psParallelCompact.cpp revision 9149:a8a8604f890f
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "code/codeCache.hpp"
29#include "gc/parallel/gcTaskManager.hpp"
30#include "gc/parallel/parallelScavengeHeap.inline.hpp"
31#include "gc/parallel/pcTasks.hpp"
32#include "gc/parallel/psAdaptiveSizePolicy.hpp"
33#include "gc/parallel/psCompactionManager.inline.hpp"
34#include "gc/parallel/psMarkSweep.hpp"
35#include "gc/parallel/psMarkSweepDecorator.hpp"
36#include "gc/parallel/psOldGen.hpp"
37#include "gc/parallel/psParallelCompact.inline.hpp"
38#include "gc/parallel/psPromotionManager.inline.hpp"
39#include "gc/parallel/psScavenge.hpp"
40#include "gc/parallel/psYoungGen.hpp"
41#include "gc/shared/gcCause.hpp"
42#include "gc/shared/gcHeapSummary.hpp"
43#include "gc/shared/gcId.hpp"
44#include "gc/shared/gcLocker.inline.hpp"
45#include "gc/shared/gcTimer.hpp"
46#include "gc/shared/gcTrace.hpp"
47#include "gc/shared/gcTraceTime.hpp"
48#include "gc/shared/isGCActiveMark.hpp"
49#include "gc/shared/referencePolicy.hpp"
50#include "gc/shared/referenceProcessor.hpp"
51#include "gc/shared/spaceDecorator.hpp"
52#include "oops/instanceKlass.inline.hpp"
53#include "oops/instanceMirrorKlass.inline.hpp"
54#include "oops/methodData.hpp"
55#include "oops/objArrayKlass.inline.hpp"
56#include "oops/oop.inline.hpp"
57#include "runtime/atomic.inline.hpp"
58#include "runtime/fprofiler.hpp"
59#include "runtime/safepoint.hpp"
60#include "runtime/vmThread.hpp"
61#include "services/management.hpp"
62#include "services/memTracker.hpp"
63#include "services/memoryService.hpp"
64#include "utilities/events.hpp"
65#include "utilities/stack.inline.hpp"
66
67#include <math.h>
68
69// All sizes are in HeapWords.
70const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
71const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
72const size_t ParallelCompactData::RegionSizeBytes =
73  RegionSize << LogHeapWordSize;
74const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
75const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
76const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
77
78const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
79const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
80const size_t ParallelCompactData::BlockSizeBytes  =
81  BlockSize << LogHeapWordSize;
82const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
83const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
84const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
85
86const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
87const size_t ParallelCompactData::Log2BlocksPerRegion =
88  Log2RegionSize - Log2BlockSize;
89
90const ParallelCompactData::RegionData::region_sz_t
91ParallelCompactData::RegionData::dc_shift = 27;
92
93const ParallelCompactData::RegionData::region_sz_t
94ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
95
96const ParallelCompactData::RegionData::region_sz_t
97ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
98
99const ParallelCompactData::RegionData::region_sz_t
100ParallelCompactData::RegionData::los_mask = ~dc_mask;
101
102const ParallelCompactData::RegionData::region_sz_t
103ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
104
105const ParallelCompactData::RegionData::region_sz_t
106ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
107
108SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
109bool      PSParallelCompact::_print_phases = false;
110
111ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
112
113double PSParallelCompact::_dwl_mean;
114double PSParallelCompact::_dwl_std_dev;
115double PSParallelCompact::_dwl_first_term;
116double PSParallelCompact::_dwl_adjustment;
117#ifdef  ASSERT
118bool   PSParallelCompact::_dwl_initialized = false;
119#endif  // #ifdef ASSERT
120
121void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
122                       HeapWord* destination)
123{
124  assert(src_region_idx != 0, "invalid src_region_idx");
125  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
126  assert(destination != NULL, "invalid destination argument");
127
128  _src_region_idx = src_region_idx;
129  _partial_obj_size = partial_obj_size;
130  _destination = destination;
131
132  // These fields may not be updated below, so make sure they're clear.
133  assert(_dest_region_addr == NULL, "should have been cleared");
134  assert(_first_src_addr == NULL, "should have been cleared");
135
136  // Determine the number of destination regions for the partial object.
137  HeapWord* const last_word = destination + partial_obj_size - 1;
138  const ParallelCompactData& sd = PSParallelCompact::summary_data();
139  HeapWord* const beg_region_addr = sd.region_align_down(destination);
140  HeapWord* const end_region_addr = sd.region_align_down(last_word);
141
142  if (beg_region_addr == end_region_addr) {
143    // One destination region.
144    _destination_count = 1;
145    if (end_region_addr == destination) {
146      // The destination falls on a region boundary, thus the first word of the
147      // partial object will be the first word copied to the destination region.
148      _dest_region_addr = end_region_addr;
149      _first_src_addr = sd.region_to_addr(src_region_idx);
150    }
151  } else {
152    // Two destination regions.  When copied, the partial object will cross a
153    // destination region boundary, so a word somewhere within the partial
154    // object will be the first word copied to the second destination region.
155    _destination_count = 2;
156    _dest_region_addr = end_region_addr;
157    const size_t ofs = pointer_delta(end_region_addr, destination);
158    assert(ofs < _partial_obj_size, "sanity");
159    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
160  }
161}
162
163void SplitInfo::clear()
164{
165  _src_region_idx = 0;
166  _partial_obj_size = 0;
167  _destination = NULL;
168  _destination_count = 0;
169  _dest_region_addr = NULL;
170  _first_src_addr = NULL;
171  assert(!is_valid(), "sanity");
172}
173
174#ifdef  ASSERT
175void SplitInfo::verify_clear()
176{
177  assert(_src_region_idx == 0, "not clear");
178  assert(_partial_obj_size == 0, "not clear");
179  assert(_destination == NULL, "not clear");
180  assert(_destination_count == 0, "not clear");
181  assert(_dest_region_addr == NULL, "not clear");
182  assert(_first_src_addr == NULL, "not clear");
183}
184#endif  // #ifdef ASSERT
185
186
187void PSParallelCompact::print_on_error(outputStream* st) {
188  _mark_bitmap.print_on_error(st);
189}
190
191#ifndef PRODUCT
192const char* PSParallelCompact::space_names[] = {
193  "old ", "eden", "from", "to  "
194};
195
196void PSParallelCompact::print_region_ranges()
197{
198  tty->print_cr("space  bottom     top        end        new_top");
199  tty->print_cr("------ ---------- ---------- ---------- ----------");
200
201  for (unsigned int id = 0; id < last_space_id; ++id) {
202    const MutableSpace* space = _space_info[id].space();
203    tty->print_cr("%u %s "
204                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
205                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
206                  id, space_names[id],
207                  summary_data().addr_to_region_idx(space->bottom()),
208                  summary_data().addr_to_region_idx(space->top()),
209                  summary_data().addr_to_region_idx(space->end()),
210                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
211  }
212}
213
214void
215print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
216{
217#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
218#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
219
220  ParallelCompactData& sd = PSParallelCompact::summary_data();
221  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
222  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
223                REGION_IDX_FORMAT " " PTR_FORMAT " "
224                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
225                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
226                i, p2i(c->data_location()), dci, p2i(c->destination()),
227                c->partial_obj_size(), c->live_obj_size(),
228                c->data_size(), c->source_region(), c->destination_count());
229
230#undef  REGION_IDX_FORMAT
231#undef  REGION_DATA_FORMAT
232}
233
234void
235print_generic_summary_data(ParallelCompactData& summary_data,
236                           HeapWord* const beg_addr,
237                           HeapWord* const end_addr)
238{
239  size_t total_words = 0;
240  size_t i = summary_data.addr_to_region_idx(beg_addr);
241  const size_t last = summary_data.addr_to_region_idx(end_addr);
242  HeapWord* pdest = 0;
243
244  while (i <= last) {
245    ParallelCompactData::RegionData* c = summary_data.region(i);
246    if (c->data_size() != 0 || c->destination() != pdest) {
247      print_generic_summary_region(i, c);
248      total_words += c->data_size();
249      pdest = c->destination();
250    }
251    ++i;
252  }
253
254  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
255}
256
257void
258print_generic_summary_data(ParallelCompactData& summary_data,
259                           SpaceInfo* space_info)
260{
261  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
262    const MutableSpace* space = space_info[id].space();
263    print_generic_summary_data(summary_data, space->bottom(),
264                               MAX2(space->top(), space_info[id].new_top()));
265  }
266}
267
268void
269print_initial_summary_region(size_t i,
270                             const ParallelCompactData::RegionData* c,
271                             bool newline = true)
272{
273  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
274             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
275             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
276             i, p2i(c->destination()),
277             c->partial_obj_size(), c->live_obj_size(),
278             c->data_size(), c->source_region(), c->destination_count());
279  if (newline) tty->cr();
280}
281
282void
283print_initial_summary_data(ParallelCompactData& summary_data,
284                           const MutableSpace* space) {
285  if (space->top() == space->bottom()) {
286    return;
287  }
288
289  const size_t region_size = ParallelCompactData::RegionSize;
290  typedef ParallelCompactData::RegionData RegionData;
291  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
292  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
293  const RegionData* c = summary_data.region(end_region - 1);
294  HeapWord* end_addr = c->destination() + c->data_size();
295  const size_t live_in_space = pointer_delta(end_addr, space->bottom());
296
297  // Print (and count) the full regions at the beginning of the space.
298  size_t full_region_count = 0;
299  size_t i = summary_data.addr_to_region_idx(space->bottom());
300  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
301    print_initial_summary_region(i, summary_data.region(i));
302    ++full_region_count;
303    ++i;
304  }
305
306  size_t live_to_right = live_in_space - full_region_count * region_size;
307
308  double max_reclaimed_ratio = 0.0;
309  size_t max_reclaimed_ratio_region = 0;
310  size_t max_dead_to_right = 0;
311  size_t max_live_to_right = 0;
312
313  // Print the 'reclaimed ratio' for regions while there is something live in
314  // the region or to the right of it.  The remaining regions are empty (and
315  // uninteresting), and computing the ratio will result in division by 0.
