psYoungGen.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/parallel/mutableNUMASpace.hpp"
27#include "gc/parallel/parallelScavengeHeap.hpp"
28#include "gc/parallel/psMarkSweepDecorator.hpp"
29#include "gc/parallel/psScavenge.hpp"
30#include "gc/parallel/psYoungGen.hpp"
31#include "gc/shared/gcUtil.hpp"
32#include "gc/shared/spaceDecorator.hpp"
33#include "logging/log.hpp"
34#include "oops/oop.inline.hpp"
35#include "runtime/java.hpp"
36#include "utilities/align.hpp"
37
38PSYoungGen::PSYoungGen(size_t        initial_size,
39                       size_t        min_size,
40                       size_t        max_size) :
41  _init_gen_size(initial_size),
42  _min_gen_size(min_size),
43  _max_gen_size(max_size)
44{}
45
46void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
47  assert(_init_gen_size != 0, "Should have a finite size");
48  _virtual_space = new PSVirtualSpace(rs, alignment);
49  if (!virtual_space()->expand_by(_init_gen_size)) {
50    vm_exit_during_initialization("Could not reserve enough space for "
51                                  "object heap");
52  }
53}
54
55void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
56  initialize_virtual_space(rs, alignment);
57  initialize_work();
58}
59
60void PSYoungGen::initialize_work() {
61
62  _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
63                        (HeapWord*)virtual_space()->high_boundary());
64
65  MemRegion cmr((HeapWord*)virtual_space()->low(),
66                (HeapWord*)virtual_space()->high());
67  ParallelScavengeHeap::heap()->barrier_set()->resize_covered_region(cmr);
68
69  if (ZapUnusedHeapArea) {
70    // Mangle newly committed space immediately because it
71    // can be done here more simply that after the new
72    // spaces have been computed.
73    SpaceMangler::mangle_region(cmr);
74  }
75
76  if (UseNUMA) {
77    _eden_space = new MutableNUMASpace(virtual_space()->alignment());
78  } else {
79    _eden_space = new MutableSpace(virtual_space()->alignment());
80  }
81  _from_space = new MutableSpace(virtual_space()->alignment());
82  _to_space   = new MutableSpace(virtual_space()->alignment());
83
84  if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
85    vm_exit_during_initialization("Could not allocate a young gen space");
86  }
87
88  // Allocate the mark sweep views of spaces
89  _eden_mark_sweep =
90      new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
91  _from_mark_sweep =
92      new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
93  _to_mark_sweep =
94      new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
95
96  if (_eden_mark_sweep == NULL ||
97      _from_mark_sweep == NULL ||
98      _to_mark_sweep == NULL) {
99    vm_exit_during_initialization("Could not complete allocation"
100                                  " of the young generation");
101  }
102
103  // Generation Counters - generation 0, 3 subspaces
104  _gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
105                                           _max_gen_size, _virtual_space);
106
107  // Compute maximum space sizes for performance counters
108  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
109  size_t alignment = heap->space_alignment();
110  size_t size = virtual_space()->reserved_size();
111
112  size_t max_survivor_size;
113  size_t max_eden_size;
114
115  if (UseAdaptiveSizePolicy) {
116    max_survivor_size = size / MinSurvivorRatio;
117
118    // round the survivor space size down to the nearest alignment
119    // and make sure its size is greater than 0.
120    max_survivor_size = align_down(max_survivor_size, alignment);
121    max_survivor_size = MAX2(max_survivor_size, alignment);
122
123    // set the maximum size of eden to be the size of the young gen
124    // less two times the minimum survivor size. The minimum survivor
125    // size for UseAdaptiveSizePolicy is one alignment.
126    max_eden_size = size - 2 * alignment;
127  } else {
128    max_survivor_size = size / InitialSurvivorRatio;
129
130    // round the survivor space size down to the nearest alignment
131    // and make sure its size is greater than 0.
