of second logarithmic region
151  //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
152  //    3rd - start of third logarithmic region
153  //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
154  //
155  //    integer below the block offset entry is an example of
156  //    the index of the entry
157  //
158  //    Given an address,
159  //      Find the index for the address
160  //      Find the block offset table entry
161  //      Convert the entry to a back slide
162  //        (e.g., with today's, offset = 0x81 =>
163  //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
164  //      Move back N (e.g., 8) entries and repeat with the
165  //        value of the new entry
166  //
167  size_t start_card = _array->index_for(start);
168  size_t end_card = _array->index_for(end-1);
169  assert(start ==_array->address_for_index(start_card), "Precondition");
170  assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
171  set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval
172}
173
174
175// Unlike the normal convention in this code, the argument here denotes
176// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
177// above.
178void
179BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) {
180
181  check_reducing_assertion(reducing);
182  if (start_card > end_card) {
183    return;
184  }
185  assert(start_card > _array->index_for(_bottom), "Cannot be first card");
186  assert(_array->offset_array(start_card-1) <= N_words,
187    "Offset card has an unexpected value");
188  size_t start_card_for_region = start_card;
189  u_char offset = max_jubyte;
190  for (int i = 0; i < N_powers; i++) {
191    // -1 so that the the card with the actual offset is counted.  Another -1
192    // so that the reach ends in this region and not at the start
193    // of the next.
194    size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1);
195    offset = N_words + i;
196    if (reach >= end_card) {
197      _array->set_offset_array(start_card_for_region, end_card, offset, reducing);
198      start_card_for_region = reach + 1;
199      break;
200    }
201    _array->set_offset_array(start_card_for_region, reach, offset, reducing);
202    start_card_for_region = reach + 1;
203  }
204  assert(start_card_for_region > end_card, "Sanity check");
205  DEBUG_ONLY(check_all_cards(start_card, end_card);)
206}
207
208// The card-interval [start_card, end_card] is a closed interval; this
209// is an expensive check -- use with care and only under protection of
210// suitable flag.
211void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
212
213  if (end_card < start_card) {
214    return;
215  }
216  guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
217  u_char last_entry = N_words;
218  for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
219    u_char entry = _array->offset_array(c);
220    guarantee(entry >= last_entry, "Monotonicity");
221    if (c - start_card > power_to_cards_back(1)) {
222      guarantee(entry > N_words, "Should be in logarithmic region");
223    }
224    size_t backskip = entry_to_cards_back(entry);
225    size_t landing_card = c - backskip;
226    guarantee(landing_card >= (start_card - 1), "Inv");
227    if (landing_card >= start_card) {
228      guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity");
229    } else {
230      guarantee(landing_card == (start_card - 1), "Tautology");
231      // Note that N_words is the maximum offset value
232      guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
233    }
234    last_entry = entry;  // remember for monotonicity test
235  }
236}
237
238
239void
240BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
241  assert(blk_start != NULL && blk_end > blk_start,
242         "phantom block");
243  single_block(blk_start, blk_end);
244}
245
246// Action_mark - update the BOT for the block [blk_start, blk_end).
247//               Current typical use is for splitting a block.
248// Action_single - udpate the BOT for an allocation.
249// Action_verify - BOT verification.
250void
251BlockOffsetArray::do_block_internal(HeapWord* blk_start,
252                                    HeapWord* blk_end,
253                                    Action action, bool reducing) {
254  assert(Universe::heap()->is_in_reserved(blk_start),
255         "reference must be into the heap");
256  assert(Universe::heap()->is_in_reserved(blk_end-1),
257         "limit must be within the heap");
258  // This is optimized to make the test fast, assuming we only rarely
259  // cross boundaries.