316  while (i < end_region && live_to_right > 0) {
317    c = summary_data.region(i);
318    HeapWord* const region_addr = summary_data.region_to_addr(i);
319    const size_t used_to_right = pointer_delta(space->top(), region_addr);
320    const size_t dead_to_right = used_to_right - live_to_right;
321    const double reclaimed_ratio = double(dead_to_right) / live_to_right;
322
323    if (reclaimed_ratio > max_reclaimed_ratio) {
324            max_reclaimed_ratio = reclaimed_ratio;
325            max_reclaimed_ratio_region = i;
326            max_dead_to_right = dead_to_right;
327            max_live_to_right = live_to_right;
328    }
329
330    print_initial_summary_region(i, c, false);
331    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
332                  reclaimed_ratio, dead_to_right, live_to_right);
333
334    live_to_right -= c->data_size();
335    ++i;
336  }
337
338  // Any remaining regions are empty.  Print one more if there is one.
339  if (i < end_region) {
340    print_initial_summary_region(i, summary_data.region(i));
341  }
342
343  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
344                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
345                max_reclaimed_ratio_region, max_dead_to_right,
346                max_live_to_right, max_reclaimed_ratio);
347}
348
349void
350print_initial_summary_data(ParallelCompactData& summary_data,
351                           SpaceInfo* space_info) {
352  unsigned int id = PSParallelCompact::old_space_id;
353  const MutableSpace* space;
354  do {
355    space = space_info[id].space();
356    print_initial_summary_data(summary_data, space);
357  } while (++id < PSParallelCompact::eden_space_id);
358
359  do {
360    space = space_info[id].space();
361    print_generic_summary_data(summary_data, space->bottom(), space->top());
362  } while (++id < PSParallelCompact::last_space_id);
363}
364#endif  // #ifndef PRODUCT
365
366#ifdef  ASSERT
367size_t add_obj_count;
368size_t add_obj_size;
369size_t mark_bitmap_count;
370size_t mark_bitmap_size;
371#endif  // #ifdef ASSERT
372
373ParallelCompactData::ParallelCompactData()
374{
375  _region_start = 0;
376
377  _region_vspace = 0;
378  _reserved_byte_size = 0;
379  _region_data = 0;
380  _region_count = 0;
381
382  _block_vspace = 0;
383  _block_data = 0;
384  _block_count = 0;
385}
386
387bool ParallelCompactData::initialize(MemRegion covered_region)
388{
389  _region_start = covered_region.start();
390  const size_t region_size = covered_region.word_size();
391  DEBUG_ONLY(_region_end = _region_start + region_size;)
392
393  assert(region_align_down(_region_start) == _region_start,
394         "region start not aligned");
395  assert((region_size & RegionSizeOffsetMask) == 0,
396         "region size not a multiple of RegionSize");
397
398  bool result = initialize_region_data(region_size) && initialize_block_data();
399  return result;
400}
401
402PSVirtualSpace*
403ParallelCompactData::create_vspace(size_t count, size_t element_size)
404{
405  const size_t raw_bytes = count * element_size;
406  const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
407  const size_t granularity = os::vm_allocation_granularity();
408  _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
409
410  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
411    MAX2(page_sz, granularity);
412  ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
413  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
414                       rs.size());
415
416  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
417
418  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
419  if (vspace != 0) {
420    if (vspace->expand_by(_reserved_byte_size)) {
421      return vspace;
422    }
423    delete vspace;
424    // Release memory reserved in the space.
425    rs.release();
426  }
427
428  return 0;
429}
430
431bool ParallelCompactData::initialize_region_data(size_t region_size)
432{
433  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
434  _region_vspace = create_vspace(count, sizeof(RegionData));
435  if (_region_vspace != 0) {
436    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
437    _region_count = count;
438    return true;
439  }
440  return false;
441}
442
443bool ParallelCompactData::initialize_block_data()
444{
445  assert(_region_count != 0, "region data must be initialized first");
446  const size_t count = _region_count << Log2BlocksPerRegion;
447  _block_vspace = create_vspace(count, sizeof(BlockData));
448  if (_block_vspace != 0) {
449    _block_data = (BlockData*)_block_vspace->reserved_low_addr();
450    _block_count = count;
451    return true;
452  }
453  return false;
454}
455
456void ParallelCompactData::clear()
457{
458  memset(_region_data, 0, _region_vspace->committed_size());
459  memset(_block_data, 0, _block_vspace->committed_size());
460}
461
462void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
463  assert(beg_region <= _region_count, "beg_region out of range");
464  assert(end_region <= _region_count, "end_region out of range");
465  assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
466
467  const size_t region_cnt = end_region - beg_region;
468  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
469
470  const size_t beg_block = beg_region * BlocksPerRegion;
471  const size_t block_cnt = region_cnt * BlocksPerRegion;
472  memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
473}
474
475HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
476{
477  const RegionData* cur_cp = region(region_idx);
478  const RegionData* const end_cp = region(region_count() - 1);
479
480  HeapWord* result = region_to_addr(region_idx);
481  if (cur_cp < end_cp) {
482    do {
483      result += cur_cp->partial_obj_size();
484    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
485  }
486  return result;
487}
488
489void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
490{
491  const size_t obj_ofs = pointer_delta(addr, _region_start);
492  const size_t beg_region = obj_ofs >> Log2RegionSize;
493  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
494
495  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
496  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
497
498  if (beg_region == end_region) {
499    // All in one region.
500    _region_data[beg_region].add_live_obj(len);
501    return;
502  }
503
504  // First region.
505  const size_t beg_ofs = region_offset(addr);
506  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
507
508  Klass* klass = ((oop)addr)->klass();
509  // Middle regions--completely spanned by this object.
510  for (size_t region = beg_region + 1; region < end_region; ++region) {
511    _region_data[region].set_partial_obj_size(RegionSize);
512    _region_data[region].set_partial_obj_addr(addr);
513  }
514
515  // Last region.
516  const size_t end_ofs = region_offset(addr + len - 1);
517  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
518  _region_data[end_region].set_partial_obj_addr(addr);
519}
520
521void
522ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
523{
524  assert(region_offset(beg) == 0, "not RegionSize aligned");
525  assert(region_offset(end) == 0, "not RegionSize aligned");
526
527  size_t cur_region = addr_to_region_idx(beg);
528  const size_t end_region = addr_to_region_idx(end);
529  HeapWord* addr = beg;
530  while (cur_region < end_region) {
531    _region_data[cur_region].set_destination(addr);
532    _region_data[cur_region].set_destination_count(0);
533    _region_data[cur_region].set_source_region(cur_region);
534    _region_data[cur_region].set_data_location(addr);
535
536    // Update live_obj_size so the region appears completely full.
537    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
538    _region_data[cur_region].set_live_obj_size(live_size);
539
540    ++cur_region;
541    addr += RegionSize;
542  }
543}
544
545// Find the point at which a space can be split and, if necessary, record the
546// split point.
547//
548// If the current src region (which overflowed the destination space) doesn't
549// have a partial object, the split point is at the beginning of the current src
550// region (an "easy" split, no extra bookkeeping required).
551//
552// If the current src region has a partial object, the split point is in the
553// region where that partial object starts (call it the split_region).  If
554// split_region has a partial object, then the split point is just after that
555// partial object (a "hard" split where we have to record the split data and
556// zero the partial_obj_size field).  With a "hard" split, we know that the
557// partial_obj ends within split_region because the partial object that caused
558// the overflow starts in split_region.  If split_region doesn't have a partial
559// obj, then the split is at the beginning of split_region (another "easy"
560// split).
561HeapWord*
562ParallelCompactData::summarize_split_space(size_t src_region,
563                                           SplitInfo& split_info,
564                                           HeapWord* destination,
565                                           HeapWord* target_end,
566                                           HeapWord** target_next)
567{
568  assert(destination <= target_end, "sanity");
569  assert(destination + _region_data[src_region].data_size() > target_end,
570    "region should not fit into target space");
571  assert(is_region_aligned(target_end), "sanity");
572
573  size_t split_region = src_region;
574  HeapWord* split_destination = destination;
575  size_t partial_obj_size = _region_data[src_region].partial_obj_size();
576
577  if (destination + partial_obj_size > target_end) {
578    // The split point is just after the partial object (if any) in the
579    // src_region that contains the start of the object that overflowed the
580    // destination space.
581    //
582    // Find the start of the "overflow" object and set split_region to the
583    // region containing it.
584    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
585    split_region = addr_to_region_idx(overflow_obj);
586
587    // Clear the source_region field of all destination regions whose first word
588    // came from data after the split point (a non-null source_region field
589    // implies a region must be filled).
590    //
591    // An alternative to the simple loop below:  clear during post_compact(),
592    // which uses memcpy instead of individual stores, and is easy to
593    // parallelize.  (The downside is that it clears the entire RegionData
594    // object as opposed to just one field.)
595    //
596    // post_compact() would have to clear the summary data up to the highest
597    // address that was written during the summary phase, which would be
598    //
599    //         max(top, max(new_top, clear_top))
600    //
601    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
602    // to target_end.
603    const RegionData* const sr = region(split_region);
604    const size_t beg_idx =
605      addr_to_region_idx(region_align_up(sr->destination() +
606                                         sr->partial_obj_size()));
607    const size_t end_idx = addr_to_region_idx(target_end);
608
609    if (TraceParallelOldGCSummaryPhase) {
610        gclog_or_tty->print_cr("split:  clearing source_region field in ["
611                               SIZE_FORMAT ", " SIZE_FORMAT ")",
612                               beg_idx, end_idx);
613    }
614    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
615      _region_data[idx].set_source_region(0);
616    }
617
618    // Set split_destination and partial_obj_size to reflect the split region.
619    split_destination = sr->destination();
620    partial_obj_size = sr->partial_obj_size();
621  }
622
623  // The split is recorded only if a partial object extends onto the region.
624  if (partial_obj_size != 0) {
625    _region_data[split_region].set_partial_obj_size(0);
626    split_info.record(split_region, partial_obj_size, split_destination);
627  }
628
629  // Setup the continuation addresses.
