defNewGeneration.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/serial/defNewGeneration.inline.hpp"
27#include "gc/shared/collectorCounters.hpp"
28#include "gc/shared/gcHeapSummary.hpp"
29#include "gc/shared/gcLocker.inline.hpp"
30#include "gc/shared/gcPolicyCounters.hpp"
31#include "gc/shared/gcTimer.hpp"
32#include "gc/shared/gcTrace.hpp"
33#include "gc/shared/gcTraceTime.hpp"
34#include "gc/shared/genCollectedHeap.hpp"
35#include "gc/shared/genOopClosures.inline.hpp"
36#include "gc/shared/genRemSet.hpp"
37#include "gc/shared/generationSpec.hpp"
38#include "gc/shared/referencePolicy.hpp"
39#include "gc/shared/space.inline.hpp"
40#include "gc/shared/spaceDecorator.hpp"
41#include "memory/iterator.hpp"
42#include "oops/instanceRefKlass.hpp"
43#include "oops/oop.inline.hpp"
44#include "runtime/atomic.inline.hpp"
45#include "runtime/java.hpp"
46#include "runtime/prefetch.inline.hpp"
47#include "runtime/thread.inline.hpp"
48#include "utilities/copy.hpp"
49#include "utilities/globalDefinitions.hpp"
50#include "utilities/stack.inline.hpp"
51#if INCLUDE_ALL_GCS
52#include "gc/cms/parOopClosures.hpp"
53#endif
54
55//
56// DefNewGeneration functions.
57
58// Methods of protected closure types.
59
60DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
61  assert(g->level() == 0, "Optimized for youngest gen.");
62}
63bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
64  return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
65}
66
67DefNewGeneration::KeepAliveClosure::
68KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
69  GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
70  _rs = (CardTableRS*)rs;
71}
72
73void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
74void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
75
76
77DefNewGeneration::FastKeepAliveClosure::
78FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
79  DefNewGeneration::KeepAliveClosure(cl) {
80  _boundary = g->reserved().end();
81}
82
83void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
84void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
85
86DefNewGeneration::EvacuateFollowersClosure::
87EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
88                         ScanClosure* cur, ScanClosure* older) :
89  _gch(gch), _level(level),
90  _scan_cur_or_nonheap(cur), _scan_older(older)
91{}
92
93void DefNewGeneration::EvacuateFollowersClosure::do_void() {
94  do {
95    _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
96                                       _scan_older);
97  } while (!_gch->no_allocs_since_save_marks(_level));
98}
99
100DefNewGeneration::FastEvacuateFollowersClosure::
101FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
102                             DefNewGeneration* gen,
103                             FastScanClosure* cur, FastScanClosure* older) :
104  _gch(gch), _level(level), _gen(gen),
105  _scan_cur_or_nonheap(cur), _scan_older(older)
106{}
107
108void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
109  do {
110    _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
111                                       _scan_older);
112  } while (!_gch->no_allocs_since_save_marks(_level));
113  guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
114}
115
116ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
117    OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
118{
119  assert(_g->level() == 0, "Optimized for youngest generation");
120  _boundary = _g->reserved().end();
121}
122
123void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
124void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
125
126FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
127    OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
128{
129  assert(_g->level() == 0, "Optimized for youngest generation");
130  _boundary = _g->reserved().end();
131}
132
133void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
134void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
135
136void KlassScanClosure::do_klass(Klass* klass) {
137#ifndef PRODUCT
138  if (TraceScavenge) {
139    ResourceMark rm;
140    gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
141                           p2i(klass),
142                           klass->external_name(),
143                           klass->has_modified_oops() ? "true" : "false");
144  }
145#endif
146
147  // If the klass has not been dirtied we know that there's
148  // no references into  the young gen and we can skip it.
149  if (klass->has_modified_oops()) {
150    if (_accumulate_modified_oops) {
151      klass->accumulate_modified_oops();
152    }
153
154    // Clear this state since we're going to scavenge all the metadata.
155    klass->clear_modified_oops();
156
157    // Tell the closure which Klass is being scanned so that it can be dirtied
158    // if oops are left pointing into the young gen.