132    max_survivor_size = align_down(max_survivor_size, alignment);
133    max_survivor_size = MAX2(max_survivor_size, alignment);
134
135    // set the maximum size of eden to be the size of the young gen
136    // less two times the survivor size when the generation is 100%
137    // committed. The minimum survivor size for -UseAdaptiveSizePolicy
138    // is dependent on the committed portion (current capacity) of the
139    // generation - the less space committed, the smaller the survivor
140    // space, possibly as small as an alignment. However, we are interested
141    // in the case where the young generation is 100% committed, as this
142    // is the point where eden reaches its maximum size. At this point,
143    // the size of a survivor space is max_survivor_size.
144    max_eden_size = size - 2 * max_survivor_size;
145  }
146
147  _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
148                                     _gen_counters);
149  _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
150                                     _gen_counters);
151  _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
152                                   _gen_counters);
153
154  compute_initial_space_boundaries();
155}
156
157void PSYoungGen::compute_initial_space_boundaries() {
158  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
159
160  // Compute sizes
161  size_t alignment = heap->space_alignment();
162  size_t size = virtual_space()->committed_size();
163  assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
164
165  size_t survivor_size = size / InitialSurvivorRatio;
166  survivor_size = align_down(survivor_size, alignment);
167  // ... but never less than an alignment
168  survivor_size = MAX2(survivor_size, alignment);
169
170  // Young generation is eden + 2 survivor spaces
171  size_t eden_size = size - (2 * survivor_size);
172
173  // Now go ahead and set 'em.
174  set_space_boundaries(eden_size, survivor_size);
175  space_invariants();
176
177  if (UsePerfData) {
178    _eden_counters->update_capacity();
179    _from_counters->update_capacity();
180    _to_counters->update_capacity();
181  }
182}
183
184void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
185  assert(eden_size < virtual_space()->committed_size(), "just checking");
186  assert(eden_size > 0  && survivor_size > 0, "just checking");
187
188  // Initial layout is Eden, to, from. After swapping survivor spaces,
189  // that leaves us with Eden, from, to, which is step one in our two
190  // step resize-with-live-data procedure.
191  char *eden_start = virtual_space()->low();
192  char *to_start   = eden_start + eden_size;
193  char *from_start = to_start   + survivor_size;
194  char *from_end   = from_start + survivor_size;
195
196  assert(from_end == virtual_space()->high(), "just checking");
197  assert(is_object_aligned(eden_start), "checking alignment");
198  assert(is_object_aligned(to_start),   "checking alignment");
199  assert(is_object_aligned(from_start), "checking alignment");
200
201  MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
202  MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
203  MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
204
205  eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
206    to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
207  from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
208}
209
210#ifndef PRODUCT
211void PSYoungGen::space_invariants() {
212  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
213  const size_t alignment = heap->space_alignment();
214
215  // Currently, our eden size cannot shrink to zero
216  guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
217  guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
218  guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
219
220  // Relationship of spaces to each other
221  char* eden_start = (char*)eden_space()->bottom();
222  char* eden_end   = (char*)eden_space()->end();
223  char* from_start = (char*)from_space()->bottom();
224  char* from_end   = (char*)from_space()->end();
225  char* to_start   = (char*)to_space()->bottom();
226  char* to_end     = (char*)to_space()->end();
227
228  guarantee(eden_start >= virtual_space()->low(), "eden bottom");
229  guarantee(eden_start < eden_end, "eden space consistency");
230  guarantee(from_start < from_end, "from space consistency");
231  guarantee(to_start < to_end, "to space consistency");
232
233  // Check whether from space is below to space
234  if (from_start < to_start) {
235    // Eden, from, to
236    guarantee(eden_end <= from_start, "eden/from boundary");
237    guarantee(from_end <= to_start,   "from/to boundary");
238    guarantee(to_end <= virtual_space()->high(), "to end");
239  } else {
240    // Eden, to, from
241    guarantee(eden_end <= to_start, "eden/to boundary");
242    guarantee(to_end <= from_start, "to/from boundary");
243    guarantee(from_end <= virtual_space()->high(), "from end");
244  }
245
246  // More checks that the virtual space is consistent with the spaces
247  assert(virtual_space()->committed_size() >=
248    (eden_space()->capacity_in_bytes() +
249     to_space()->capacity_in_bytes() +
250     from_space()->capacity_in_bytes()), "Committed size is inconsistent");
251  assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
252    "Space invariant");
253  char* eden_top = (char*)eden_space()->top();
254  char* from_top = (char*)from_space()->top();
255  char* to_top = (char*)to_space()->top();
256  assert(eden_top <= virtual_space()->high(), "eden top");
257  assert(from_top <= virtual_space()->high(), "from top");
258  assert(to_top <= virtual_space()->high(), "to top");
259
260  virtual_space()->verify();
261}
262#endif
263
264void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
265  // Resize the generation if needed. If the generation resize
266  // reports false, do not attempt to resize the spaces.
