adaptiveSizePolicy.hpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2004, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP
26#define SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP
27
28#include "gc/shared/collectedHeap.hpp"
29#include "gc/shared/gcCause.hpp"
30#include "gc/shared/gcUtil.hpp"
31#include "memory/allocation.hpp"
32#include "memory/universe.hpp"
33
34// This class keeps statistical information and computes the
35// size of the heap.
36
37// Forward decls
38class elapsedTimer;
39class CollectorPolicy;
40
41class AdaptiveSizePolicy : public CHeapObj<mtGC> {
42 friend class GCAdaptivePolicyCounters;
43 friend class PSGCAdaptivePolicyCounters;
44 friend class CMSGCAdaptivePolicyCounters;
45 protected:
46
47  enum GCPolicyKind {
48    _gc_adaptive_size_policy,
49    _gc_ps_adaptive_size_policy,
50    _gc_cms_adaptive_size_policy
51  };
52  virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
53
54  enum SizePolicyTrueValues {
55    decrease_old_gen_for_throughput_true = -7,
56    decrease_young_gen_for_througput_true = -6,
57
58    increase_old_gen_for_min_pauses_true = -5,
59    decrease_old_gen_for_min_pauses_true = -4,
60    decrease_young_gen_for_maj_pauses_true = -3,
61    increase_young_gen_for_min_pauses_true = -2,
62    increase_old_gen_for_maj_pauses_true = -1,
63
64    decrease_young_gen_for_min_pauses_true = 1,
65    decrease_old_gen_for_maj_pauses_true = 2,
66    increase_young_gen_for_maj_pauses_true = 3,
67
68    increase_old_gen_for_throughput_true = 4,
69    increase_young_gen_for_througput_true = 5,
70
71    decrease_young_gen_for_footprint_true = 6,
72    decrease_old_gen_for_footprint_true = 7,
73    decide_at_full_gc_true = 8
74  };
75
76  // Goal for the fraction of the total time during which application
77  // threads run
78  const double _throughput_goal;
79
80  // Last calculated sizes, in bytes, and aligned
81  size_t _eden_size;        // calculated eden free space in bytes
82  size_t _promo_size;       // calculated cms gen free space in bytes
83
84  size_t _survivor_size;    // calculated survivor size in bytes
85
86  // This is a hint for the heap:  we've detected that GC times
87  // are taking longer than GCTimeLimit allows.
88  bool _gc_overhead_limit_exceeded;
89  // Use for diagnostics only.  If UseGCOverheadLimit is false,
90  // this variable is still set.
91  bool _print_gc_overhead_limit_would_be_exceeded;
92  // Count of consecutive GC that have exceeded the
93  // GC time limit criterion
94  uint _gc_overhead_limit_count;
95  // This flag signals that GCTimeLimit is being exceeded
96  // but may not have done so for the required number of consecutive
97  // collections
98
99  // Minor collection timers used to determine both
100  // pause and interval times for collections
101  static elapsedTimer _minor_timer;
102
103  // Major collection timers, used to determine both
104  // pause and interval times for collections
105  static elapsedTimer _major_timer;
106
107  // Time statistics
108  AdaptivePaddedAverage*   _avg_minor_pause;
109  AdaptiveWeightedAverage* _avg_minor_interval;
110  AdaptiveWeightedAverage* _avg_minor_gc_cost;
111
112  AdaptiveWeightedAverage* _avg_major_interval;
113  AdaptiveWeightedAverage* _avg_major_gc_cost;
114
115  // Footprint statistics
116  AdaptiveWeightedAverage* _avg_young_live;
117  AdaptiveWeightedAverage* _avg_eden_live;
118  AdaptiveWeightedAverage* _avg_old_live;
119
120  // Statistics for survivor space calculation for young generation
121  AdaptivePaddedAverage*   _avg_survived;
122
123  // Objects that have been directly allocated in the old generation
124  AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
125
126  // Variable for estimating the major and minor pause times.
127  // These variables represent linear least-squares fits of
128  // the data.
129  //   minor pause time vs. old gen size
130  LinearLeastSquareFit* _minor_pause_old_estimator;
131  //   minor pause time vs. young gen size
132  LinearLeastSquareFit* _minor_pause_young_estimator;
133
134  // Variables for estimating the major and minor collection costs
135  //   minor collection time vs. young gen size
136  LinearLeastSquareFit* _minor_collection_estimator;
137  //   major collection time vs. cms gen size
138  LinearLeastSquareFit* _major_collection_estimator;
139
140  // These record the most recent collection times.  They
141  // are available as an alternative to using the averages
142  // for making ergonomic decisions.