260  uintptr_t end_ui = (uintptr_t)(blk_end - 1);
261  uintptr_t start_ui = (uintptr_t)blk_start;
262  // Calculate the last card boundary preceding end of blk
263  intptr_t boundary_before_end = (intptr_t)end_ui;
264  clear_bits(boundary_before_end, right_n_bits(LogN));
265  if (start_ui <= (uintptr_t)boundary_before_end) {
266    // blk starts at or crosses a boundary
267    // Calculate index of card on which blk begins
268    size_t    start_index = _array->index_for(blk_start);
269    // Index of card on which blk ends
270    size_t    end_index   = _array->index_for(blk_end - 1);
271    // Start address of card on which blk begins
272    HeapWord* boundary    = _array->address_for_index(start_index);
273    assert(boundary <= blk_start, "blk should start at or after boundary");
274    if (blk_start != boundary) {
275      // blk starts strictly after boundary
276      // adjust card boundary and start_index forward to next card
277      boundary += N_words;
278      start_index++;
279    }
280    assert(start_index <= end_index, "monotonicity of index_for()");
281    assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
282    switch (action) {
283      case Action_mark: {
284        if (init_to_zero()) {
285          _array->set_offset_array(start_index, boundary, blk_start, reducing);
286          break;
287        } // Else fall through to the next case
288      }
289      case Action_single: {
290        _array->set_offset_array(start_index, boundary, blk_start, reducing);
291        // We have finished marking the "offset card". We need to now
292        // mark the subsequent cards that this blk spans.
293        if (start_index < end_index) {
294          HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
295          HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
296          set_remainder_to_point_to_start(rem_st, rem_end, reducing);
297        }
298        break;
299      }
300      case Action_check: {
301        _array->check_offset_array(start_index, boundary, blk_start);
302        // We have finished checking the "offset card". We need to now
303        // check the subsequent cards that this blk spans.
304        check_all_cards(start_index + 1, end_index);
305        break;
306      }
307      default:
308        ShouldNotReachHere();
309    }
310  }
311}
312
313// The range [blk_start, blk_end) represents a single contiguous block
314// of storage; modify the block offset table to represent this
315// information; Right-open interval: [blk_start, blk_end)
316// NOTE: this method does _not_ adjust _unallocated_block.
317void
318BlockOffsetArray::single_block(HeapWord* blk_start,
319                               HeapWord* blk_end) {
320  do_block_internal(blk_start, blk_end, Action_single);
321}
322
323void BlockOffsetArray::verify() const {
324  // For each entry in the block offset table, verify that
325  // the entry correctly finds the start of an object at the
326  // first address covered by the block or to the left of that
327  // first address.
328
329  size_t next_index = 1;
330  size_t last_index = last_active_index();
331
332  // Use for debugging.  Initialize to NULL to distinguish the
333  // first iteration through the while loop.
334  HeapWord* last_p = NULL;
335  HeapWord* last_start = NULL;
336  oop last_o = NULL;
337
338  while (next_index <= last_index) {
339    // Use an address past the start of the address for
340    // the entry.
341    HeapWord* p = _array->address_for_index(next_index) + 1;
342    if (p >= _end) {
343      // That's all of the allocated block table.
344      return;
345    }
346    // block_start() asserts that start <= p.
347    HeapWord* start = block_start(p);
348    // First check if the start is an allocated block and only
349    // then if it is a valid object.
350    oop o = oop(start);
351    assert(!Universe::is_fully_initialized() ||
352           _sp->is_free_block(start) ||
353           o->is_oop_or_null(), "Bad object was found");
354    next_index++;
355    last_p = p;
356    last_start = start;
357    last_o = o;
358  }
359}
360
361//////////////////////////////////////////////////////////////////////
362// BlockOffsetArrayNonContigSpace
363//////////////////////////////////////////////////////////////////////
364
365// The block [blk_start, blk_end) has been allocated;
366// adjust the block offset table to represent this information;
367// NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using
368// the somewhat more lightweight split_block() or
369// (when init_to_zero()) mark_block() wherever possible.