630  *target_next = split_destination + partial_obj_size;
631  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
632
633  if (TraceParallelOldGCSummaryPhase) {
634    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
635    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
636                           " pos=" SIZE_FORMAT,
637                           split_type, p2i(source_next), split_region,
638                           partial_obj_size);
639    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
640                           " tn=" PTR_FORMAT,
641                           split_type, p2i(split_destination),
642                           addr_to_region_idx(split_destination),
643                           p2i(*target_next));
644
645    if (partial_obj_size != 0) {
646      HeapWord* const po_beg = split_info.destination();
647      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
648      gclog_or_tty->print_cr("%s split:  "
649                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
650                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
651                             split_type,
652                             p2i(po_beg), addr_to_region_idx(po_beg),
653                             p2i(po_end), addr_to_region_idx(po_end));
654    }
655  }
656
657  return source_next;
658}
659
660bool ParallelCompactData::summarize(SplitInfo& split_info,
661                                    HeapWord* source_beg, HeapWord* source_end,
662                                    HeapWord** source_next,
663                                    HeapWord* target_beg, HeapWord* target_end,
664                                    HeapWord** target_next)
665{
666  if (TraceParallelOldGCSummaryPhase) {
667    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
668    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
669                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
670                  p2i(source_beg), p2i(source_end), p2i(source_next_val),
671                  p2i(target_beg), p2i(target_end), p2i(*target_next));
672  }
673
674  size_t cur_region = addr_to_region_idx(source_beg);
675  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
676
677  HeapWord *dest_addr = target_beg;
678  while (cur_region < end_region) {
679    // The destination must be set even if the region has no data.
680    _region_data[cur_region].set_destination(dest_addr);
681
682    size_t words = _region_data[cur_region].data_size();
683    if (words > 0) {
684      // If cur_region does not fit entirely into the target space, find a point
685      // at which the source space can be 'split' so that part is copied to the
686      // target space and the rest is copied elsewhere.
687      if (dest_addr + words > target_end) {
688        assert(source_next != NULL, "source_next is NULL when splitting");
689        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
690                                             target_end, target_next);
691        return false;
692      }
693
694      // Compute the destination_count for cur_region, and if necessary, update
695      // source_region for a destination region.  The source_region field is
696      // updated if cur_region is the first (left-most) region to be copied to a
697      // destination region.
698      //
699      // The destination_count calculation is a bit subtle.  A region that has
700      // data that compacts into itself does not count itself as a destination.
701      // This maintains the invariant that a zero count means the region is
702      // available and can be claimed and then filled.
703      uint destination_count = 0;
704      if (split_info.is_split(cur_region)) {
705        // The current region has been split:  the partial object will be copied
706        // to one destination space and the remaining data will be copied to
707        // another destination space.  Adjust the initial destination_count and,
708        // if necessary, set the source_region field if the partial object will
709        // cross a destination region boundary.
710        destination_count = split_info.destination_count();
711        if (destination_count == 2) {
712          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
713          _region_data[dest_idx].set_source_region(cur_region);
714        }
715      }
716
717      HeapWord* const last_addr = dest_addr + words - 1;
718      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
719      const size_t dest_region_2 = addr_to_region_idx(last_addr);
720
721      // Initially assume that the destination regions will be the same and
722      // adjust the value below if necessary.  Under this assumption, if
723      // cur_region == dest_region_2, then cur_region will be compacted
724      // completely into itself.
725      destination_count += cur_region == dest_region_2 ? 0 : 1;
726      if (dest_region_1 != dest_region_2) {
727        // Destination regions differ; adjust destination_count.
728        destination_count += 1;
729        // Data from cur_region will be copied to the start of dest_region_2.
730        _region_data[dest_region_2].set_source_region(cur_region);
731      } else if (region_offset(dest_addr) == 0) {
732        // Data from cur_region will be copied to the start of the destination
733        // region.
734        _region_data[dest_region_1].set_source_region(cur_region);
735      }
736
737      _region_data[cur_region].set_destination_count(destination_count);
738      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
739      dest_addr += words;
740    }
741
742    ++cur_region;
743  }
744
745  *target_next = dest_addr;
746  return true;
747}
748
749HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
750  assert(addr != NULL, "Should detect NULL oop earlier");
751  assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
752  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
753
754  // Region covering the object.
755  RegionData* const region_ptr = addr_to_region_ptr(addr);
756  HeapWord* result = region_ptr->destination();
757
758  // If the entire Region is live, the new location is region->destination + the
759  // offset of the object within in the Region.
760
761  // Run some performance tests to determine if this special case pays off.  It
762  // is worth it for pointers into the dense prefix.  If the optimization to
763  // avoid pointer updates in regions that only point to the dense prefix is
764  // ever implemented, this should be revisited.
765  if (region_ptr->data_size() == RegionSize) {
766    result += region_offset(addr);
767    return result;
768  }
769
770  // Otherwise, the new location is region->destination + block offset + the
771  // number of live words in the Block that are (a) to the left of addr and (b)
772  // due to objects that start in the Block.
773
774  // Fill in the block table if necessary.  This is unsynchronized, so multiple
775  // threads may fill the block table for a region (harmless, since it is
776  // idempotent).
777  if (!region_ptr->blocks_filled()) {
778    PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
779    region_ptr->set_blocks_filled();
780  }
781
782  HeapWord* const search_start = block_align_down(addr);
783  const size_t block_offset = addr_to_block_ptr(addr)->offset();
784
785  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
786  const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
787  result += block_offset + live;
788  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
789  return result;
790}
791
792#ifdef ASSERT
793void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
794{
795  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
796  const size_t* const end = (const size_t*)vspace->committed_high_addr();
797  for (const size_t* p = beg; p < end; ++p) {
798    assert(*p == 0, "not zero");
799  }
800}
801
802void ParallelCompactData::verify_clear()
803{
804  verify_clear(_region_vspace);
805  verify_clear(_block_vspace);
806}
807#endif  // #ifdef ASSERT
808
809STWGCTimer          PSParallelCompact::_gc_timer;
810ParallelOldTracer   PSParallelCompact::_gc_tracer;
811elapsedTimer        PSParallelCompact::_accumulated_time;
812unsigned int        PSParallelCompact::_total_invocations = 0;
813unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
814jlong               PSParallelCompact::_time_of_last_gc = 0;
815CollectorCounters*  PSParallelCompact::_counters = NULL;
816ParMarkBitMap       PSParallelCompact::_mark_bitmap;
817ParallelCompactData PSParallelCompact::_summary_data;
818
819PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
820
821bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
822
823PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
824PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
825
826void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
827  klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
828}
829
830void PSParallelCompact::post_initialize() {
831  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
832  MemRegion mr = heap->reserved_region();
833  _ref_processor =
834    new ReferenceProcessor(mr,            // span
835                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
836                           ParallelGCThreads, // mt processing degree
837                           true,              // mt discovery
838                           ParallelGCThreads, // mt discovery degree
839                           true,              // atomic_discovery
840                           &_is_alive_closure); // non-header is alive closure
841  _counters = new CollectorCounters("PSParallelCompact", 1);
842
843  // Initialize static fields in ParCompactionManager.
844  ParCompactionManager::initialize(mark_bitmap());
845}
846
847bool PSParallelCompact::initialize() {
848  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
849  MemRegion mr = heap->reserved_region();
850
851  // Was the old gen get allocated successfully?
852  if (!heap->old_gen()->is_allocated()) {
853    return false;
854  }
855
856  initialize_space_info();
857  initialize_dead_wood_limiter();
858
859  if (!_mark_bitmap.initialize(mr)) {
860    vm_shutdown_during_initialization(
861      err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
862      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
863      _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
864    return false;
865  }
866
867  if (!_summary_data.initialize(mr)) {
868    vm_shutdown_during_initialization(
869      err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
870      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
871      _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
872    return false;
873  }
874
875  return true;
876}
877
878void PSParallelCompact::initialize_space_info()
879{
880  memset(&_space_info, 0, sizeof(_space_info));
881
882  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
883  PSYoungGen* young_gen = heap->young_gen();
884
885  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
886  _space_info[eden_space_id].set_space(young_gen->eden_space());
887  _space_info[from_space_id].set_space(young_gen->from_space());
888  _space_info[to_space_id].set_space(young_gen->to_space());
889
890  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
891}
892
893void PSParallelCompact::initialize_dead_wood_limiter()
894{
895  const size_t max = 100;
896  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
897  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
898  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
899  DEBUG_ONLY(_dwl_initialized = true;)
900  _dwl_adjustment = normal_distribution(1.0);
901}
902
903// Simple class for storing info about the heap at the start of GC, to be used
904// after GC for comparison/printing.
905class PreGCValues {
906public:
907  PreGCValues() { }
908  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
909
910  void fill(ParallelScavengeHeap* heap) {
911    _heap_used      = heap->used();
912    _young_gen_used = heap->young_gen()->used_in_bytes();
913    _old_gen_used   = heap->old_gen()->used_in_bytes();
914    _metadata_used  = MetaspaceAux::used_bytes();
915  };
916
917  size_t heap_used() const      { return _heap_used; }
918  size_t young_gen_used() const { return _young_gen_used; }
919  size_t old_gen_used() const   { return _old_gen_used; }
920  size_t metadata_used() const  { return _metadata_used; }
921
922private:
923  size_t _heap_used;
924  size_t _young_gen_used;
925  size_t _old_gen_used;
926  size_t _metadata_used;
927};
928
929void
930PSParallelCompact::clear_data_covering_space(SpaceId id)
931{
932  // At this point, top is the value before GC, new_top() is the value that will
933  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
934  // should be marked above top.  The summary data is cleared to the larger of
935  // top & new_top.
936  MutableSpace* const space = _space_info[id].space();
937  HeapWord* const bot = space->bottom();
938  HeapWord* const top = space->top();
939  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
940
941  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
942  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
943  _mark_bitmap.clear_range(beg_bit, end_bit);
944
945  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
946  const size_t end_region =
947    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
948  _summary_data.clear_range(beg_region, end_region);
949
950  // Clear the data used to 'split' regions.
951  SplitInfo& split_info = _space_info[id].split_info();
952  if (split_info.is_valid()) {
953    split_info.clear();
954  }
955  DEBUG_ONLY(split_info.verify_clear();)
956}
957
958void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
959{
960  // Update the from & to space pointers in space_info, since they are swapped
961  // at each young gen gc.  Do the update unconditionally (even though a
962  // promotion failure does not swap spaces) because an unknown number of young
963  // collections will have swapped the spaces an unknown number of times.