143  double _latest_minor_mutator_interval_seconds;
144
145  // Allowed difference between major and minor GC times, used
146  // for computing tenuring_threshold
147  const double _threshold_tolerance_percent;
148
149  const double _gc_pause_goal_sec; // Goal for maximum GC pause
150
151  // Flag indicating that the adaptive policy is ready to use
152  bool _young_gen_policy_is_ready;
153
154  // Decrease/increase the young generation for minor pause time
155  int _change_young_gen_for_min_pauses;
156
157  // Decrease/increase the old generation for major pause time
158  int _change_old_gen_for_maj_pauses;
159
160  //   change old generation for throughput
161  int _change_old_gen_for_throughput;
162
163  //   change young generation for throughput
164  int _change_young_gen_for_throughput;
165
166  // Flag indicating that the policy would
167  //   increase the tenuring threshold because of the total major GC cost
168  //   is greater than the total minor GC cost
169  bool _increment_tenuring_threshold_for_gc_cost;
170  //   decrease the tenuring threshold because of the the total minor GC
171  //   cost is greater than the total major GC cost
172  bool _decrement_tenuring_threshold_for_gc_cost;
173  //   decrease due to survivor size limit
174  bool _decrement_tenuring_threshold_for_survivor_limit;
175
176  //   decrease generation sizes for footprint
177  int _decrease_for_footprint;
178
179  // Set if the ergonomic decisions were made at a full GC.
180  int _decide_at_full_gc;
181
182  // Changing the generation sizing depends on the data that is
183  // gathered about the effects of changes on the pause times and
184  // throughput.  These variable count the number of data points
185  // gathered.  The policy may use these counters as a threshold
186  // for reliable data.
187  julong _young_gen_change_for_minor_throughput;
188  julong _old_gen_change_for_major_throughput;
189
190  static const uint GCWorkersPerJavaThread  = 2;
191
192  // Accessors
193
194  double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
195  // The value returned is unitless:  it's the proportion of time
196  // spent in a particular collection type.
197  // An interval time will be 0.0 if a collection type hasn't occurred yet.
198  // The 1.4.2 implementation put a floor on the values of major_gc_cost
199  // and minor_gc_cost.  This was useful because of the way major_gc_cost
200  // and minor_gc_cost was used in calculating the sizes of the generations.
201  // Do not use a floor in this implementation because any finite value
202  // will put a limit on the throughput that can be achieved and any
203  // throughput goal above that limit will drive the generations sizes
204  // to extremes.
205  double major_gc_cost() const {
206    return MAX2(0.0F, _avg_major_gc_cost->average());
207  }
208
209  // The value returned is unitless:  it's the proportion of time
210  // spent in a particular collection type.
211  // An interval time will be 0.0 if a collection type hasn't occurred yet.
212  // The 1.4.2 implementation put a floor on the values of major_gc_cost
213  // and minor_gc_cost.  This was useful because of the way major_gc_cost
214  // and minor_gc_cost was used in calculating the sizes of the generations.
215  // Do not use a floor in this implementation because any finite value
216  // will put a limit on the throughput that can be achieved and any
217  // throughput goal above that limit will drive the generations sizes
218  // to extremes.
219
220  double minor_gc_cost() const {
221    return MAX2(0.0F, _avg_minor_gc_cost->average());
222  }
223
224  // Because we're dealing with averages, gc_cost() can be
225  // larger than 1.0 if just the sum of the minor cost the
226  // the major cost is used.  Worse than that is the
227  // fact that the minor cost and the major cost each
228  // tend toward 1.0 in the extreme of high GC costs.
229  // Limit the value of gc_cost to 1.0 so that the mutator
230  // cost stays non-negative.
231  virtual double gc_cost() const {
232    double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
233    assert(result >= 0.0, "Both minor and major costs are non-negative");
234    return result;
235  }
236
237  // Elapsed time since the last major collection.
238  virtual double time_since_major_gc() const;
239
240  // Average interval between major collections to be used
241  // in calculating the decaying major GC cost.  An overestimate
242  // of this time would be a conservative estimate because
243  // this time is used to decide if the major GC cost
244  // should be decayed (i.e., if the time since the last
245  // major GC is long compared to the time returned here,
246  // then the major GC cost will be decayed).  See the
247  // implementations for the specifics.
248  virtual double major_gc_interval_average_for_decay() const {
249    return _avg_major_interval->average();
250  }
251
252  // Return the cost of the GC where the major GC cost
253  // has been decayed based on the time since the last
254  // major collection.
255  double decaying_gc_cost() const;
256
257  // Decay the major GC cost.  Use this only for decisions on
258  // whether to adjust, not to determine by how much to adjust.
259  // This approximation is crude and may not be good enough for the
260  // latter.
261  double decaying_major_gc_cost() const;
262
263  // Return the mutator cost using the decayed
264  // GC cost.