159    _scavenge_closure->set_scanned_klass(klass);
160
161    klass->oops_do(_scavenge_closure);
162
163    _scavenge_closure->set_scanned_klass(NULL);
164  }
165}
166
167ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
168  _g(g)
169{
170  assert(_g->level() == 0, "Optimized for youngest generation");
171  _boundary = _g->reserved().end();
172}
173
174void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
175void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
176
177void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
178void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
179
180KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
181                                   KlassRemSet* klass_rem_set)
182    : _scavenge_closure(scavenge_closure),
183      _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
184
185
186DefNewGeneration::DefNewGeneration(ReservedSpace rs,
187                                   size_t initial_size,
188                                   int level,
189                                   const char* policy)
190  : Generation(rs, initial_size, level),
191    _promo_failure_drain_in_progress(false),
192    _should_allocate_from_space(false)
193{
194  MemRegion cmr((HeapWord*)_virtual_space.low(),
195                (HeapWord*)_virtual_space.high());
196  GenCollectedHeap* gch = GenCollectedHeap::heap();
197
198  gch->barrier_set()->resize_covered_region(cmr);
199
200  _eden_space = new ContiguousSpace();
201  _from_space = new ContiguousSpace();
202  _to_space   = new ContiguousSpace();
203
204  if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
205    vm_exit_during_initialization("Could not allocate a new gen space");
206
207  // Compute the maximum eden and survivor space sizes. These sizes
208  // are computed assuming the entire reserved space is committed.
209  // These values are exported as performance counters.
210  uintx alignment = gch->collector_policy()->space_alignment();
211  uintx size = _virtual_space.reserved_size();
212  _max_survivor_size = compute_survivor_size(size, alignment);
213  _max_eden_size = size - (2*_max_survivor_size);
214
215  // allocate the performance counters
216  GenCollectorPolicy* gcp = (GenCollectorPolicy*)gch->collector_policy();
217
218  // Generation counters -- generation 0, 3 subspaces
219  _gen_counters = new GenerationCounters("new", 0, 3,
220      gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
221  _gc_counters = new CollectorCounters(policy, 0);
222
223  _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
224                                      _gen_counters);
225  _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
226                                      _gen_counters);
227  _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
228                                    _gen_counters);
229
230  compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
231  update_counters();
232  _old_gen = NULL;
233  _tenuring_threshold = MaxTenuringThreshold;
234  _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
235
236  _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
237}
238
239void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
240                                                bool clear_space,
241                                                bool mangle_space) {
242  uintx alignment =
243    GenCollectedHeap::heap()->collector_policy()->space_alignment();
244
245  // If the spaces are being cleared (only done at heap initialization
246  // currently), the survivor spaces need not be empty.
247  // Otherwise, no care is taken for used areas in the survivor spaces
248  // so check.
249  assert(clear_space || (to()->is_empty() && from()->is_empty()),
250    "Initialization of the survivor spaces assumes these are empty");
251
252  // Compute sizes
253  uintx size = _virtual_space.committed_size();
254  uintx survivor_size = compute_survivor_size(size, alignment);
255  uintx eden_size = size - (2*survivor_size);
256  assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
257
258  if (eden_size < minimum_eden_size) {
259    // May happen due to 64Kb rounding, if so adjust eden size back up
260    minimum_eden_size = align_size_up(minimum_eden_size, alignment);
261    uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
262    uintx unaligned_survivor_size =
263      align_size_down(maximum_survivor_size, alignment);
264    survivor_size = MAX2(unaligned_survivor_size, alignment);
265    eden_size = size - (2*survivor_size);
266    assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
267    assert(eden_size >= minimum_eden_size, "just checking");
268  }
269
270  char *eden_start = _virtual_space.low();
271  char *from_start = eden_start + eden_size;
272  char *to_start   = from_start + survivor_size;
273  char *to_end     = to_start   + survivor_size;
274
275  assert(to_end == _virtual_space.high(), "just checking");
276  assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
277  assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
278  assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
279
280  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
281  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
282  MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
283
284  // A minimum eden size implies that there is a part of eden that
285  // is being used and that affects the initialization of any
286  // newly formed eden.
287  bool live_in_eden = minimum_eden_size > 0;
288
289  // If not clearing the spaces, do some checking to verify that
290  // the space are already mangled.
291  if (!clear_space) {
292    // Must check mangling before the spaces are reshaped.  Otherwise,
293    // the bottom or end of one space may have moved into another
294    // a failure of the check may not correctly indicate which space
295    // is not properly mangled.