964  GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer);
965  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
966  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
967  _space_info[to_space_id].set_space(heap->young_gen()->to_space());
968
969  pre_gc_values->fill(heap);
970
971  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
972  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
973
974  // Increment the invocation count
975  heap->increment_total_collections(true);
976
977  // We need to track unique mark sweep invocations as well.
978  _total_invocations++;
979
980  heap->print_heap_before_gc();
981  heap->trace_heap_before_gc(&_gc_tracer);
982
983  // Fill in TLABs
984  heap->accumulate_statistics_all_tlabs();
985  heap->ensure_parsability(true);  // retire TLABs
986
987  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
988    HandleMark hm;  // Discard invalid handles created during verification
989    Universe::verify(" VerifyBeforeGC:");
990  }
991
992  // Verify object start arrays
993  if (VerifyObjectStartArray &&
994      VerifyBeforeGC) {
995    heap->old_gen()->verify_object_start_array();
996  }
997
998  DEBUG_ONLY(mark_bitmap()->verify_clear();)
999  DEBUG_ONLY(summary_data().verify_clear();)
1000
1001  // Have worker threads release resources the next time they run a task.
1002  gc_task_manager()->release_all_resources();
1003}
1004
1005void PSParallelCompact::post_compact()
1006{
1007  GCTraceTime tm("post compact", print_phases(), true, &_gc_timer);
1008
1009  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1010    // Clear the marking bitmap, summary data and split info.
1011    clear_data_covering_space(SpaceId(id));
1012    // Update top().  Must be done after clearing the bitmap and summary data.
1013    _space_info[id].publish_new_top();
1014  }
1015
1016  MutableSpace* const eden_space = _space_info[eden_space_id].space();
1017  MutableSpace* const from_space = _space_info[from_space_id].space();
1018  MutableSpace* const to_space   = _space_info[to_space_id].space();
1019
1020  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1021  bool eden_empty = eden_space->is_empty();
1022  if (!eden_empty) {
1023    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1024                                            heap->young_gen(), heap->old_gen());
1025  }
1026
1027  // Update heap occupancy information which is used as input to the soft ref
1028  // clearing policy at the next gc.
1029  Universe::update_heap_info_at_gc();
1030
1031  bool young_gen_empty = eden_empty && from_space->is_empty() &&
1032    to_space->is_empty();
1033
1034  ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1035  MemRegion old_mr = heap->old_gen()->reserved();
1036  if (young_gen_empty) {
1037    modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1038  } else {
1039    modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1040  }
1041
1042  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1043  ClassLoaderDataGraph::purge();
1044  MetaspaceAux::verify_metrics();
1045
1046  CodeCache::gc_epilogue();
1047  JvmtiExport::gc_epilogue();
1048
1049#if defined(COMPILER2) || INCLUDE_JVMCI
1050  DerivedPointerTable::update_pointers();
1051#endif
1052
1053  ref_processor()->enqueue_discovered_references(NULL);
1054
1055  if (ZapUnusedHeapArea) {
1056    heap->gen_mangle_unused_area();
1057  }
1058
1059  // Update time of last GC
1060  reset_millis_since_last_gc();
1061}
1062
1063HeapWord*
1064PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1065                                                    bool maximum_compaction)
1066{
1067  const size_t region_size = ParallelCompactData::RegionSize;
1068  const ParallelCompactData& sd = summary_data();
1069
1070  const MutableSpace* const space = _space_info[id].space();
1071  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1072  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1073  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1074
1075  // Skip full regions at the beginning of the space--they are necessarily part
1076  // of the dense prefix.
1077  size_t full_count = 0;
1078  const RegionData* cp;
1079  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1080    ++full_count;
1081  }
1082
1083  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1084  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1085  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1086  if (maximum_compaction || cp == end_cp || interval_ended) {
1087    _maximum_compaction_gc_num = total_invocations();
1088    return sd.region_to_addr(cp);
1089  }
1090
1091  HeapWord* const new_top = _space_info[id].new_top();
1092  const size_t space_live = pointer_delta(new_top, space->bottom());
1093  const size_t space_used = space->used_in_words();
1094  const size_t space_capacity = space->capacity_in_words();
1095
1096  const double cur_density = double(space_live) / space_capacity;
1097  const double deadwood_density =
1098    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1099  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1100
1101  if (TraceParallelOldGCDensePrefix) {
1102    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1103                  cur_density, deadwood_density, deadwood_goal);
1104    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1105                  "space_cap=" SIZE_FORMAT,
1106                  space_live, space_used,
1107                  space_capacity);
1108  }
1109
1110  // XXX - Use binary search?
1111  HeapWord* dense_prefix = sd.region_to_addr(cp);
1112  const RegionData* full_cp = cp;
1113  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1114  while (cp < end_cp) {
1115    HeapWord* region_destination = cp->destination();
1116    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1117    if (TraceParallelOldGCDensePrefix && Verbose) {
1118      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1119                    "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1120                    sd.region(cp), p2i(region_destination),
1121                    p2i(dense_prefix), cur_deadwood);
1122    }
1123
1124    if (cur_deadwood >= deadwood_goal) {
1125      // Found the region that has the correct amount of deadwood to the left.
1126      // This typically occurs after crossing a fairly sparse set of regions, so
1127      // iterate backwards over those sparse regions, looking for the region
1128      // that has the lowest density of live objects 'to the right.'
1129      size_t space_to_left = sd.region(cp) * region_size;
1130      size_t live_to_left = space_to_left - cur_deadwood;
1131      size_t space_to_right = space_capacity - space_to_left;
1132      size_t live_to_right = space_live - live_to_left;
1133      double density_to_right = double(live_to_right) / space_to_right;
1134      while (cp > full_cp) {
1135        --cp;
1136        const size_t prev_region_live_to_right = live_to_right -
1137          cp->data_size();
1138        const size_t prev_region_space_to_right = space_to_right + region_size;
1139        double prev_region_density_to_right =
1140          double(prev_region_live_to_right) / prev_region_space_to_right;
1141        if (density_to_right <= prev_region_density_to_right) {
1142          return dense_prefix;
1143        }
1144        if (TraceParallelOldGCDensePrefix && Verbose) {
1145          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1146                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1147                        prev_region_density_to_right);
1148        }
1149        dense_prefix -= region_size;
1150        live_to_right = prev_region_live_to_right;
1151        space_to_right = prev_region_space_to_right;
1152        density_to_right = prev_region_density_to_right;
1153      }
1154      return dense_prefix;
1155    }
1156
1157    dense_prefix += region_size;
1158    ++cp;
1159  }
1160
1161  return dense_prefix;
1162}
1163
1164#ifndef PRODUCT
1165void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1166                                                 const SpaceId id,
1167                                                 const bool maximum_compaction,
1168                                                 HeapWord* const addr)
1169{
1170  const size_t region_idx = summary_data().addr_to_region_idx(addr);
1171  RegionData* const cp = summary_data().region(region_idx);
1172  const MutableSpace* const space = _space_info[id].space();
1173  HeapWord* const new_top = _space_info[id].new_top();
1174
1175  const size_t space_live = pointer_delta(new_top, space->bottom());
1176  const size_t dead_to_left = pointer_delta(addr, cp->destination());
1177  const size_t space_cap = space->capacity_in_words();
1178  const double dead_to_left_pct = double(dead_to_left) / space_cap;
1179  const size_t live_to_right = new_top - cp->destination();
1180  const size_t dead_to_right = space->top() - addr - live_to_right;
1181
1182  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1183                "spl=" SIZE_FORMAT " "
1184                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1185                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1186                " ratio=%10.8f",
1187                algorithm, p2i(addr), region_idx,
1188                space_live,
1189                dead_to_left, dead_to_left_pct,
1190                dead_to_right, live_to_right,
1191                double(dead_to_right) / live_to_right);
1192}
1193#endif  // #ifndef PRODUCT
1194
1195// Return a fraction indicating how much of the generation can be treated as
1196// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1197// based on the density of live objects in the generation to determine a limit,
1198// which is then adjusted so the return value is min_percent when the density is
1199// 1.
1200//
1201// The following table shows some return values for a different values of the
1202// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1203// min_percent is 1.
1204//
1205//                          fraction allowed as dead wood
1206//         -----------------------------------------------------------------
1207// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1208// ------- ---------- ---------- ---------- ---------- ---------- ----------
1209// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1210// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1211// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1212// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1213// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1214// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1215// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1216// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1217// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1218// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1219// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1220// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1221// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1222// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1223// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1224// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1225// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1226// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1227// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1228// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1229// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1230
1231double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1232{
1233  assert(_dwl_initialized, "uninitialized");
1234
1235  // The raw limit is the value of the normal distribution at x = density.
1236  const double raw_limit = normal_distribution(density);
1237
1238  // Adjust the raw limit so it becomes the minimum when the density is 1.
1239  //
1240  // First subtract the adjustment value (which is simply the precomputed value
1241  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1242  // Then add the minimum value, so the minimum is returned when the density is
1243  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1244  const double min = double(min_percent) / 100.0;
1245  const double limit = raw_limit - _dwl_adjustment + min;
1246  return MAX2(limit, 0.0);
1247}
1248
1249ParallelCompactData::RegionData*
1250PSParallelCompact::first_dead_space_region(const RegionData* beg,
1251                                           const RegionData* end)
1252{
1253  const size_t region_size = ParallelCompactData::RegionSize;
1254  ParallelCompactData& sd = summary_data();
1255  size_t left = sd.region(beg);
1256  size_t right = end > beg ? sd.region(end) - 1 : left;
1257
1258  // Binary search.
1259  while (left < right) {
1260    // Equivalent to (left + right) / 2, but does not overflow.