265  double adjusted_mutator_cost() const {
266    double result = 1.0 - decaying_gc_cost();
267    assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
268    return result;
269  }
270
271  virtual double mutator_cost() const {
272    double result = 1.0 - gc_cost();
273    assert(result >= 0.0, "mutator cost calculation is incorrect");
274    return result;
275  }
276
277
278  bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
279
280  void update_minor_pause_young_estimator(double minor_pause_in_ms);
281  virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
282    // This is not meaningful for all policies but needs to be present
283    // to use minor_collection_end() in its current form.
284  }
285
286  virtual size_t eden_increment(size_t cur_eden);
287  virtual size_t eden_increment(size_t cur_eden, uint percent_change);
288  virtual size_t eden_decrement(size_t cur_eden);
289  virtual size_t promo_increment(size_t cur_eden);
290  virtual size_t promo_increment(size_t cur_eden, uint percent_change);
291  virtual size_t promo_decrement(size_t cur_eden);
292
293  virtual void clear_generation_free_space_flags();
294
295  int change_old_gen_for_throughput() const {
296    return _change_old_gen_for_throughput;
297  }
298  void set_change_old_gen_for_throughput(int v) {
299    _change_old_gen_for_throughput = v;
300  }
301  int change_young_gen_for_throughput() const {
302    return _change_young_gen_for_throughput;
303  }
304  void set_change_young_gen_for_throughput(int v) {
305    _change_young_gen_for_throughput = v;
306  }
307
308  int change_old_gen_for_maj_pauses() const {
309    return _change_old_gen_for_maj_pauses;
310  }
311  void set_change_old_gen_for_maj_pauses(int v) {
312    _change_old_gen_for_maj_pauses = v;
313  }
314
315  bool decrement_tenuring_threshold_for_gc_cost() const {
316    return _decrement_tenuring_threshold_for_gc_cost;
317  }
318  void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
319    _decrement_tenuring_threshold_for_gc_cost = v;
320  }
321  bool increment_tenuring_threshold_for_gc_cost() const {
322    return _increment_tenuring_threshold_for_gc_cost;
323  }
324  void set_increment_tenuring_threshold_for_gc_cost(bool v) {
325    _increment_tenuring_threshold_for_gc_cost = v;
326  }
327  bool decrement_tenuring_threshold_for_survivor_limit() const {
328    return _decrement_tenuring_threshold_for_survivor_limit;
329  }
330  void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
331    _decrement_tenuring_threshold_for_survivor_limit = v;
332  }
333  // Return true if the policy suggested a change.
334  bool tenuring_threshold_change() const;
335
336  static bool _debug_perturbation;
337
338 public:
339  AdaptiveSizePolicy(size_t init_eden_size,
340                     size_t init_promo_size,
341                     size_t init_survivor_size,
342                     double gc_pause_goal_sec,
343                     uint gc_cost_ratio);
344
345  // Return number default  GC threads to use in the next GC.
346  static uint calc_default_active_workers(uintx total_workers,
347                                          const uintx min_workers,
348                                          uintx active_workers,
349                                          uintx application_workers);
350
351  // Return number of GC threads to use in the next GC.
352  // This is called sparingly so as not to change the
353  // number of GC workers gratuitously.
354  //   For ParNew collections
355  //   For PS scavenge and ParOld collections
356  //   For G1 evacuation pauses (subject to update)
357  // Other collection phases inherit the number of
358  // GC workers from the calls above.  For example,
359  // a CMS parallel remark uses the same number of GC
360  // workers as the most recent ParNew collection.
361  static uint calc_active_workers(uintx total_workers,
362                                  uintx active_workers,
363                                  uintx application_workers);
364
365  // Return number of GC threads to use in the next concurrent GC phase.
366  static uint calc_active_conc_workers(uintx total_workers,
367                                       uintx active_workers,
368                                       uintx application_workers);
369
370  bool is_gc_cms_adaptive_size_policy() {
371    return kind() == _gc_cms_adaptive_size_policy;
372  }
373  bool is_gc_ps_adaptive_size_policy() {
374    return kind() == _gc_ps_adaptive_size_policy;
375  }
376
377  AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
378  AdaptiveWeightedAverage* avg_minor_interval() const {
379    return _avg_minor_interval;
380  }
381  AdaptiveWeightedAverage* avg_minor_gc_cost() const {
382    return _avg_minor_gc_cost;
383  }
384
385  AdaptiveWeightedAverage* avg_major_gc_cost() const {
386    return _avg_major_gc_cost;
387  }
388
389  AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
390  AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
391  AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
392
393  AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
394  AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
395
396  // Methods indicating events of interest to the adaptive size policy,
397  // called by GC algorithms. It is the responsibility of users of this
398  // policy to call these methods at the correct times!