370// right-open interval: [blk_start, blk_end)
371void
372BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start,
373                                            HeapWord* blk_end) {
374  assert(blk_start != NULL && blk_end > blk_start,
375         "phantom block");
376  single_block(blk_start, blk_end);
377  allocated(blk_start, blk_end);
378}
379
380// Adjust BOT to show that a previously whole block has been split
381// into two.  We verify the BOT for the first part (prefix) and
382// update the  BOT for the second part (suffix).
383//      blk is the start of the block
384//      blk_size is the size of the original block
385//      left_blk_size is the size of the first part of the split
386void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk,
387                                                 size_t blk_size,
388                                                 size_t left_blk_size) {
389  // Verify that the BOT shows [blk, blk + blk_size) to be one block.
390  verify_single_block(blk, blk_size);
391  // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
392  // is one single block.
393  assert(blk_size > 0, "Should be positive");
394  assert(left_blk_size > 0, "Should be positive");
395  assert(left_blk_size < blk_size, "Not a split");
396
397  // Start addresses of prefix block and suffix block.
398  HeapWord* pref_addr = blk;
399  HeapWord* suff_addr = blk + left_blk_size;
400  HeapWord* end_addr  = blk + blk_size;
401
402  // Indices for starts of prefix block and suffix block.
403  size_t pref_index = _array->index_for(pref_addr);
404  if (_array->address_for_index(pref_index) != pref_addr) {
405    // pref_addr does not begin pref_index
406    pref_index++;
407  }
408
409  size_t suff_index = _array->index_for(suff_addr);
410  if (_array->address_for_index(suff_index) != suff_addr) {
411    // suff_addr does not begin suff_index
412    suff_index++;
413  }
414
415  // Definition: A block B, denoted [B_start, B_end) __starts__
416  //     a card C, denoted [C_start, C_end), where C_start and C_end
417  //     are the heap addresses that card C covers, iff
418  //     B_start <= C_start < B_end.
419  //
420  //     We say that a card C "is started by" a block B, iff
421  //     B "starts" C.
422  //
423  //     Note that the cardinality of the set of cards {C}
424  //     started by a block B can be 0, 1, or more.
425  //
426  // Below, pref_index and suff_index are, respectively, the
427  // first (least) card indices that the prefix and suffix of
428  // the split start; end_index is one more than the index of
429  // the last (greatest) card that blk starts.
430  size_t end_index  = _array->index_for(end_addr - 1) + 1;
431
432  // Calculate the # cards that the prefix and suffix affect.
433  size_t num_pref_cards = suff_index - pref_index;
434
435  size_t num_suff_cards = end_index  - suff_index;
436  // Change the cards that need changing
437  if (num_suff_cards > 0) {
438    HeapWord* boundary = _array->address_for_index(suff_index);
439    // Set the offset card for suffix block
440    _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */);
441    // Change any further cards that need changing in the suffix
442    if (num_pref_cards > 0) {
443      if (num_pref_cards >= num_suff_cards) {
444        // Unilaterally fix all of the suffix cards: closed card
445        // index interval in args below.
446        set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */);
447      } else {
448        // Unilaterally fix the first (num_pref_cards - 1) following
449        // the "offset card" in the suffix block.
450        set_remainder_to_point_to_start_incl(suff_index + 1,
451          suff_index + num_pref_cards - 1, true /* reducing */);
452        // Fix the appropriate cards in the remainder of the
453        // suffix block -- these are the last num_pref_cards
454        // cards in each power block of the "new" range plumbed
455        // from suff_addr.
456        bool more = true;
457        uint i = 1;
458        while (more && (i < N_powers)) {
459          size_t back_by = power_to_cards_back(i);
460          size_t right_index = suff_index + back_by - 1;
461          size_t left_index  = right_index - num_pref_cards + 1;
462          if (right_index >= end_index - 1) { // last iteration
463            right_index = end_index - 1;
464            more = false;
465          }
466          if (back_by > num_pref_cards) {
467            // Fill in the remainder of this "power block", if it
468            // is non-null.