267  if (resize_generation(eden_size, survivor_size)) {
268    // Then we lay out the spaces inside the generation
269    resize_spaces(eden_size, survivor_size);
270
271    space_invariants();
272
273    log_trace(gc, ergo)("Young generation size: "
274                        "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
275                        " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
276                        " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
277                        eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
278                        _max_gen_size, min_gen_size());
279  }
280}
281
282
283bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
284  const size_t alignment = virtual_space()->alignment();
285  size_t orig_size = virtual_space()->committed_size();
286  bool size_changed = false;
287
288  // There used to be this guarantee there.
289  // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
290  // Code below forces this requirement.  In addition the desired eden
291  // size and desired survivor sizes are desired goals and may
292  // exceed the total generation size.
293
294  assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
295
296  // Adjust new generation size
297  const size_t eden_plus_survivors =
298          align_up(eden_size + 2 * survivor_size, alignment);
299  size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
300                             min_gen_size());
301  assert(desired_size <= max_size(), "just checking");
302
303  if (desired_size > orig_size) {
304    // Grow the generation
305    size_t change = desired_size - orig_size;
306    assert(change % alignment == 0, "just checking");
307    HeapWord* prev_high = (HeapWord*) virtual_space()->high();
308    if (!virtual_space()->expand_by(change)) {
309      return false; // Error if we fail to resize!
310    }
311    if (ZapUnusedHeapArea) {
312      // Mangle newly committed space immediately because it
313      // can be done here more simply that after the new
314      // spaces have been computed.
315      HeapWord* new_high = (HeapWord*) virtual_space()->high();
316      MemRegion mangle_region(prev_high, new_high);
317      SpaceMangler::mangle_region(mangle_region);
318    }
319    size_changed = true;
320  } else if (desired_size < orig_size) {
321    size_t desired_change = orig_size - desired_size;
322    assert(desired_change % alignment == 0, "just checking");
323
324    desired_change = limit_gen_shrink(desired_change);
325
326    if (desired_change > 0) {
327      virtual_space()->shrink_by(desired_change);
328      reset_survivors_after_shrink();
329
330      size_changed = true;
331    }
332  } else {
333    if (orig_size == gen_size_limit()) {
334      log_trace(gc)("PSYoung generation size at maximum: " SIZE_FORMAT "K", orig_size/K);
335    } else if (orig_size == min_gen_size()) {
336      log_trace(gc)("PSYoung generation size at minium: " SIZE_FORMAT "K", orig_size/K);
337    }
338  }
339
340  if (size_changed) {
341    post_resize();
342    log_trace(gc)("PSYoung generation size changed: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
343                  orig_size/K, virtual_space()->committed_size()/K);
344  }
345
346  guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
347            virtual_space()->committed_size() == max_size(), "Sanity");
348
349  return true;
350}
351
352#ifndef PRODUCT
353// In the numa case eden is not mangled so a survivor space
354// moving into a region previously occupied by a survivor
355// may find an unmangled region.  Also in the PS case eden
356// to-space and from-space may not touch (i.e., there may be
357// gaps between them due to movement while resizing the
358// spaces).  Those gaps must be mangled.