399  virtual void minor_collection_begin();
400  virtual void minor_collection_end(GCCause::Cause gc_cause);
401  virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
402    return _minor_pause_old_estimator;
403  }
404
405  LinearLeastSquareFit* minor_pause_young_estimator() {
406    return _minor_pause_young_estimator;
407  }
408  LinearLeastSquareFit* minor_collection_estimator() {
409    return _minor_collection_estimator;
410  }
411
412  LinearLeastSquareFit* major_collection_estimator() {
413    return _major_collection_estimator;
414  }
415
416  float minor_pause_young_slope() {
417    return _minor_pause_young_estimator->slope();
418  }
419
420  float minor_collection_slope() { return _minor_collection_estimator->slope();}
421  float major_collection_slope() { return _major_collection_estimator->slope();}
422
423  float minor_pause_old_slope() {
424    return _minor_pause_old_estimator->slope();
425  }
426
427  void set_eden_size(size_t new_size) {
428    _eden_size = new_size;
429  }
430  void set_survivor_size(size_t new_size) {
431    _survivor_size = new_size;
432  }
433
434  size_t calculated_eden_size_in_bytes() const {
435    return _eden_size;
436  }
437
438  size_t calculated_promo_size_in_bytes() const {
439    return _promo_size;
440  }
441
442  size_t calculated_survivor_size_in_bytes() const {
443    return _survivor_size;
444  }
445
446  // This is a hint for the heap:  we've detected that gc times
447  // are taking longer than GCTimeLimit allows.
448  // Most heaps will choose to throw an OutOfMemoryError when
449  // this occurs but it is up to the heap to request this information
450  // of the policy
451  bool gc_overhead_limit_exceeded() {
452    return _gc_overhead_limit_exceeded;
453  }
454  void set_gc_overhead_limit_exceeded(bool v) {
455    _gc_overhead_limit_exceeded = v;
456  }
457
458  // Tests conditions indicate the GC overhead limit is being approached.
459  bool gc_overhead_limit_near() {
460    return gc_overhead_limit_count() >=
461        (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
462  }
463  uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
464  void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
465  void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
466  // accessors for flags recording the decisions to resize the
467  // generations to meet the pause goal.
468
469  int change_young_gen_for_min_pauses() const {
470    return _change_young_gen_for_min_pauses;
471  }
472  void set_change_young_gen_for_min_pauses(int v) {
473    _change_young_gen_for_min_pauses = v;
474  }
475  void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
476  int decrease_for_footprint() const { return _decrease_for_footprint; }
477  int decide_at_full_gc() { return _decide_at_full_gc; }
478  void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
479
480  // Check the conditions for an out-of-memory due to excessive GC time.
481  // Set _gc_overhead_limit_exceeded if all the conditions have been met.
482  void check_gc_overhead_limit(size_t young_live,
483                               size_t eden_live,
484                               size_t max_old_gen_size,
485                               size_t max_eden_size,
486                               bool   is_full_gc,
487                               GCCause::Cause gc_cause,
488                               CollectorPolicy* collector_policy);
489
490  // Printing support
491  virtual bool print_adaptive_size_policy_on(outputStream* st) const;
492  bool print_adaptive_size_policy_on(outputStream* st,
493                                     uint tenuring_threshold) const;
494};
495
496// Class that can be used to print information about the
497// adaptive size policy at intervals specified by
498// AdaptiveSizePolicyOutputInterval.  Only print information
499// if an adaptive size policy is in use.
500class AdaptiveSizePolicyOutput : StackObj {
501  AdaptiveSizePolicy* _size_policy;
502  bool _do_print;
503  bool print_test(uint count) {
504    // A count of zero is a special value that indicates that the
505    // interval test should be ignored.  An interval is of zero is
506    // a special value that indicates that the interval test should
507    // always fail (never do the print based on the interval test).
508    return PrintGCDetails &&
509           UseAdaptiveSizePolicy &&
510           UseParallelGC &&
511           (AdaptiveSizePolicyOutputInterval > 0) &&
512           ((count == 0) ||
513             ((count % AdaptiveSizePolicyOutputInterval) == 0));
514  }
515 public:
516  // The special value of a zero count can be used to ignore
517  // the count test.
518  AdaptiveSizePolicyOutput(uint count) {
519    if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
520      CollectedHeap* heap = Universe::heap();
521      _size_policy = heap->size_policy();
522      _do_print = print_test(count);
523    } else {
524      _size_policy = NULL;
525      _do_print = false;
526    }
527  }
528  AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
529                           uint count) :
530    _size_policy(size_policy) {
531    if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
532      _do_print = print_test(count);
533    } else {
534      _do_print = false;
535    }
536  }
537  ~AdaptiveSizePolicyOutput() {
538    if (_do_print) {
539      assert(UseAdaptiveSizePolicy, "Should not be in use");
540      _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
541    }
542  }
543};
544
545#endif // SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP
546