296    if (ZapUnusedHeapArea) {
297      HeapWord* limit = (HeapWord*) _virtual_space.high();
298      eden()->check_mangled_unused_area(limit);
299      from()->check_mangled_unused_area(limit);
300        to()->check_mangled_unused_area(limit);
301    }
302  }
303
304  // Reset the spaces for their new regions.
305  eden()->initialize(edenMR,
306                     clear_space && !live_in_eden,
307                     SpaceDecorator::Mangle);
308  // If clear_space and live_in_eden, we will not have cleared any
309  // portion of eden above its top. This can cause newly
310  // expanded space not to be mangled if using ZapUnusedHeapArea.
311  // We explicitly do such mangling here.
312  if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
313    eden()->mangle_unused_area();
314  }
315  from()->initialize(fromMR, clear_space, mangle_space);
316  to()->initialize(toMR, clear_space, mangle_space);
317
318  // Set next compaction spaces.
319  eden()->set_next_compaction_space(from());
320  // The to-space is normally empty before a compaction so need
321  // not be considered.  The exception is during promotion
322  // failure handling when to-space can contain live objects.
323  from()->set_next_compaction_space(NULL);
324}
325
326void DefNewGeneration::swap_spaces() {
327  ContiguousSpace* s = from();
328  _from_space        = to();
329  _to_space          = s;
330  eden()->set_next_compaction_space(from());
331  // The to-space is normally empty before a compaction so need
332  // not be considered.  The exception is during promotion
333  // failure handling when to-space can contain live objects.
334  from()->set_next_compaction_space(NULL);
335
336  if (UsePerfData) {
337    CSpaceCounters* c = _from_counters;
338    _from_counters = _to_counters;
339    _to_counters = c;
340  }
341}
342
343bool DefNewGeneration::expand(size_t bytes) {
344  MutexLocker x(ExpandHeap_lock);
345  HeapWord* prev_high = (HeapWord*) _virtual_space.high();
346  bool success = _virtual_space.expand_by(bytes);
347  if (success && ZapUnusedHeapArea) {
348    // Mangle newly committed space immediately because it
349    // can be done here more simply that after the new
350    // spaces have been computed.
351    HeapWord* new_high = (HeapWord*) _virtual_space.high();
352    MemRegion mangle_region(prev_high, new_high);
353    SpaceMangler::mangle_region(mangle_region);
354  }
355
356  // Do not attempt an expand-to-the reserve size.  The
357  // request should properly observe the maximum size of
358  // the generation so an expand-to-reserve should be
359  // unnecessary.  Also a second call to expand-to-reserve
360  // value potentially can cause an undue expansion.
361  // For example if the first expand fail for unknown reasons,
362  // but the second succeeds and expands the heap to its maximum
363  // value.
364  if (GC_locker::is_active()) {
365    if (PrintGC && Verbose) {
366      gclog_or_tty->print_cr("Garbage collection disabled, "
367        "expanded heap instead");
368    }
369  }
370
371  return success;
372}
373
374
375void DefNewGeneration::compute_new_size() {
376  // This is called after a gc that includes the following generation
377  // (which is required to exist.)  So from-space will normally be empty.
378  // Note that we check both spaces, since if scavenge failed they revert roles.
379  // If not we bail out (otherwise we would have to relocate the objects)
380  if (!from()->is_empty() || !to()->is_empty()) {
381    return;
382  }
383
384  int next_level = level() + 1;
385  GenCollectedHeap* gch = GenCollectedHeap::heap();
386  assert(next_level == 1, "DefNewGeneration must be a young gen");
387
388  Generation* old_gen = gch->old_gen();
389  size_t old_size = old_gen->capacity();
390  size_t new_size_before = _virtual_space.committed_size();
391  size_t min_new_size = spec()->init_size();
392  size_t max_new_size = reserved().byte_size();
393  assert(min_new_size <= new_size_before &&
394         new_size_before <= max_new_size,
395         "just checking");
396  // All space sizes must be multiples of Generation::GenGrain.