359void PSYoungGen::mangle_survivors(MutableSpace* s1,
360                                  MemRegion s1MR,
361                                  MutableSpace* s2,
362                                  MemRegion s2MR) {
363  // Check eden and gap between eden and from-space, in deciding
364  // what to mangle in from-space.  Check the gap between from-space
365  // and to-space when deciding what to mangle.
366  //
367  //      +--------+   +----+    +---+
368  //      | eden   |   |s1  |    |s2 |
369  //      +--------+   +----+    +---+
370  //                 +-------+ +-----+
371  //                 |s1MR   | |s2MR |
372  //                 +-------+ +-----+
373  // All of survivor-space is properly mangled so find the
374  // upper bound on the mangling for any portion above current s1.
375  HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
376  MemRegion delta1_left;
377  if (s1MR.start() < delta_end) {
378    delta1_left = MemRegion(s1MR.start(), delta_end);
379    s1->mangle_region(delta1_left);
380  }
381  // Find any portion to the right of the current s1.
382  HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
383  MemRegion delta1_right;
384  if (delta_start < s1MR.end()) {
385    delta1_right = MemRegion(delta_start, s1MR.end());
386    s1->mangle_region(delta1_right);
387  }
388
389  // Similarly for the second survivor space except that
390  // any of the new region that overlaps with the current
391  // region of the first survivor space has already been
392  // mangled.
393  delta_end = MIN2(s2->bottom(), s2MR.end());
394  delta_start = MAX2(s2MR.start(), s1->end());
395  MemRegion delta2_left;
396  if (s2MR.start() < delta_end) {
397    delta2_left = MemRegion(s2MR.start(), delta_end);
398    s2->mangle_region(delta2_left);
399  }
400  delta_start = MAX2(s2->end(), s2MR.start());
401  MemRegion delta2_right;
402  if (delta_start < s2MR.end()) {
403    s2->mangle_region(delta2_right);
404  }
405
406  // s1
407  log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
408    "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
409    p2i(s1->bottom()), p2i(s1->end()),
410    p2i(s1MR.start()), p2i(s1MR.end()));
411  log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
412    PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
413    p2i(delta1_left.start()), p2i(delta1_left.end()),
414    p2i(delta1_right.start()), p2i(delta1_right.end()));
415
416  // s2
417  log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
418    "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
419    p2i(s2->bottom()), p2i(s2->end()),
420    p2i(s2MR.start()), p2i(s2MR.end()));
421  log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
422    PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
423    p2i(delta2_left.start()), p2i(delta2_left.end()),
424    p2i(delta2_right.start()), p2i(delta2_right.end()));
425}
426#endif // NOT PRODUCT
427
428void PSYoungGen::resize_spaces(size_t requested_eden_size,
429                               size_t requested_survivor_size) {
430  assert(UseAdaptiveSizePolicy, "sanity check");
431  assert(requested_eden_size > 0  && requested_survivor_size > 0,
432         "just checking");
433
434  // We require eden and to space to be empty
435  if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
436    return;
437  }
438
439  log_trace(gc, ergo)("PSYoungGen::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")",
440                      requested_eden_size, requested_survivor_size);
441  log_trace(gc, ergo)("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
442                      p2i(eden_space()->bottom()),
443                      p2i(eden_space()->end()),
444                      pointer_delta(eden_space()->end(),
445                                    eden_space()->bottom(),
446                                    sizeof(char)));
447  log_trace(gc, ergo)("    from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
448                      p2i(from_space()->bottom()),
449                      p2i(from_space()->end()),
450                      pointer_delta(from_space()->end(),
451                                    from_space()->bottom(),
452                                    sizeof(char)));
453  log_trace(gc, ergo)("      to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
454                      p2i(to_space()->bottom()),
455                      p2i(to_space()->end()),
456                      pointer_delta(  to_space()->end(),
457                                      to_space()->bottom(),
458                                      sizeof(char)));
459
460  // There's nothing to do if the new sizes are the same as the current
461  if (requested_survivor_size == to_space()->capacity_in_bytes() &&
462      requested_survivor_size == from_space()->capacity_in_bytes() &&
463      requested_eden_size == eden_space()->capacity_in_bytes()) {
464    log_trace(gc, ergo)("    capacities are the right sizes, returning");
465    return;
466  }
467
468  char* eden_start = (char*)eden_space()->bottom();
469  char* eden_end   = (char*)eden_space()->end();
470  char* from_start = (char*)from_space()->bottom();
471  char* from_end   = (char*)from_space()->end();
472  char* to_start   = (char*)to_space()->bottom();
473  char* to_end     = (char*)to_space()->end();
474
475  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
476  const size_t alignment = heap->space_alignment();
477  const bool maintain_minimum =
478    (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
479
480  bool eden_from_to_order = from_start < to_start;
481  // Check whether from space is below to space
482  if (eden_from_to_order) {
483    // Eden, from, to
484    eden_from_to_order = true;
485    log_trace(gc, ergo)("  Eden, from, to:");
486
487    // Set eden
488    // "requested_eden_size" is a goal for the size of eden
489    // and may not be attainable.  "eden_size" below is
490    // calculated based on the location of from-space and
491    // the goal for the size of eden.  from-space is
492    // fixed in place because it contains live data.