469            if (left_index <= right_index) {
470              _array->set_offset_array(left_index, right_index,
471                                     N_words + i - 1, true /* reducing */);
472            } else {
473              more = false; // we are done
474            }
475            i++;
476            break;
477          }
478          i++;
479        }
480        while (more && (i < N_powers)) {
481          size_t back_by = power_to_cards_back(i);
482          size_t right_index = suff_index + back_by - 1;
483          size_t left_index  = right_index - num_pref_cards + 1;
484          if (right_index >= end_index - 1) { // last iteration
485            right_index = end_index - 1;
486            if (left_index > right_index) {
487              break;
488            }
489            more  = false;
490          }
491          assert(left_index <= right_index, "Error");
492          _array->set_offset_array(left_index, right_index, N_words + i - 1, true /* reducing */);
493          i++;
494        }
495      }
496    } // else no more cards to fix in suffix
497  } // else nothing needs to be done
498  // Verify that we did the right thing
499  verify_single_block(pref_addr, left_blk_size);
500  verify_single_block(suff_addr, blk_size - left_blk_size);
501}
502
503
504// Mark the BOT such that if [blk_start, blk_end) straddles a card
505// boundary, the card following the first such boundary is marked
506// with the appropriate offset.
507// NOTE: this method does _not_ adjust _unallocated_block or
508// any cards subsequent to the first one.
509void
510BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start,
511                                           HeapWord* blk_end, bool reducing) {
512  do_block_internal(blk_start, blk_end, Action_mark, reducing);
513}
514
515HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe(
516  const void* addr) const {
517  assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
518  assert(_bottom <= addr && addr < _end,
519         "addr must be covered by this Array");
520  // Must read this exactly once because it can be modified by parallel
521  // allocation.
522  HeapWord* ub = _unallocated_block;
523  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
524    assert(ub < _end, "tautology (see above)");
525    return ub;
526  }
527
528  // Otherwise, find the block start using the table.
529  size_t index = _array->index_for(addr);
530  HeapWord* q = _array->address_for_index(index);
531
532  uint offset = _array->offset_array(index);    // Extend u_char to uint.
533  while (offset >= N_words) {
534    // The excess of the offset from N_words indicates a power of Base
535    // to go back by.
536    size_t n_cards_back = entry_to_cards_back(offset);
537    q -= (N_words * n_cards_back);
538    assert(q >= _sp->bottom(),
539           err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
540                   p2i(q), p2i(_sp->bottom())));
541    assert(q < _sp->end(),
542           err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
543                   p2i(q), p2i(_sp->end())));
544    index -= n_cards_back;
545    offset = _array->offset_array(index);
546  }
547  assert(offset < N_words, "offset too large");
548  index--;
549  q -= offset;
550  assert(q >= _sp->bottom(),
551         err_msg("q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT,
552                 p2i(q), p2i(_sp->bottom())));
553  assert(q < _sp->end(),
554         err_msg("q = " PTR_FORMAT " crossed above end = " PTR_FORMAT,
555                 p2i(q), p2i(_sp->end())));
556  HeapWord* n = q;
557
558  while (n <= addr) {
559    debug_only(HeapWord* last = q);   // for debugging
560    q = n;
561    n += _sp->block_size(n);
562    assert(n > q,
563           err_msg("Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT","
564                   " while querying blk_start(" PTR_FORMAT ")"
565                   " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")",
566                   p2i(n), p2i(last), p2i(addr), p2i(_sp->bottom()), p2i(_sp->end())));
567  }
568  assert(q <= addr,
569         err_msg("wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")",
570                 p2i(q), p2i(addr)));
571  assert(addr <= n,
572         err_msg("wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")",
573                 p2i(addr), p2i(n)));
574  return q;
575}
576
577HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful(
578  const void* addr) const {
579  assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
580
581  assert(_bottom <= addr && addr < _end,
582         "addr must be covered by this Array");
583  // Must read this exactly once because it can be modified by parallel
584  // allocation.