1261    const size_t middle = left + (right - left) / 2;
1262    RegionData* const middle_ptr = sd.region(middle);
1263    HeapWord* const dest = middle_ptr->destination();
1264    HeapWord* const addr = sd.region_to_addr(middle);
1265    assert(dest != NULL, "sanity");
1266    assert(dest <= addr, "must move left");
1267
1268    if (middle > left && dest < addr) {
1269      right = middle - 1;
1270    } else if (middle < right && middle_ptr->data_size() == region_size) {
1271      left = middle + 1;
1272    } else {
1273      return middle_ptr;
1274    }
1275  }
1276  return sd.region(left);
1277}
1278
1279ParallelCompactData::RegionData*
1280PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1281                                          const RegionData* end,
1282                                          size_t dead_words)
1283{
1284  ParallelCompactData& sd = summary_data();
1285  size_t left = sd.region(beg);
1286  size_t right = end > beg ? sd.region(end) - 1 : left;
1287
1288  // Binary search.
1289  while (left < right) {
1290    // Equivalent to (left + right) / 2, but does not overflow.
1291    const size_t middle = left + (right - left) / 2;
1292    RegionData* const middle_ptr = sd.region(middle);
1293    HeapWord* const dest = middle_ptr->destination();
1294    HeapWord* const addr = sd.region_to_addr(middle);
1295    assert(dest != NULL, "sanity");
1296    assert(dest <= addr, "must move left");
1297
1298    const size_t dead_to_left = pointer_delta(addr, dest);
1299    if (middle > left && dead_to_left > dead_words) {
1300      right = middle - 1;
1301    } else if (middle < right && dead_to_left < dead_words) {
1302      left = middle + 1;
1303    } else {
1304      return middle_ptr;
1305    }
1306  }
1307  return sd.region(left);
1308}
1309
1310// The result is valid during the summary phase, after the initial summarization
1311// of each space into itself, and before final summarization.
1312inline double
1313PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1314                                   HeapWord* const bottom,
1315                                   HeapWord* const top,
1316                                   HeapWord* const new_top)
1317{
1318  ParallelCompactData& sd = summary_data();
1319
1320  assert(cp != NULL, "sanity");
1321  assert(bottom != NULL, "sanity");
1322  assert(top != NULL, "sanity");
1323  assert(new_top != NULL, "sanity");
1324  assert(top >= new_top, "summary data problem?");
1325  assert(new_top > bottom, "space is empty; should not be here");
1326  assert(new_top >= cp->destination(), "sanity");
1327  assert(top >= sd.region_to_addr(cp), "sanity");
1328
1329  HeapWord* const destination = cp->destination();
1330  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1331  const size_t compacted_region_live = pointer_delta(new_top, destination);
1332  const size_t compacted_region_used = pointer_delta(top,
1333                                                     sd.region_to_addr(cp));
1334  const size_t reclaimable = compacted_region_used - compacted_region_live;
1335
1336  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1337  return double(reclaimable) / divisor;
1338}
1339
1340// Return the address of the end of the dense prefix, a.k.a. the start of the
1341// compacted region.  The address is always on a region boundary.
1342//
1343// Completely full regions at the left are skipped, since no compaction can
1344// occur in those regions.  Then the maximum amount of dead wood to allow is
1345// computed, based on the density (amount live / capacity) of the generation;
1346// the region with approximately that amount of dead space to the left is
1347// identified as the limit region.  Regions between the last completely full
1348// region and the limit region are scanned and the one that has the best
1349// (maximum) reclaimed_ratio() is selected.
1350HeapWord*
1351PSParallelCompact::compute_dense_prefix(const SpaceId id,
1352                                        bool maximum_compaction)
1353{
1354  if (ParallelOldGCSplitALot) {
1355    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1356      // The value was chosen to provoke splitting a young gen space; use it.
1357      return _space_info[id].dense_prefix();
1358    }
1359  }
1360
1361  const size_t region_size = ParallelCompactData::RegionSize;
1362  const ParallelCompactData& sd = summary_data();
1363
1364  const MutableSpace* const space = _space_info[id].space();
1365  HeapWord* const top = space->top();
1366  HeapWord* const top_aligned_up = sd.region_align_up(top);
1367  HeapWord* const new_top = _space_info[id].new_top();
1368  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1369  HeapWord* const bottom = space->bottom();
1370  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1371  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1372  const RegionData* const new_top_cp =
1373    sd.addr_to_region_ptr(new_top_aligned_up);
1374
1375  // Skip full regions at the beginning of the space--they are necessarily part
1376  // of the dense prefix.
1377  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1378  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1379         space->is_empty(), "no dead space allowed to the left");
1380  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1381         "region must have dead space");
1382
1383  // The gc number is saved whenever a maximum compaction is done, and used to
1384  // determine when the maximum compaction interval has expired.  This avoids
1385  // successive max compactions for different reasons.
1386  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1387  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1388  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1389    total_invocations() == HeapFirstMaximumCompactionCount;
1390  if (maximum_compaction || full_cp == top_cp || interval_ended) {
1391    _maximum_compaction_gc_num = total_invocations();
1392    return sd.region_to_addr(full_cp);
1393  }
1394
1395  const size_t space_live = pointer_delta(new_top, bottom);
1396  const size_t space_used = space->used_in_words();
1397  const size_t space_capacity = space->capacity_in_words();
1398
1399  const double density = double(space_live) / double(space_capacity);
1400  const size_t min_percent_free = MarkSweepDeadRatio;
1401  const double limiter = dead_wood_limiter(density, min_percent_free);
1402  const size_t dead_wood_max = space_used - space_live;
1403  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1404                                      dead_wood_max);
1405
1406  if (TraceParallelOldGCDensePrefix) {
1407    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1408                  "space_cap=" SIZE_FORMAT,
1409                  space_live, space_used,
1410                  space_capacity);
1411    tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1412                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1413                  density, min_percent_free, limiter,
1414                  dead_wood_max, dead_wood_limit);
1415  }
1416
1417  // Locate the region with the desired amount of dead space to the left.
1418  const RegionData* const limit_cp =
1419    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1420
1421  // Scan from the first region with dead space to the limit region and find the
1422  // one with the best (largest) reclaimed ratio.
1423  double best_ratio = 0.0;
1424  const RegionData* best_cp = full_cp;
1425  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1426    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1427    if (tmp_ratio > best_ratio) {
1428      best_cp = cp;
1429      best_ratio = tmp_ratio;
1430    }
1431  }
1432
1433#if     0
1434  // Something to consider:  if the region with the best ratio is 'close to' the
1435  // first region w/free space, choose the first region with free space
1436  // ("first-free").  The first-free region is usually near the start of the
1437  // heap, which means we are copying most of the heap already, so copy a bit
1438  // more to get complete compaction.
1439  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1440    _maximum_compaction_gc_num = total_invocations();
1441    best_cp = full_cp;
1442  }
1443#endif  // #if 0
1444
1445  return sd.region_to_addr(best_cp);
1446}
1447
1448#ifndef PRODUCT
1449void
1450PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1451                                          size_t words)
1452{
1453  if (TraceParallelOldGCSummaryPhase) {
1454    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1455                  SIZE_FORMAT, p2i(start), p2i(start + words), words);
1456  }
1457
1458  ObjectStartArray* const start_array = _space_info[id].start_array();
1459  CollectedHeap::fill_with_objects(start, words);
1460  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1461    _mark_bitmap.mark_obj(p, words);
1462    _summary_data.add_obj(p, words);
1463    start_array->allocate_block(p);
1464  }
1465}
1466
1467void
1468PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1469{
1470  ParallelCompactData& sd = summary_data();
1471  MutableSpace* space = _space_info[id].space();
1472
1473  // Find the source and destination start addresses.
1474  HeapWord* const src_addr = sd.region_align_down(start);
1475  HeapWord* dst_addr;
1476  if (src_addr < start) {
1477    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1478  } else if (src_addr > space->bottom()) {
1479    // The start (the original top() value) is aligned to a region boundary so
1480    // the associated region does not have a destination.  Compute the
1481    // destination from the previous region.
1482    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1483    dst_addr = cp->destination() + cp->data_size();
1484  } else {
1485    // Filling the entire space.
1486    dst_addr = space->bottom();
1487  }
1488  assert(dst_addr != NULL, "sanity");
1489
1490  // Update the summary data.
1491  bool result = _summary_data.summarize(_space_info[id].split_info(),
1492                                        src_addr, space->top(), NULL,
1493                                        dst_addr, space->end(),
1494                                        _space_info[id].new_top_addr());
1495  assert(result, "should not fail:  bad filler object size");
1496}
1497
1498void
1499PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1500{
1501  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1502    return;
1503  }
1504
1505  MutableSpace* const space = _space_info[id].space();
1506  if (space->is_empty()) {
1507    HeapWord* b = space->bottom();
1508    HeapWord* t = b + space->capacity_in_words() / 2;
1509    space->set_top(t);
1510    if (ZapUnusedHeapArea) {
1511      space->set_top_for_allocations();
1512    }
1513
1514    size_t min_size = CollectedHeap::min_fill_size();
1515    size_t obj_len = min_size;
1516    while (b + obj_len <= t) {
1517      CollectedHeap::fill_with_object(b, obj_len);
1518      mark_bitmap()->mark_obj(b, obj_len);
1519      summary_data().add_obj(b, obj_len);
1520      b += obj_len;
1521      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1522    }
1523    if (b < t) {
1524      // The loop didn't completely fill to t (top); adjust top downward.
1525      space->set_top(b);
1526      if (ZapUnusedHeapArea) {
1527        space->set_top_for_allocations();
1528      }
1529    }
1530
1531    HeapWord** nta = _space_info[id].new_top_addr();
1532    bool result = summary_data().summarize(_space_info[id].split_info(),
1533                                           space->bottom(), space->top(), NULL,
1534                                           space->bottom(), space->end(), nta);
1535    assert(result, "space must fit into itself");
1536  }
1537}
1538
1539void
1540PSParallelCompact::provoke_split(bool & max_compaction)
1541{
1542  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1543    return;
1544  }
1545
1546  const size_t region_size = ParallelCompactData::RegionSize;
1547  ParallelCompactData& sd = summary_data();
1548
1549  MutableSpace* const eden_space = _space_info[eden_space_id].space();
1550  MutableSpace* const from_space = _space_info[from_space_id].space();
1551  const size_t eden_live = pointer_delta(eden_space->top(),
1552                                         _space_info[eden_space_id].new_top());
1553  const size_t from_live = pointer_delta(from_space->top(),
1554                                         _space_info[from_space_id].new_top());
1555
1556  const size_t min_fill_size = CollectedHeap::min_fill_size();
1557  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1558  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1559  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1560  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1561
1562  // Choose the space to split; need at least 2 regions live (or fillable).