493    // The calculation is done this way to avoid 32bit
494    // overflow (i.e., eden_start + requested_eden_size
495    // may too large for representation in 32bits).
496    size_t eden_size;
497    if (maintain_minimum) {
498      // Only make eden larger than the requested size if
499      // the minimum size of the generation has to be maintained.
500      // This could be done in general but policy at a higher
501      // level is determining a requested size for eden and that
502      // should be honored unless there is a fundamental reason.
503      eden_size = pointer_delta(from_start,
504                                eden_start,
505                                sizeof(char));
506    } else {
507      eden_size = MIN2(requested_eden_size,
508                       pointer_delta(from_start, eden_start, sizeof(char)));
509    }
510
511    eden_end = eden_start + eden_size;
512    assert(eden_end >= eden_start, "addition overflowed");
513
514    // To may resize into from space as long as it is clear of live data.
515    // From space must remain page aligned, though, so we need to do some
516    // extra calculations.
517
518    // First calculate an optimal to-space
519    to_end   = (char*)virtual_space()->high();
520    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
521                                    sizeof(char));
522
523    // Does the optimal to-space overlap from-space?
524    if (to_start < (char*)from_space()->end()) {
525      // Calculate the minimum offset possible for from_end
526      size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
527
528      // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
529      if (from_size == 0) {
530        from_size = alignment;
531      } else {
532        from_size = align_up(from_size, alignment);
533      }
534
535      from_end = from_start + from_size;
536      assert(from_end > from_start, "addition overflow or from_size problem");
537
538      guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
539
540      // Now update to_start with the new from_end
541      to_start = MAX2(from_end, to_start);
542    }
543
544    guarantee(to_start != to_end, "to space is zero sized");
545
546    log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
547                        p2i(eden_start),
548                        p2i(eden_end),
549                        pointer_delta(eden_end, eden_start, sizeof(char)));
550    log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
551                        p2i(from_start),
552                        p2i(from_end),
553                        pointer_delta(from_end, from_start, sizeof(char)));
554    log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
555                        p2i(to_start),
556                        p2i(to_end),
557                        pointer_delta(  to_end,   to_start, sizeof(char)));
558  } else {
559    // Eden, to, from
560    log_trace(gc, ergo)("  Eden, to, from:");
561
562    // To space gets priority over eden resizing. Note that we position
563    // to space as if we were able to resize from space, even though from
564    // space is not modified.
565    // Giving eden priority was tried and gave poorer performance.
566    to_end   = (char*)pointer_delta(virtual_space()->high(),
567                                    (char*)requested_survivor_size,
568                                    sizeof(char));
569    to_end   = MIN2(to_end, from_start);
570    to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
571                                    sizeof(char));
572    // if the space sizes are to be increased by several times then
573    // 'to_start' will point beyond the young generation. In this case
574    // 'to_start' should be adjusted.