397  size_t alignment = Generation::GenGrain;
398
399  // Compute desired new generation size based on NewRatio and
400  // NewSizeThreadIncrease
401  size_t desired_new_size = old_size/NewRatio;
402  int threads_count = Threads::number_of_non_daemon_threads();
403  size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
404  desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
405
406  // Adjust new generation size
407  desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
408  assert(desired_new_size <= max_new_size, "just checking");
409
410  bool changed = false;
411  if (desired_new_size > new_size_before) {
412    size_t change = desired_new_size - new_size_before;
413    assert(change % alignment == 0, "just checking");
414    if (expand(change)) {
415       changed = true;
416    }
417    // If the heap failed to expand to the desired size,
418    // "changed" will be false.  If the expansion failed
419    // (and at this point it was expected to succeed),
420    // ignore the failure (leaving "changed" as false).
421  }
422  if (desired_new_size < new_size_before && eden()->is_empty()) {
423    // bail out of shrinking if objects in eden
424    size_t change = new_size_before - desired_new_size;
425    assert(change % alignment == 0, "just checking");
426    _virtual_space.shrink_by(change);
427    changed = true;
428  }
429  if (changed) {
430    // The spaces have already been mangled at this point but
431    // may not have been cleared (set top = bottom) and should be.
432    // Mangling was done when the heap was being expanded.
433    compute_space_boundaries(eden()->used(),
434                             SpaceDecorator::Clear,
435                             SpaceDecorator::DontMangle);
436    MemRegion cmr((HeapWord*)_virtual_space.low(),
437                  (HeapWord*)_virtual_space.high());
438    gch->barrier_set()->resize_covered_region(cmr);
439    if (Verbose && PrintGC) {
440      size_t new_size_after  = _virtual_space.committed_size();
441      size_t eden_size_after = eden()->capacity();
442      size_t survivor_size_after = from()->capacity();
443      gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
444        SIZE_FORMAT "K [eden="
445        SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
446        new_size_before/K, new_size_after/K,
447        eden_size_after/K, survivor_size_after/K);
448      if (WizardMode) {
449        gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
450          thread_increase_size/K, threads_count);
451      }
452      gclog_or_tty->cr();
453    }
454  }
455}
456
457void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
458  assert(false, "NYI -- are you sure you want to call this?");
459}
460
461
462size_t DefNewGeneration::capacity() const {
463  return eden()->capacity()
464       + from()->capacity();  // to() is only used during scavenge
465}
466
467
468size_t DefNewGeneration::used() const {
469  return eden()->used()
470       + from()->used();      // to() is only used during scavenge
471}
472
473
474size_t DefNewGeneration::free() const {
475  return eden()->free()
476       + from()->free();      // to() is only used during scavenge
477}
478
479size_t DefNewGeneration::max_capacity() const {
480  const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
481  const size_t reserved_bytes = reserved().byte_size();
482  return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
483}
484
485size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
486  return eden()->free();
487}
488
489size_t DefNewGeneration::capacity_before_gc() const {
490  return eden()->capacity();
491}
492
493size_t DefNewGeneration::contiguous_available() const {
494  return eden()->free();
495}
496
497
498HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
499HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
500
501void DefNewGeneration::object_iterate(ObjectClosure* blk) {
502  eden()->object_iterate(blk);
503  from()->object_iterate(blk);
504}
505
506
507void DefNewGeneration::space_iterate(SpaceClosure* blk,
508                                     bool usedOnly) {
509  blk->do_space(eden());
510  blk->do_space(from());
511  blk->do_space(to());
512}
513
514// The last collection bailed out, we are running out of heap space,
515// so we try to allocate the from-space, too.
516HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
517  HeapWord* result = NULL;
518  if (Verbose && PrintGCDetails) {
519    gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
520                        "  will_fail: %s"
521                        "  heap_lock: %s"
522                        "  free: " SIZE_FORMAT,
523                        size,
524                        GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
525                          "true" : "false",
526                        Heap_lock->is_locked() ? "locked" : "unlocked",
527                        from()->free());
528  }
529  if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
530    if (Heap_lock->owned_by_self() ||
531        (SafepointSynchronize::is_at_safepoint() &&
532         Thread::current()->is_VM_thread())) {
533      // If the Heap_lock is not locked by this thread, this will be called
534      // again later with the Heap_lock held.
535      result = from()->allocate(size);
536    } else if (PrintGC && Verbose) {
537      gclog_or_tty->print_cr("  Heap_lock is not owned by self");
538    }
539  } else if (PrintGC && Verbose) {
540    gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
541  }
542  if (PrintGC && Verbose) {
543    gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
544  }
545  return result;
546}
547
548HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
549                                                bool   is_tlab,
550                                                bool   parallel) {
551  // We don't attempt to expand the young generation (but perhaps we should.)