1563  SpaceId id;
1564  MutableSpace* space;
1565  size_t live_words;
1566  size_t fill_words;
1567  if (eden_live + eden_fillable >= region_size * 2) {
1568    id = eden_space_id;
1569    space = eden_space;
1570    live_words = eden_live;
1571    fill_words = eden_fillable;
1572  } else if (from_live + from_fillable >= region_size * 2) {
1573    id = from_space_id;
1574    space = from_space;
1575    live_words = from_live;
1576    fill_words = from_fillable;
1577  } else {
1578    return; // Give up.
1579  }
1580  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1581
1582  if (live_words < region_size * 2) {
1583    // Fill from top() to end() w/live objects of mixed sizes.
1584    HeapWord* const fill_start = space->top();
1585    live_words += fill_words;
1586
1587    space->set_top(fill_start + fill_words);
1588    if (ZapUnusedHeapArea) {
1589      space->set_top_for_allocations();
1590    }
1591
1592    HeapWord* cur_addr = fill_start;
1593    while (fill_words > 0) {
1594      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1595      size_t cur_size = MIN2(align_object_size_(r), fill_words);
1596      if (fill_words - cur_size < min_fill_size) {
1597        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1598      }
1599
1600      CollectedHeap::fill_with_object(cur_addr, cur_size);
1601      mark_bitmap()->mark_obj(cur_addr, cur_size);
1602      sd.add_obj(cur_addr, cur_size);
1603
1604      cur_addr += cur_size;
1605      fill_words -= cur_size;
1606    }
1607
1608    summarize_new_objects(id, fill_start);
1609  }
1610
1611  max_compaction = false;
1612
1613  // Manipulate the old gen so that it has room for about half of the live data
1614  // in the target young gen space (live_words / 2).
1615  id = old_space_id;
1616  space = _space_info[id].space();
1617  const size_t free_at_end = space->free_in_words();
1618  const size_t free_target = align_object_size(live_words / 2);
1619  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1620
1621  if (free_at_end >= free_target + min_fill_size) {
1622    // Fill space above top() and set the dense prefix so everything survives.
1623    HeapWord* const fill_start = space->top();
1624    const size_t fill_size = free_at_end - free_target;
1625    space->set_top(space->top() + fill_size);
1626    if (ZapUnusedHeapArea) {
1627      space->set_top_for_allocations();
1628    }
1629    fill_with_live_objects(id, fill_start, fill_size);
1630    summarize_new_objects(id, fill_start);
1631    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1632  } else if (dead + free_at_end > free_target) {
1633    // Find a dense prefix that makes the right amount of space available.
1634    HeapWord* cur = sd.region_align_down(space->top());
1635    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1636    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1637    while (dead_to_right < free_target) {
1638      cur -= region_size;
1639      cur_destination = sd.addr_to_region_ptr(cur)->destination();
1640      dead_to_right = pointer_delta(space->end(), cur_destination);
1641    }
1642    _space_info[id].set_dense_prefix(cur);
1643  }
1644}
1645#endif // #ifndef PRODUCT
1646
1647void PSParallelCompact::summarize_spaces_quick()
1648{
1649  for (unsigned int i = 0; i < last_space_id; ++i) {
1650    const MutableSpace* space = _space_info[i].space();
1651    HeapWord** nta = _space_info[i].new_top_addr();
1652    bool result = _summary_data.summarize(_space_info[i].split_info(),
1653                                          space->bottom(), space->top(), NULL,
1654                                          space->bottom(), space->end(), nta);
1655    assert(result, "space must fit into itself");
1656    _space_info[i].set_dense_prefix(space->bottom());
1657  }
1658
1659#ifndef PRODUCT
1660  if (ParallelOldGCSplitALot) {
1661    provoke_split_fill_survivor(to_space_id);
1662  }
1663#endif // #ifndef PRODUCT
1664}
1665
1666void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1667{
1668  HeapWord* const dense_prefix_end = dense_prefix(id);
1669  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1670  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1671  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1672    // Only enough dead space is filled so that any remaining dead space to the
1673    // left is larger than the minimum filler object.  (The remainder is filled
1674    // during the copy/update phase.)
1675    //
1676    // The size of the dead space to the right of the boundary is not a
1677    // concern, since compaction will be able to use whatever space is
1678    // available.
1679    //
1680    // Here '||' is the boundary, 'x' represents a don't care bit and a box
1681    // surrounds the space to be filled with an object.
1682    //
1683    // In the 32-bit VM, each bit represents two 32-bit words:
1684    //                              +---+
1685    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1686    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1687    //                              +---+
1688    //
1689    // In the 64-bit VM, each bit represents one 64-bit word:
1690    //                              +------------+
1691    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1692    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1693    //                              +------------+
1694    //                          +-------+
1695    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1696    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1697    //                          +-------+
1698    //                      +-----------+
1699    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1700    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1701    //                      +-----------+
1702    //                          +-------+
1703    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1704    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1705    //                          +-------+
1706
1707    // Initially assume case a, c or e will apply.
1708    size_t obj_len = CollectedHeap::min_fill_size();
1709    HeapWord* obj_beg = dense_prefix_end - obj_len;
1710
1711#ifdef  _LP64
1712    if (MinObjAlignment > 1) { // object alignment > heap word size
1713      // Cases a, c or e.
1714    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1715      // Case b above.
1716      obj_beg = dense_prefix_end - 1;
1717    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1718               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1719      // Case d above.
1720      obj_beg = dense_prefix_end - 3;
1721      obj_len = 3;
1722    }
1723#endif  // #ifdef _LP64
1724
1725    CollectedHeap::fill_with_object(obj_beg, obj_len);
1726    _mark_bitmap.mark_obj(obj_beg, obj_len);
1727    _summary_data.add_obj(obj_beg, obj_len);
1728    assert(start_array(id) != NULL, "sanity");
1729    start_array(id)->allocate_block(obj_beg);
1730  }
1731}
1732
1733void
1734PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1735{
1736  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1737  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1738  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1739  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1740    cur->set_source_region(0);
1741  }
1742}
1743
1744void
1745PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1746{
1747  assert(id < last_space_id, "id out of range");
1748  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1749         ParallelOldGCSplitALot && id == old_space_id,
1750         "should have been reset in summarize_spaces_quick()");
1751
1752  const MutableSpace* space = _space_info[id].space();
1753  if (_space_info[id].new_top() != space->bottom()) {
1754    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1755    _space_info[id].set_dense_prefix(dense_prefix_end);
1756
1757#ifndef PRODUCT
1758    if (TraceParallelOldGCDensePrefix) {
1759      print_dense_prefix_stats("ratio", id, maximum_compaction,
1760                               dense_prefix_end);
1761      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1762      print_dense_prefix_stats("density", id, maximum_compaction, addr);
1763    }
1764#endif  // #ifndef PRODUCT
1765
1766    // Recompute the summary data, taking into account the dense prefix.  If
1767    // every last byte will be reclaimed, then the existing summary data which
1768    // compacts everything can be left in place.
1769    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1770      // If dead space crosses the dense prefix boundary, it is (at least
1771      // partially) filled with a dummy object, marked live and added to the
1772      // summary data.  This simplifies the copy/update phase and must be done
1773      // before the final locations of objects are determined, to prevent
1774      // leaving a fragment of dead space that is too small to fill.
1775      fill_dense_prefix_end(id);
1776
1777      // Compute the destination of each Region, and thus each object.
1778      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1779      _summary_data.summarize(_space_info[id].split_info(),
1780                              dense_prefix_end, space->top(), NULL,
1781                              dense_prefix_end, space->end(),
1782                              _space_info[id].new_top_addr());
1783    }
1784  }
1785
1786  if (TraceParallelOldGCSummaryPhase) {
1787    const size_t region_size = ParallelCompactData::RegionSize;
1788    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1789    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1790    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1791    HeapWord* const new_top = _space_info[id].new_top();
1792    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1793    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1794    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1795                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1796                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1797                  id, space->capacity_in_words(), p2i(dense_prefix_end),
1798                  dp_region, dp_words / region_size,
1799                  cr_words / region_size, p2i(new_top));
1800  }
1801}
1802
1803#ifndef PRODUCT
1804void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1805                                          HeapWord* dst_beg, HeapWord* dst_end,
1806                                          SpaceId src_space_id,
1807                                          HeapWord* src_beg, HeapWord* src_end)
1808{
1809  if (TraceParallelOldGCSummaryPhase) {
1810    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1811                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
1812                  SIZE_FORMAT "-" SIZE_FORMAT " "
1813                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1814                  SIZE_FORMAT "-" SIZE_FORMAT,
1815                  src_space_id, space_names[src_space_id],
1816                  dst_space_id, space_names[dst_space_id],
1817                  p2i(src_beg), p2i(src_end),
1818                  _summary_data.addr_to_region_idx(src_beg),
1819                  _summary_data.addr_to_region_idx(src_end),
1820                  p2i(dst_beg), p2i(dst_end),
1821                  _summary_data.addr_to_region_idx(dst_beg),
1822                  _summary_data.addr_to_region_idx(dst_end));
1823  }
1824}
1825#endif  // #ifndef PRODUCT
1826
1827void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1828                                      bool maximum_compaction)
1829{
1830  GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer);
1831  // trace("2");
1832
1833#ifdef  ASSERT
1834  if (TraceParallelOldGCMarkingPhase) {
1835    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1836                  "add_obj_bytes=" SIZE_FORMAT,
1837                  add_obj_count, add_obj_size * HeapWordSize);
1838    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1839                  "mark_bitmap_bytes=" SIZE_FORMAT,
1840                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1841  }
1842#endif  // #ifdef ASSERT
1843
1844  // Quick summarization of each space into itself, to see how much is live.