575    to_start = MAX2(to_start, eden_start + alignment);
576
577    // Compute how big eden can be, then adjust end.
578    // See  comments above on calculating eden_end.
579    size_t eden_size;
580    if (maintain_minimum) {
581      eden_size = pointer_delta(to_start, eden_start, sizeof(char));
582    } else {
583      eden_size = MIN2(requested_eden_size,
584                       pointer_delta(to_start, eden_start, sizeof(char)));
585    }
586    eden_end = eden_start + eden_size;
587    assert(eden_end >= eden_start, "addition overflowed");
588
589    // Could choose to not let eden shrink
590    // to_start = MAX2(to_start, eden_end);
591
592    // Don't let eden shrink down to 0 or less.
593    eden_end = MAX2(eden_end, eden_start + alignment);
594    to_start = MAX2(to_start, eden_end);
595
596    log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
597                        p2i(eden_start),
598                        p2i(eden_end),
599                        pointer_delta(eden_end, eden_start, sizeof(char)));
600    log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
601                        p2i(to_start),
602                        p2i(to_end),
603                        pointer_delta(  to_end,   to_start, sizeof(char)));
604    log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
605                        p2i(from_start),
606                        p2i(from_end),
607                        pointer_delta(from_end, from_start, sizeof(char)));
608  }
609
610
611  guarantee((HeapWord*)from_start <= from_space()->bottom(),
612            "from start moved to the right");
613  guarantee((HeapWord*)from_end >= from_space()->top(),
614            "from end moved into live data");
615  assert(is_object_aligned(eden_start), "checking alignment");
616  assert(is_object_aligned(from_start), "checking alignment");
617  assert(is_object_aligned(to_start), "checking alignment");
618
619  MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
620  MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
621  MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
622
623  // Let's make sure the call to initialize doesn't reset "top"!
624  HeapWord* old_from_top = from_space()->top();
625
626  // For logging block  below
627  size_t old_from = from_space()->capacity_in_bytes();
628  size_t old_to   = to_space()->capacity_in_bytes();
629
630  if (ZapUnusedHeapArea) {
631    // NUMA is a special case because a numa space is not mangled
632    // in order to not prematurely bind its address to memory to
633    // the wrong memory (i.e., don't want the GC thread to first
634    // touch the memory).  The survivor spaces are not numa
635    // spaces and are mangled.
636    if (UseNUMA) {
637      if (eden_from_to_order) {
638        mangle_survivors(from_space(), fromMR, to_space(), toMR);
639      } else {
640        mangle_survivors(to_space(), toMR, from_space(), fromMR);
641      }
642    }
643
644    // If not mangling the spaces, do some checking to verify that
645    // the spaces are already mangled.
646    // The spaces should be correctly mangled at this point so
647    // do some checking here. Note that they are not being mangled
648    // in the calls to initialize().
649    // Must check mangling before the spaces are reshaped.  Otherwise,
650    // the bottom or end of one space may have moved into an area
651    // covered by another space and a failure of the check may
652    // not correctly indicate which space is not properly mangled.
653    HeapWord* limit = (HeapWord*) virtual_space()->high();
654    eden_space()->check_mangled_unused_area(limit);
655    from_space()->check_mangled_unused_area(limit);
656      to_space()->check_mangled_unused_area(limit);
657  }
658  // When an existing space is being initialized, it is not
659  // mangled because the space has been previously mangled.
660  eden_space()->initialize(edenMR,
661                           SpaceDecorator::Clear,
662                           SpaceDecorator::DontMangle);
663    to_space()->initialize(toMR,
664                           SpaceDecorator::Clear,
665                           SpaceDecorator::DontMangle);
666  from_space()->initialize(fromMR,
667                           SpaceDecorator::DontClear,
668                           SpaceDecorator::DontMangle);
669
670  assert(from_space()->top() == old_from_top, "from top changed!");
671
672  log_trace(gc, ergo)("AdaptiveSizePolicy::survivor space sizes: collection: %d (" SIZE_FORMAT ", " SIZE_FORMAT ") -> (" SIZE_FORMAT ", " SIZE_FORMAT ") ",
673                      ParallelScavengeHeap::heap()->total_collections(),
674                      old_from, old_to,
675                      from_space()->capacity_in_bytes(),
676                      to_space()->capacity_in_bytes());
677}
678
679void PSYoungGen::swap_spaces() {
680  MutableSpace* s    = from_space();
681  _from_space        = to_space();
682  _to_space          = s;
683
684  // Now update the decorators.