585  HeapWord* ub = _unallocated_block;
586  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
587    assert(ub < _end, "tautology (see above)");
588    return ub;
589  }
590
591  // Otherwise, find the block start using the table, but taking
592  // care (cf block_start_unsafe() above) not to parse any objects/blocks
593  // on the cards themselves.
594  size_t index = _array->index_for(addr);
595  assert(_array->address_for_index(index) == addr,
596         "arg should be start of card");
597
598  HeapWord* q = (HeapWord*)addr;
599  uint offset;
600  do {
601    offset = _array->offset_array(index);
602    if (offset < N_words) {
603      q -= offset;
604    } else {
605      size_t n_cards_back = entry_to_cards_back(offset);
606      q -= (n_cards_back * N_words);
607      index -= n_cards_back;
608    }
609  } while (offset >= N_words);
610  assert(q <= addr, "block start should be to left of arg");
611  return q;
612}
613
614#ifndef PRODUCT
615// Verification & debugging - ensure that the offset table reflects the fact
616// that the block [blk_start, blk_end) or [blk, blk + size) is a
617// single block of storage. NOTE: can't const this because of
618// call to non-const do_block_internal() below.
619void BlockOffsetArrayNonContigSpace::verify_single_block(
620  HeapWord* blk_start, HeapWord* blk_end) {
621  if (VerifyBlockOffsetArray) {
622    do_block_internal(blk_start, blk_end, Action_check);
623  }
624}
625
626void BlockOffsetArrayNonContigSpace::verify_single_block(
627  HeapWord* blk, size_t size) {
628  verify_single_block(blk, blk + size);
629}
630
631// Verify that the given block is before _unallocated_block
632void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
633  HeapWord* blk_start, HeapWord* blk_end) const {
634  if (BlockOffsetArrayUseUnallocatedBlock) {
635    assert(blk_start < blk_end, "Block inconsistency?");
636    assert(blk_end <= _unallocated_block, "_unallocated_block problem");
637  }
638}
639
640void BlockOffsetArrayNonContigSpace::verify_not_unallocated(
641  HeapWord* blk, size_t size) const {
642  verify_not_unallocated(blk, blk + size);
643}
644#endif // PRODUCT
645
646size_t BlockOffsetArrayNonContigSpace::last_active_index() const {
647  if (_unallocated_block == _bottom) {
648    return 0;
649  } else {
650    return _array->index_for(_unallocated_block - 1);
651  }
652}
653
654//////////////////////////////////////////////////////////////////////
655// BlockOffsetArrayContigSpace
656//////////////////////////////////////////////////////////////////////
657
658HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const {
659  assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
660
661  // Otherwise, find the block start using the table.
662  assert(_bottom <= addr && addr < _end,
663         "addr must be covered by this Array");
664  size_t index = _array->index_for(addr);
665  // We must make sure that the offset table entry we use is valid.  If
666  // "addr" is past the end, start at the last known one and go forward.
667  index = MIN2(index, _next_offset_index-1);
668  HeapWord* q = _array->address_for_index(index);
669
670  uint offset = _array->offset_array(index);    // Extend u_char to uint.
671  while (offset > N_words) {
672    // The excess of the offset from N_words indicates a power of Base
673    // to go back by.