1845  summarize_spaces_quick();
1846
1847  if (TraceParallelOldGCSummaryPhase) {
1848    tty->print_cr("summary_phase:  after summarizing each space to self");
1849    Universe::print();
1850    NOT_PRODUCT(print_region_ranges());
1851    if (Verbose) {
1852      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1853    }
1854  }
1855
1856  // The amount of live data that will end up in old space (assuming it fits).
1857  size_t old_space_total_live = 0;
1858  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1859    old_space_total_live += pointer_delta(_space_info[id].new_top(),
1860                                          _space_info[id].space()->bottom());
1861  }
1862
1863  MutableSpace* const old_space = _space_info[old_space_id].space();
1864  const size_t old_capacity = old_space->capacity_in_words();
1865  if (old_space_total_live > old_capacity) {
1866    // XXX - should also try to expand
1867    maximum_compaction = true;
1868  }
1869#ifndef PRODUCT
1870  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1871    provoke_split(maximum_compaction);
1872  }
1873#endif // #ifndef PRODUCT
1874
1875  // Old generations.
1876  summarize_space(old_space_id, maximum_compaction);
1877
1878  // Summarize the remaining spaces in the young gen.  The initial target space
1879  // is the old gen.  If a space does not fit entirely into the target, then the
1880  // remainder is compacted into the space itself and that space becomes the new
1881  // target.
1882  SpaceId dst_space_id = old_space_id;
1883  HeapWord* dst_space_end = old_space->end();
1884  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1885  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1886    const MutableSpace* space = _space_info[id].space();
1887    const size_t live = pointer_delta(_space_info[id].new_top(),
1888                                      space->bottom());
1889    const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1890
1891    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1892                                  SpaceId(id), space->bottom(), space->top());)
1893    if (live > 0 && live <= available) {
1894      // All the live data will fit.
1895      bool done = _summary_data.summarize(_space_info[id].split_info(),
1896                                          space->bottom(), space->top(),
1897                                          NULL,
1898                                          *new_top_addr, dst_space_end,
1899                                          new_top_addr);
1900      assert(done, "space must fit into old gen");
1901
1902      // Reset the new_top value for the space.
1903      _space_info[id].set_new_top(space->bottom());
1904    } else if (live > 0) {
1905      // Attempt to fit part of the source space into the target space.
1906      HeapWord* next_src_addr = NULL;
1907      bool done = _summary_data.summarize(_space_info[id].split_info(),
1908                                          space->bottom(), space->top(),
1909                                          &next_src_addr,
1910                                          *new_top_addr, dst_space_end,
1911                                          new_top_addr);
1912      assert(!done, "space should not fit into old gen");
1913      assert(next_src_addr != NULL, "sanity");
1914
1915      // The source space becomes the new target, so the remainder is compacted
1916      // within the space itself.
1917      dst_space_id = SpaceId(id);
1918      dst_space_end = space->end();
1919      new_top_addr = _space_info[id].new_top_addr();
1920      NOT_PRODUCT(summary_phase_msg(dst_space_id,
1921                                    space->bottom(), dst_space_end,
1922                                    SpaceId(id), next_src_addr, space->top());)
1923      done = _summary_data.summarize(_space_info[id].split_info(),
1924                                     next_src_addr, space->top(),
1925                                     NULL,
1926                                     space->bottom(), dst_space_end,
1927                                     new_top_addr);
1928      assert(done, "space must fit when compacted into itself");
1929      assert(*new_top_addr <= space->top(), "usage should not grow");
1930    }
1931  }
1932
1933  if (TraceParallelOldGCSummaryPhase) {
1934    tty->print_cr("summary_phase:  after final summarization");
1935    Universe::print();
1936    NOT_PRODUCT(print_region_ranges());
1937    if (Verbose) {
1938      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1939    }
1940  }
1941}
1942
1943// This method should contain all heap-specific policy for invoking a full
1944// collection.  invoke_no_policy() will only attempt to compact the heap; it
1945// will do nothing further.  If we need to bail out for policy reasons, scavenge
1946// before full gc, or any other specialized behavior, it needs to be added here.
1947//
1948// Note that this method should only be called from the vm_thread while at a
1949// safepoint.
1950//
1951// Note that the all_soft_refs_clear flag in the collector policy
1952// may be true because this method can be called without intervening
1953// activity.  For example when the heap space is tight and full measure
1954// are being taken to free space.
1955void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1956  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1957  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1958         "should be in vm thread");
1959
1960  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1961  GCCause::Cause gc_cause = heap->gc_cause();
1962  assert(!heap->is_gc_active(), "not reentrant");
1963
1964  PSAdaptiveSizePolicy* policy = heap->size_policy();
1965  IsGCActiveMark mark;
1966
1967  if (ScavengeBeforeFullGC) {
1968    PSScavenge::invoke_no_policy();
1969  }
1970
1971  const bool clear_all_soft_refs =
1972    heap->collector_policy()->should_clear_all_soft_refs();
1973
1974  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1975                                      maximum_heap_compaction);
1976}
1977
1978// This method contains no policy. You should probably
1979// be calling invoke() instead.
1980bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1981  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1982  assert(ref_processor() != NULL, "Sanity");
1983
1984  if (GC_locker::check_active_before_gc()) {
1985    return false;
1986  }
1987
1988  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1989
1990  GCIdMark gc_id_mark;
1991  _gc_timer.register_gc_start();
1992  _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1993
1994  TimeStamp marking_start;
1995  TimeStamp compaction_start;
1996  TimeStamp collection_exit;
1997
1998  GCCause::Cause gc_cause = heap->gc_cause();
1999  PSYoungGen* young_gen = heap->young_gen();
2000  PSOldGen* old_gen = heap->old_gen();
2001  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
2002
2003  // The scope of casr should end after code that can change
2004  // CollectorPolicy::_should_clear_all_soft_refs.
2005  ClearedAllSoftRefs casr(maximum_heap_compaction,
2006                          heap->collector_policy());
2007
2008  if (ZapUnusedHeapArea) {
2009    // Save information needed to minimize mangling
2010    heap->record_gen_tops_before_GC();
2011  }
2012
2013  heap->pre_full_gc_dump(&_gc_timer);
2014
2015  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2016
2017  // Make sure data structures are sane, make the heap parsable, and do other
2018  // miscellaneous bookkeeping.
2019  PreGCValues pre_gc_values;
2020  pre_compact(&pre_gc_values);
2021
2022  // Get the compaction manager reserved for the VM thread.
2023  ParCompactionManager* const vmthread_cm =
2024    ParCompactionManager::manager_array(gc_task_manager()->workers());
2025
2026  // Place after pre_compact() where the number of invocations is incremented.
2027  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2028
2029  {
2030    ResourceMark rm;
2031    HandleMark hm;
2032
2033    // Set the number of GC threads to be used in this collection
2034    gc_task_manager()->set_active_gang();
2035    gc_task_manager()->task_idle_workers();
2036
2037    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2038    GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
2039    TraceCollectorStats tcs(counters());
2040    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2041
2042    if (TraceOldGenTime) accumulated_time()->start();
2043
2044    // Let the size policy know we're starting
2045    size_policy->major_collection_begin();
2046
2047    CodeCache::gc_prologue();
2048
2049#if defined(COMPILER2) || INCLUDE_JVMCI
2050    DerivedPointerTable::clear();
2051#endif
2052
2053    ref_processor()->enable_discovery();
2054    ref_processor()->setup_policy(maximum_heap_compaction);
2055
2056    bool marked_for_unloading = false;
2057
2058    marking_start.update();
2059    marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
2060
2061    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2062      && GCCause::is_user_requested_gc(gc_cause);
2063    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2064
2065#if defined(COMPILER2) || INCLUDE_JVMCI
2066    assert(DerivedPointerTable::is_active(), "Sanity");
2067    DerivedPointerTable::set_active(false);
2068#endif
2069
2070    // adjust_roots() updates Universe::_intArrayKlassObj which is
2071    // needed by the compaction for filling holes in the dense prefix.
2072    adjust_roots();
2073
2074    compaction_start.update();
2075    compact();
2076
2077    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2078    // done before resizing.
2079    post_compact();
2080
2081    // Let the size policy know we're done
2082    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2083
2084    if (UseAdaptiveSizePolicy) {
2085      if (PrintAdaptiveSizePolicy) {
2086        gclog_or_tty->print("AdaptiveSizeStart: ");
2087        gclog_or_tty->stamp();
2088        gclog_or_tty->print_cr(" collection: %d ",
2089                       heap->total_collections());
2090        if (Verbose) {
2091          gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
2092            " young_gen_capacity: " SIZE_FORMAT,
2093            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2094        }
2095      }
2096
2097      // Don't check if the size_policy is ready here.  Let
2098      // the size_policy check that internally.
2099      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2100          AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
2101        // Swap the survivor spaces if from_space is empty. The
2102        // resize_young_gen() called below is normally used after
2103        // a successful young GC and swapping of survivor spaces;
2104        // otherwise, it will fail to resize the young gen with
2105        // the current implementation.
2106        if (young_gen->from_space()->is_empty()) {
2107          young_gen->from_space()->clear(SpaceDecorator::Mangle);
2108          young_gen->swap_spaces();
2109        }
2110
2111        // Calculate optimal free space amounts
2112        assert(young_gen->max_size() >
2113          young_gen->from_space()->capacity_in_bytes() +
2114          young_gen->to_space()->capacity_in_bytes(),
2115          "Sizes of space in young gen are out-of-bounds");
2116
2117        size_t young_live = young_gen->used_in_bytes();
2118        size_t eden_live = young_gen->eden_space()->used_in_bytes();
2119        size_t old_live = old_gen->used_in_bytes();
2120        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
2121        size_t max_old_gen_size = old_gen->max_gen_size();
2122        size_t max_eden_size = young_gen->max_size() -
2123          young_gen->from_space()->capacity_in_bytes() -
2124          young_gen->to_space()->capacity_in_bytes();
2125
2126        // Used for diagnostics
2127        size_policy->clear_generation_free_space_flags();
2128
2129        size_policy->compute_generations_free_space(young_live,
2130                                                    eden_live,
2131                                                    old_live,
2132                                                    cur_eden,
2133                                                    max_old_gen_size,
2134                                                    max_eden_size,
2135                                                    true /* full gc*/);
2136
2137        size_policy->check_gc_overhead_limit(young_live,
2138                                             eden_live,
2139                                             max_old_gen_size,
2140                                             max_eden_size,
2141                                             true /* full gc*/,
2142                                             gc_cause,
2143                                             heap->collector_policy());
2144
2145        size_policy->decay_supplemental_growth(true /* full gc*/);
2146
2147        heap->resize_old_gen(
2148          size_policy->calculated_old_free_size_in_bytes());
2149
2150        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
2151                               size_policy->calculated_survivor_size_in_bytes());
2152      }
2153      if (PrintAdaptiveSizePolicy) {
2154        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2155                       heap->total_collections());
2156      }
2157    }
2158
2159    if (UsePerfData) {
2160      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2161      counters->update_counters();
2162      counters->update_old_capacity(old_gen->capacity_in_bytes());
2163      counters->update_young_capacity(young_gen->capacity_in_bytes());
2164    }
2165
2166    heap->resize_all_tlabs();
2167
2168    // Resize the metaspace capacity after a collection
2169    MetaspaceGC::compute_new_size();
2170
2171    if (TraceOldGenTime) accumulated_time()->stop();
2172
2173    if (PrintGC) {
2174      if (PrintGCDetails) {
2175        // No GC timestamp here.  This is after GC so it would be confusing.