685  PSMarkSweepDecorator* md = from_mark_sweep();
686  _from_mark_sweep           = to_mark_sweep();
687  _to_mark_sweep             = md;
688
689  assert(from_mark_sweep()->space() == from_space(), "Sanity");
690  assert(to_mark_sweep()->space() == to_space(), "Sanity");
691}
692
693size_t PSYoungGen::capacity_in_bytes() const {
694  return eden_space()->capacity_in_bytes()
695       + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
696}
697
698
699size_t PSYoungGen::used_in_bytes() const {
700  return eden_space()->used_in_bytes()
701       + from_space()->used_in_bytes();      // to_space() is only used during scavenge
702}
703
704
705size_t PSYoungGen::free_in_bytes() const {
706  return eden_space()->free_in_bytes()
707       + from_space()->free_in_bytes();      // to_space() is only used during scavenge
708}
709
710size_t PSYoungGen::capacity_in_words() const {
711  return eden_space()->capacity_in_words()
712       + from_space()->capacity_in_words();  // to_space() is only used during scavenge
713}
714
715
716size_t PSYoungGen::used_in_words() const {
717  return eden_space()->used_in_words()
718       + from_space()->used_in_words();      // to_space() is only used during scavenge
719}
720
721
722size_t PSYoungGen::free_in_words() const {
723  return eden_space()->free_in_words()
724       + from_space()->free_in_words();      // to_space() is only used during scavenge
725}
726
727void PSYoungGen::object_iterate(ObjectClosure* blk) {
728  eden_space()->object_iterate(blk);
729  from_space()->object_iterate(blk);
730  to_space()->object_iterate(blk);
731}
732
733void PSYoungGen::precompact() {
734  eden_mark_sweep()->precompact();
735  from_mark_sweep()->precompact();
736  to_mark_sweep()->precompact();
737}
738
739void PSYoungGen::adjust_pointers() {
740  eden_mark_sweep()->adjust_pointers();
741  from_mark_sweep()->adjust_pointers();
742  to_mark_sweep()->adjust_pointers();
743}
744
745void PSYoungGen::compact() {
746  eden_mark_sweep()->compact(ZapUnusedHeapArea);
747  from_mark_sweep()->compact(ZapUnusedHeapArea);
748  // Mark sweep stores preserved markOops in to space, don't disturb!
749  to_mark_sweep()->compact(false);
750}
751
752void PSYoungGen::print() const { print_on(tty); }
753void PSYoungGen::print_on(outputStream* st) const {
754  st->print(" %-15s", "PSYoungGen");
755  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
756             capacity_in_bytes()/K, used_in_bytes()/K);
757  virtual_space()->print_space_boundaries_on(st);
758  st->print("  eden"); eden_space()->print_on(st);
759  st->print("  from"); from_space()->print_on(st);
760  st->print("  to  "); to_space()->print_on(st);
761}
762
763// Note that a space is not printed before the [NAME:
764void PSYoungGen::print_used_change(size_t prev_used) const {
765  log_info(gc, heap)("%s: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
766      name(), prev_used / K, used_in_bytes() / K, capacity_in_bytes() / K);
767}
768
769size_t PSYoungGen::available_for_expansion() {
770  ShouldNotReachHere();
771  return 0;
772}
773
774size_t PSYoungGen::available_for_contraction() {
775  ShouldNotReachHere();
776  return 0;
777}
778
779size_t PSYoungGen::available_to_min_gen() {
780  assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
781  return virtual_space()->committed_size() - min_gen_size();
782}
783
784// This method assumes that from-space has live data and that
785// any shrinkage of the young gen is limited by location of
786// from-space.