552  return allocate(size, is_tlab);
553}
554
555void DefNewGeneration::adjust_desired_tenuring_threshold() {
556  // Set the desired survivor size to half the real survivor space
557  GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
558  _tenuring_threshold =
559    age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
560}
561
562void DefNewGeneration::collect(bool   full,
563                               bool   clear_all_soft_refs,
564                               size_t size,
565                               bool   is_tlab) {
566  assert(full || size > 0, "otherwise we don't want to collect");
567
568  GenCollectedHeap* gch = GenCollectedHeap::heap();
569
570  _gc_timer->register_gc_start();
571  DefNewTracer gc_tracer;
572  gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
573
574  _old_gen = gch->old_gen();
575
576  // If the next generation is too full to accommodate promotion
577  // from this generation, pass on collection; let the next generation
578  // do it.
579  if (!collection_attempt_is_safe()) {
580    if (Verbose && PrintGCDetails) {
581      gclog_or_tty->print(" :: Collection attempt not safe :: ");
582    }
583    gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
584    return;
585  }
586  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
587
588  init_assuming_no_promotion_failure();
589
590  GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
591  // Capture heap used before collection (for printing).
592  size_t gch_prev_used = gch->used();
593
594  gch->trace_heap_before_gc(&gc_tracer);
595
596  // These can be shared for all code paths
597  IsAliveClosure is_alive(this);
598  ScanWeakRefClosure scan_weak_ref(this);
599
600  age_table()->clear();
601  to()->clear(SpaceDecorator::Mangle);
602
603  gch->rem_set()->prepare_for_younger_refs_iterate(false);
604
605  assert(gch->no_allocs_since_save_marks(0),
606         "save marks have not been newly set.");
607
608  // Not very pretty.
609  CollectorPolicy* cp = gch->collector_policy();
610
611  FastScanClosure fsc_with_no_gc_barrier(this, false);
612  FastScanClosure fsc_with_gc_barrier(this, true);
613
614  KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
615                                      gch->rem_set()->klass_rem_set());
616  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
617                                           &fsc_with_no_gc_barrier,
618                                           false);
619
620  set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
621  FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
622                                                  &fsc_with_no_gc_barrier,
623                                                  &fsc_with_gc_barrier);
624
625  assert(gch->no_allocs_since_save_marks(0),
626         "save marks have not been newly set.");
627
628  gch->gen_process_roots(_level,
629                         true,  // Process younger gens, if any,
630                                // as strong roots.
631                         true,  // activate StrongRootsScope
632                         GenCollectedHeap::SO_ScavengeCodeCache,
633                         GenCollectedHeap::StrongAndWeakRoots,
634                         &fsc_with_no_gc_barrier,
635                         &fsc_with_gc_barrier,
636                         &cld_scan_closure);
637
638  // "evacuate followers".
639  evacuate_followers.do_void();
640
641  FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
642  ReferenceProcessor* rp = ref_processor();
643  rp->setup_policy(clear_all_soft_refs);
644  const ReferenceProcessorStats& stats =
645  rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
646                                    NULL, _gc_timer, gc_tracer.gc_id());
647  gc_tracer.report_gc_reference_stats(stats);
648
649  if (!_promotion_failed) {
650    // Swap the survivor spaces.
651    eden()->clear(SpaceDecorator::Mangle);
652    from()->clear(SpaceDecorator::Mangle);
653    if (ZapUnusedHeapArea) {
654      // This is now done here because of the piece-meal mangling which
655      // can check for valid mangling at intermediate points in the
656      // collection(s).  When a minor collection fails to collect
657      // sufficient space resizing of the young generation can occur
658      // an redistribute the spaces in the young generation.  Mangle
659      // here so that unzapped regions don't get distributed to
660      // other spaces.
661      to()->mangle_unused_area();
662    }
663    swap_spaces();
664
665    assert(to()->is_empty(), "to space should be empty now");
666
667    adjust_desired_tenuring_threshold();
668
669    // A successful scavenge should restart the GC time limit count which is
670    // for full GC's.