674    size_t n_cards_back = entry_to_cards_back(offset);
675    q -= (N_words * n_cards_back);
676    assert(q >= _sp->bottom(), "Went below bottom!");
677    index -= n_cards_back;
678    offset = _array->offset_array(index);
679  }
680  while (offset == N_words) {
681    assert(q >= _sp->bottom(), "Went below bottom!");
682    q -= N_words;
683    index--;
684    offset = _array->offset_array(index);
685  }
686  assert(offset < N_words, "offset too large");
687  q -= offset;
688  HeapWord* n = q;
689
690  while (n <= addr) {
691    debug_only(HeapWord* last = q);   // for debugging
692    q = n;
693    n += _sp->block_size(n);
694  }
695  assert(q <= addr, "wrong order for current and arg");
696  assert(addr <= n, "wrong order for arg and next");
697  return q;
698}
699
700//
701//              _next_offset_threshold
702//              |   _next_offset_index
703//              v   v
704//      +-------+-------+-------+-------+-------+
705//      | i-1   |   i   | i+1   | i+2   | i+3   |
706//      +-------+-------+-------+-------+-------+
707//       ( ^    ]
708//         block-start
709//
710
711void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start,
712                                        HeapWord* blk_end) {
713  assert(blk_start != NULL && blk_end > blk_start,
714         "phantom block");
715  assert(blk_end > _next_offset_threshold,
716         "should be past threshold");
717  assert(blk_start <= _next_offset_threshold,
718         "blk_start should be at or before threshold");
719  assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words,
720         "offset should be <= BlockOffsetSharedArray::N");
721  assert(Universe::heap()->is_in_reserved(blk_start),
722         "reference must be into the heap");
723  assert(Universe::heap()->is_in_reserved(blk_end-1),
724         "limit must be within the heap");
725  assert(_next_offset_threshold ==
726         _array->_reserved.start() + _next_offset_index*N_words,
727         "index must agree with threshold");
728
729  debug_only(size_t orig_next_offset_index = _next_offset_index;)
730
731  // Mark the card that holds the offset into the block.  Note
732  // that _next_offset_index and _next_offset_threshold are not
733  // updated until the end of this method.
734  _array->set_offset_array(_next_offset_index,
735                           _next_offset_threshold,
736                           blk_start);
737
738  // We need to now mark the subsequent cards that this blk spans.
739
740  // Index of card on which blk ends.
741  size_t end_index   = _array->index_for(blk_end - 1);
742
743  // Are there more cards left to be updated?
744  if (_next_offset_index + 1 <= end_index) {
745    HeapWord* rem_st  = _array->address_for_index(_next_offset_index + 1);
746    // Calculate rem_end this way because end_index
747    // may be the last valid index in the covered region.
748    HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
749    set_remainder_to_point_to_start(rem_st, rem_end);
750  }
751
752  // _next_offset_index and _next_offset_threshold updated here.
753  _next_offset_index = end_index + 1;
754  // Calculate _next_offset_threshold this way because end_index
755  // may be the last valid index in the covered region.
756  _next_offset_threshold = _array->address_for_index(end_index) + N_words;
757  assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold");
758
759#ifdef ASSERT
760  // The offset can be 0 if the block starts on a boundary.  That
761  // is checked by an assertion above.
762  size_t start_index = _array->index_for(blk_start);
763  HeapWord* boundary    = _array->address_for_index(start_index);
764  assert((_array->offset_array(orig_next_offset_index) == 0 &&
765          blk_start == boundary) ||
766          (_array->offset_array(orig_next_offset_index) > 0 &&
767         _array->offset_array(orig_next_offset_index) <= N_words),
768         "offset array should have been set");
769  for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) {
770    assert(_array->offset_array(j) > 0 &&
771           _array->offset_array(j) <= (u_char) (N_words+N_powers-1),
772           "offset array should have been set");
773  }
774#endif
775}
776
777HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() {
778  assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
779         "just checking");
780  _next_offset_index = _array->index_for(_bottom);
781  _next_offset_index++;
782  _next_offset_threshold =
783    _array->address_for_index(_next_offset_index);
784  return _next_offset_threshold;
785}
786
787void BlockOffsetArrayContigSpace::zero_bottom_entry() {
788  assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
789         "just checking");
790  size_t bottom_index = _array->index_for(_bottom);
791  _array->set_offset_array(bottom_index, 0);
792}
793
794size_t BlockOffsetArrayContigSpace::last_active_index() const {
795  return _next_offset_index == 0 ? 0 : _next_offset_index - 1;
796}
797