787size_t PSYoungGen::available_to_live() {
788  size_t delta_in_survivor = 0;
789  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
790  const size_t space_alignment = heap->space_alignment();
791  const size_t gen_alignment = heap->generation_alignment();
792
793  MutableSpace* space_shrinking = NULL;
794  if (from_space()->end() > to_space()->end()) {
795    space_shrinking = from_space();
796  } else {
797    space_shrinking = to_space();
798  }
799
800  // Include any space that is committed but not included in
801  // the survivor spaces.
802  assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
803    "Survivor space beyond high end");
804  size_t unused_committed = pointer_delta(virtual_space()->high(),
805    space_shrinking->end(), sizeof(char));
806
807  if (space_shrinking->is_empty()) {
808    // Don't let the space shrink to 0
809    assert(space_shrinking->capacity_in_bytes() >= space_alignment,
810      "Space is too small");
811    delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
812  } else {
813    delta_in_survivor = pointer_delta(space_shrinking->end(),
814                                      space_shrinking->top(),
815                                      sizeof(char));
816  }
817
818  size_t delta_in_bytes = unused_committed + delta_in_survivor;
819  delta_in_bytes = align_down(delta_in_bytes, gen_alignment);
820  return delta_in_bytes;
821}
822
823// Return the number of bytes available for resizing down the young
824// generation.  This is the minimum of
825//      input "bytes"
826//      bytes to the minimum young gen size
827//      bytes to the size currently being used + some small extra
828size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
829  // Allow shrinkage into the current eden but keep eden large enough
830  // to maintain the minimum young gen size
831  bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
832  return align_down(bytes, virtual_space()->alignment());
833}
834
835void PSYoungGen::reset_after_change() {
836  ShouldNotReachHere();
837}
838
839void PSYoungGen::reset_survivors_after_shrink() {
840  _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
841                        (HeapWord*)virtual_space()->high_boundary());
842  PSScavenge::reference_processor()->set_span(_reserved);
843
844  MutableSpace* space_shrinking = NULL;
845  if (from_space()->end() > to_space()->end()) {
846    space_shrinking = from_space();
847  } else {
848    space_shrinking = to_space();
849  }
850
851  HeapWord* new_end = (HeapWord*)virtual_space()->high();
852  assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
853  // Was there a shrink of the survivor space?
854  if (new_end < space_shrinking->end()) {
855    MemRegion mr(space_shrinking->bottom(), new_end);
856    space_shrinking->initialize(mr,
857                                SpaceDecorator::DontClear,
858                                SpaceDecorator::Mangle);
859  }
860}
861
862// This method currently does not expect to expand into eden (i.e.,
863// the virtual space boundaries is expected to be consistent
864// with the eden boundaries..
865void PSYoungGen::post_resize() {
866  assert_locked_or_safepoint(Heap_lock);
867  assert((eden_space()->bottom() < to_space()->bottom()) &&
868         (eden_space()->bottom() < from_space()->bottom()),
869         "Eden is assumed to be below the survivor spaces");
870
871  MemRegion cmr((HeapWord*)virtual_space()->low(),
872                (HeapWord*)virtual_space()->high());
873  ParallelScavengeHeap::heap()->barrier_set()->resize_covered_region(cmr);
874  space_invariants();
875}
876
877
878
879void PSYoungGen::update_counters() {
880  if (UsePerfData) {
881    _eden_counters->update_all();
882    _from_counters->update_all();
883    _to_counters->update_all();
884    _gen_counters->update_all();
885  }
886}
887
888void PSYoungGen::verify() {
889  eden_space()->verify();
890  from_space()->verify();
891  to_space()->verify();
892}
893
894#ifndef PRODUCT
895void PSYoungGen::record_spaces_top() {
896  assert(ZapUnusedHeapArea, "Not mangling unused space");
897  eden_space()->set_top_for_allocations();
898  from_space()->set_top_for_allocations();
899  to_space()->set_top_for_allocations();
900}
901#endif
902