671    AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
672    size_policy->reset_gc_overhead_limit_count();
673    assert(!gch->incremental_collection_failed(), "Should be clear");
674  } else {
675    assert(_promo_failure_scan_stack.is_empty(), "post condition");
676    _promo_failure_scan_stack.clear(true); // Clear cached segments.
677
678    remove_forwarding_pointers();
679    if (PrintGCDetails) {
680      gclog_or_tty->print(" (promotion failed) ");
681    }
682    // Add to-space to the list of space to compact
683    // when a promotion failure has occurred.  In that
684    // case there can be live objects in to-space
685    // as a result of a partial evacuation of eden
686    // and from-space.
687    swap_spaces();   // For uniformity wrt ParNewGeneration.
688    from()->set_next_compaction_space(to());
689    gch->set_incremental_collection_failed();
690
691    // Inform the next generation that a promotion failure occurred.
692    _old_gen->promotion_failure_occurred();
693    gc_tracer.report_promotion_failed(_promotion_failed_info);
694
695    // Reset the PromotionFailureALot counters.
696    NOT_PRODUCT(gch->reset_promotion_should_fail();)
697  }
698  if (PrintGC && !PrintGCDetails) {
699    gch->print_heap_change(gch_prev_used);
700  }
701  // set new iteration safe limit for the survivor spaces
702  from()->set_concurrent_iteration_safe_limit(from()->top());
703  to()->set_concurrent_iteration_safe_limit(to()->top());
704
705  // We need to use a monotonically non-decreasing time in ms
706  // or we will see time-warp warnings and os::javaTimeMillis()
707  // does not guarantee monotonicity.
708  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
709  update_time_of_last_gc(now);
710
711  gch->trace_heap_after_gc(&gc_tracer);
712  gc_tracer.report_tenuring_threshold(tenuring_threshold());
713
714  _gc_timer->register_gc_end();
715
716  gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
717}
718
719class RemoveForwardPointerClosure: public ObjectClosure {
720public:
721  void do_object(oop obj) {
722    obj->init_mark();
723  }
724};
725
726void DefNewGeneration::init_assuming_no_promotion_failure() {
727  _promotion_failed = false;
728  _promotion_failed_info.reset();
729  from()->set_next_compaction_space(NULL);
730}
731
732void DefNewGeneration::remove_forwarding_pointers() {
733  RemoveForwardPointerClosure rspc;
734  eden()->object_iterate(&rspc);
735  from()->object_iterate(&rspc);
736
737  // Now restore saved marks, if any.
738  assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
739         "should be the same");
740  while (!_objs_with_preserved_marks.is_empty()) {
741    oop obj   = _objs_with_preserved_marks.pop();
742    markOop m = _preserved_marks_of_objs.pop();
743    obj->set_mark(m);
744  }
745  _objs_with_preserved_marks.clear(true);
746  _preserved_marks_of_objs.clear(true);
747}
748
749void DefNewGeneration::preserve_mark(oop obj, markOop m) {
750  assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
751         "Oversaving!");
752  _objs_with_preserved_marks.push(obj);
753  _preserved_marks_of_objs.push(m);
754}
755
756void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
757  if (m->must_be_preserved_for_promotion_failure(obj)) {
758    preserve_mark(obj, m);
759  }
760}
761
762void DefNewGeneration::handle_promotion_failure(oop old) {
763  if (PrintPromotionFailure && !_promotion_failed) {
764    gclog_or_tty->print(" (promotion failure size = %d) ",
765                        old->size());
766  }
767  _promotion_failed = true;
768  _promotion_failed_info.register_copy_failure(old->size());
769  preserve_mark_if_necessary(old, old->mark());
770  // forward to self
771  old->forward_to(old);
772
773  _promo_failure_scan_stack.push(old);
774
775  if (!_promo_failure_drain_in_progress) {
776    // prevent recursion in copy_to_survivor_space()
777    _promo_failure_drain_in_progress = true;
778    drain_promo_failure_scan_stack();
779    _promo_failure_drain_in_progress = false;
780  }
781}
782
783oop DefNewGeneration::copy_to_survivor_space(oop old) {
784  assert(is_in_reserved(old) && !old->is_forwarded(),
785         "shouldn't be scavenging this oop");
786  size_t s = old->size();
787  oop obj = NULL;
788
789  // Try allocating obj in to-space (unless too old)
790  if (old->age() < tenuring_threshold()) {
791    obj = (oop) to()->allocate_aligned(s);
792  }
793
794  // Otherwise try allocating obj tenured
795  if (obj == NULL) {
796    obj = _old_gen->promote(old, s);
797    if (obj == NULL) {
798      handle_promotion_failure(old);
799      return old;
800    }
801  } else {
802    // Prefetch beyond obj
803    const intx interval = PrefetchCopyIntervalInBytes;
804    Prefetch::write(obj, interval);
805
806    // Copy obj
807    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
808
809    // Increment age if obj still in new generation
810    obj->incr_age();
811    age_table()->add(obj, s);
812  }
813
814  // Done, insert forward pointer to obj in this header
815  old->forward_to(obj);
816
817  return obj;
818}
819
820void DefNewGeneration::drain_promo_failure_scan_stack() {
821  while (!_promo_failure_scan_stack.is_empty()) {
822     oop obj = _promo_failure_scan_stack.pop();
823     obj->oop_iterate(_promo_failure_scan_stack_closure);
824  }
825}
826
827void DefNewGeneration::save_marks() {
828  eden()->set_saved_mark();
829  to()->set_saved_mark();
830  from()->set_saved_mark();
831}
832
833
834void DefNewGeneration::reset_saved_marks() {
835  eden()->reset_saved_mark();
836  to()->reset_saved_mark();
837  from()->reset_saved_mark();
838}
839
840
841bool DefNewGeneration::no_allocs_since_save_marks() {
842  assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
843  assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
844  return to()->saved_mark_at_top();
845}
846
847#define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
848                                                                \
849void DefNewGeneration::                                         \
850oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
851  cl->set_generation(this);                                     \
852  eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
853  to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
854  from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
855  cl->reset_generation();                                       \
856  save_marks();                                                 \
857}
858
859ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
860
861#undef DefNew_SINCE_SAVE_MARKS_DEFN
862
863void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
864                                         size_t max_alloc_words) {
865  if (requestor == this || _promotion_failed) return;
866  assert(requestor->level() > level(), "DefNewGeneration must be youngest");
867
868  /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
869  if (to_space->top() > to_space->bottom()) {
870    trace("to_space not empty when contribute_scratch called");
871  }
872  */
873
874  ContiguousSpace* to_space = to();
875  assert(to_space->end() >= to_space->top(), "pointers out of order");
876  size_t free_words = pointer_delta(to_space->end(), to_space->top());
877  if (free_words >= MinFreeScratchWords) {
878    ScratchBlock* sb = (ScratchBlock*)to_space->top();
879    sb->num_words = free_words;
880    sb->next = list;
881    list = sb;
882  }
883}
884
885void DefNewGeneration::reset_scratch() {
886  // If contributing scratch in to_space, mangle all of
887  // to_space if ZapUnusedHeapArea.  This is needed because
888  // top is not maintained while using to-space as scratch.
889  if (ZapUnusedHeapArea) {
890    to()->mangle_unused_area_complete();
891  }
892}
893
894bool DefNewGeneration::collection_attempt_is_safe() {
895  if (!to()->is_empty()) {
896    if (Verbose && PrintGCDetails) {
897      gclog_or_tty->print(" :: to is not empty :: ");
898    }
899    return false;
900  }
901  if (_old_gen == NULL) {
902    GenCollectedHeap* gch = GenCollectedHeap::heap();
903    _old_gen = gch->old_gen();
904  }
905  return _old_gen->promotion_attempt_is_safe(used());
906}
907
908void DefNewGeneration::gc_epilogue(bool full) {
909  DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
910
911  assert(!GC_locker::is_active(), "We should not be executing here");
912  // Check if the heap is approaching full after a collection has
913  // been done.  Generally the young generation is empty at
914  // a minimum at the end of a collection.  If it is not, then
915  // the heap is approaching full.
916  GenCollectedHeap* gch = GenCollectedHeap::heap();
917  if (full) {
918    DEBUG_ONLY(seen_incremental_collection_failed = false;)
919    if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
920      if (Verbose && PrintGCDetails) {
921        gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
922                            GCCause::to_string(gch->gc_cause()));
923      }
924      gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
925      set_should_allocate_from_space(); // we seem to be running out of space
926    } else {
927      if (Verbose && PrintGCDetails) {
928        gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
929                            GCCause::to_string(gch->gc_cause()));
930      }
931      gch->clear_incremental_collection_failed(); // We just did a full collection
932      clear_should_allocate_from_space(); // if set
933    }
934  } else {
935#ifdef ASSERT
936    // It is possible that incremental_collection_failed() == true
937    // here, because an attempted scavenge did not succeed. The policy
938    // is normally expected to cause a full collection which should
939    // clear that condition, so we should not be here twice in a row
940    // with incremental_collection_failed() == true without having done
941    // a full collection in between.
942    if (!seen_incremental_collection_failed &&
943        gch->incremental_collection_failed()) {
944      if (Verbose && PrintGCDetails) {
945        gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
946                            GCCause::to_string(gch->gc_cause()));
947      }
948      seen_incremental_collection_failed = true;
949    } else if (seen_incremental_collection_failed) {
950      if (Verbose && PrintGCDetails) {
951        gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
952                            GCCause::to_string(gch->gc_cause()));
953      }
954      assert(gch->gc_cause() == GCCause::_scavenge_alot ||
955             (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
956             !gch->incremental_collection_failed(),
957             "Twice in a row");
958      seen_incremental_collection_failed = false;
959    }
960#endif // ASSERT
961  }
962
963  if (ZapUnusedHeapArea) {
964    eden()->check_mangled_unused_area_complete();
965    from()->check_mangled_unused_area_complete();
966    to()->check_mangled_unused_area_complete();
967  }
968
969  if (!CleanChunkPoolAsync) {
970    Chunk::clean_chunk_pool();
971  }
972
973  // update the generation and space performance counters
974  update_counters();
975  gch->collector_policy()->counters()->update_counters();
976}
977
978void DefNewGeneration::record_spaces_top() {
979  assert(ZapUnusedHeapArea, "Not mangling unused space");
980  eden()->set_top_for_allocations();
981  to()->set_top_for_allocations();
982  from()->set_top_for_allocations();
983}
984
985void DefNewGeneration::ref_processor_init() {
986  Generation::ref_processor_init();
987}
988
989
990void DefNewGeneration::update_counters() {
991  if (UsePerfData) {
992    _eden_counters->update_all();
993    _from_counters->update_all();
994    _to_counters->update_all();
995    _gen_counters->update_all();
996  }
997}
998
999void DefNewGeneration::verify() {
1000  eden()->verify();
1001  from()->verify();
1002    to()->verify();
1003}
1004
1005void DefNewGeneration::print_on(outputStream* st) const {
1006  Generation::print_on(st);
1007  st->print("  eden");
1008  eden()->print_on(st);
1009  st->print("  from");
1010  from()->print_on(st);
1011  st->print("  to  ");
1012  to()->print_on(st);
1013}
1014
1015
1016const char* DefNewGeneration::name() const {
1017  return "def new generation";
1018}
1019
1020// Moved from inline file as they are not called inline
1021CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1022  return eden();
1023}
1024
1025HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1026  // This is the slow-path allocation for the DefNewGeneration.
1027  // Most allocations are fast-path in compiled code.
1028  // We try to allocate from the eden.  If that works, we are happy.
1029  // Note that since DefNewGeneration supports lock-free allocation, we
1030  // have to use it here, as well.
1031  HeapWord* result = eden()->par_allocate(word_size);
1032  if (result != NULL) {
1033    if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1034      _old_gen->sample_eden_chunk();
1035    }
1036  } else {
1037    // If the eden is full and the last collection bailed out, we are running
1038    // out of heap space, and we try to allocate the from-space, too.
1039    // allocate_from_space can't be inlined because that would introduce a
1040    // circular dependency at compile time.
1041    result = allocate_from_space(word_size);
1042  }
1043  return result;
1044}
1045
1046HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1047                                         bool is_tlab) {
1048  HeapWord* res = eden()->par_allocate(word_size);
1049  if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1050    _old_gen->sample_eden_chunk();
1051  }
1052  return res;
1053}
1054
1055size_t DefNewGeneration::tlab_capacity() const {
1056  return eden()->capacity();
1057}
1058
1059size_t DefNewGeneration::tlab_used() const {
1060  return eden()->used();
1061}
1062
1063size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1064  return unsafe_max_alloc_nogc();
1065}
1066