2176        young_gen->print_used_change(pre_gc_values.young_gen_used());
2177        old_gen->print_used_change(pre_gc_values.old_gen_used());
2178        heap->print_heap_change(pre_gc_values.heap_used());
2179        MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2180      } else {
2181        heap->print_heap_change(pre_gc_values.heap_used());
2182      }
2183    }
2184
2185    // Track memory usage and detect low memory
2186    MemoryService::track_memory_usage();
2187    heap->update_counters();
2188    gc_task_manager()->release_idle_workers();
2189  }
2190
2191#ifdef ASSERT
2192  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2193    ParCompactionManager* const cm =
2194      ParCompactionManager::manager_array(int(i));
2195    assert(cm->marking_stack()->is_empty(),       "should be empty");
2196    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2197  }
2198#endif // ASSERT
2199
2200  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2201    HandleMark hm;  // Discard invalid handles created during verification
2202    Universe::verify(" VerifyAfterGC:");
2203  }
2204
2205  // Re-verify object start arrays
2206  if (VerifyObjectStartArray &&
2207      VerifyAfterGC) {
2208    old_gen->verify_object_start_array();
2209  }
2210
2211  if (ZapUnusedHeapArea) {
2212    old_gen->object_space()->check_mangled_unused_area_complete();
2213  }
2214
2215  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2216
2217  collection_exit.update();
2218
2219  heap->print_heap_after_gc();
2220  heap->trace_heap_after_gc(&_gc_tracer);
2221
2222  if (PrintGCTaskTimeStamps) {
2223    gclog_or_tty->print_cr("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " "
2224                           JLONG_FORMAT,
2225                           marking_start.ticks(), compaction_start.ticks(),
2226                           collection_exit.ticks());
2227    gc_task_manager()->print_task_time_stamps();
2228  }
2229
2230  heap->post_full_gc_dump(&_gc_timer);
2231
2232#ifdef TRACESPINNING
2233  ParallelTaskTerminator::print_termination_counts();
2234#endif
2235
2236  _gc_timer.register_gc_end();
2237
2238  _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2239  _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2240
2241  return true;
2242}
2243
2244bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2245                                             PSYoungGen* young_gen,
2246                                             PSOldGen* old_gen) {
2247  MutableSpace* const eden_space = young_gen->eden_space();
2248  assert(!eden_space->is_empty(), "eden must be non-empty");
2249  assert(young_gen->virtual_space()->alignment() ==
2250         old_gen->virtual_space()->alignment(), "alignments do not match");
2251
2252  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2253    return false;
2254  }
2255
2256  // Both generations must be completely committed.
2257  if (young_gen->virtual_space()->uncommitted_size() != 0) {
2258    return false;
2259  }
2260  if (old_gen->virtual_space()->uncommitted_size() != 0) {
2261    return false;
2262  }
2263
2264  // Figure out how much to take from eden.  Include the average amount promoted
2265  // in the total; otherwise the next young gen GC will simply bail out to a
2266  // full GC.
2267  const size_t alignment = old_gen->virtual_space()->alignment();
2268  const size_t eden_used = eden_space->used_in_bytes();
2269  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2270  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2271  const size_t eden_capacity = eden_space->capacity_in_bytes();
2272
2273  if (absorb_size >= eden_capacity) {
2274    return false; // Must leave some space in eden.
2275  }
2276
2277  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2278  if (new_young_size < young_gen->min_gen_size()) {
2279    return false; // Respect young gen minimum size.
2280  }
2281
2282  if (TraceAdaptiveGCBoundary && Verbose) {
2283    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2284                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2285                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2286                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2287                        absorb_size / K,
2288                        eden_capacity / K, (eden_capacity - absorb_size) / K,
2289                        young_gen->from_space()->used_in_bytes() / K,
2290                        young_gen->to_space()->used_in_bytes() / K,
2291                        young_gen->capacity_in_bytes() / K, new_young_size / K);
2292  }
2293
2294  // Fill the unused part of the old gen.
2295  MutableSpace* const old_space = old_gen->object_space();
2296  HeapWord* const unused_start = old_space->top();
2297  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2298
2299  if (unused_words > 0) {
2300    if (unused_words < CollectedHeap::min_fill_size()) {
2301      return false;  // If the old gen cannot be filled, must give up.
2302    }
2303    CollectedHeap::fill_with_objects(unused_start, unused_words);
2304  }
2305
2306  // Take the live data from eden and set both top and end in the old gen to
2307  // eden top.  (Need to set end because reset_after_change() mangles the region
2308  // from end to virtual_space->high() in debug builds).
2309  HeapWord* const new_top = eden_space->top();
2310  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2311                                        absorb_size);
2312  young_gen->reset_after_change();
2313  old_space->set_top(new_top);
2314  old_space->set_end(new_top);
2315  old_gen->reset_after_change();
2316
2317  // Update the object start array for the filler object and the data from eden.
2318  ObjectStartArray* const start_array = old_gen->start_array();
2319  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2320    start_array->allocate_block(p);
2321  }
2322
2323  // Could update the promoted average here, but it is not typically updated at
2324  // full GCs and the value to use is unclear.  Something like
2325  //
2326  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2327
2328  size_policy->set_bytes_absorbed_from_eden(absorb_size);
2329  return true;
2330}
2331
2332GCTaskManager* const PSParallelCompact::gc_task_manager() {
2333  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2334    "shouldn't return NULL");
2335  return ParallelScavengeHeap::gc_task_manager();
2336}
2337
2338void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2339                                      bool maximum_heap_compaction,
2340                                      ParallelOldTracer *gc_tracer) {
2341  // Recursively traverse all live objects and mark them
2342  GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer);
2343
2344  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2345  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2346  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2347  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2348  ParallelTaskTerminator terminator(active_gc_threads, qset);
2349
2350  ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2351  ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2352
2353  // Need new claim bits before marking starts.
2354  ClassLoaderDataGraph::clear_claimed_marks();
2355
2356  {
2357    GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer);
2358
2359    ParallelScavengeHeap::ParStrongRootsScope psrs;
2360
2361    GCTaskQueue* q = GCTaskQueue::create();
2362
2363    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2364    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2365    // We scan the thread roots in parallel
2366    Threads::create_thread_roots_marking_tasks(q);
2367    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2368    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2369    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2370    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2371    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2372    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2373    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2374
2375    if (active_gc_threads > 1) {
2376      for (uint j = 0; j < active_gc_threads; j++) {
2377        q->enqueue(new StealMarkingTask(&terminator));
2378      }
2379    }
2380
2381    gc_task_manager()->execute_and_wait(q);
2382  }
2383
2384  // Process reference objects found during marking
2385  {
2386    GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer);
2387
2388    ReferenceProcessorStats stats;
2389    if (ref_processor()->processing_is_mt()) {
2390      RefProcTaskExecutor task_executor;
2391      stats = ref_processor()->process_discovered_references(
2392        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2393        &task_executor, &_gc_timer);
2394    } else {
2395      stats = ref_processor()->process_discovered_references(
2396        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2397        &_gc_timer);
2398    }
2399
2400    gc_tracer->report_gc_reference_stats(stats);
2401  }
2402
2403  GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer);
2404
2405  // This is the point where the entire marking should have completed.
2406  assert(cm->marking_stacks_empty(), "Marking should have completed");
2407
2408  // Follow system dictionary roots and unload classes.
2409  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2410
2411  // Unload nmethods.
2412  CodeCache::do_unloading(is_alive_closure(), purged_class);
2413
2414  // Prune dead klasses from subklass/sibling/implementor lists.
2415  Klass::clean_weak_klass_links(is_alive_closure());
2416
2417  // Delete entries for dead interned strings.
2418  StringTable::unlink(is_alive_closure());
2419
2420  // Clean up unreferenced symbols in symbol table.
2421  SymbolTable::unlink();
2422  _gc_tracer.report_object_count_after_gc(is_alive_closure());
2423}
2424
2425// This should be moved to the shared markSweep code!
2426class PSAlwaysTrueClosure: public BoolObjectClosure {
2427public:
2428  bool do_object_b(oop p) { return true; }
2429};
2430static PSAlwaysTrueClosure always_true;
2431
2432void PSParallelCompact::adjust_roots() {
2433  // Adjust the pointers to reflect the new locations
2434  GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer);
2435
2436  // Need new claim bits when tracing through and adjusting pointers.
2437  ClassLoaderDataGraph::clear_claimed_marks();
2438
2439  // General strong roots.
2440  Universe::oops_do(adjust_pointer_closure());
2441  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2442  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2443  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2444  ObjectSynchronizer::oops_do(adjust_pointer_closure());
2445  FlatProfiler::oops_do(adjust_pointer_closure());
2446  Management::oops_do(adjust_pointer_closure());
2447  JvmtiExport::oops_do(adjust_pointer_closure());
2448  SystemDictionary::oops_do(adjust_pointer_closure());
2449  ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2450
2451  // Now adjust pointers in remaining weak roots.  (All of which should
2452  // have been cleared if they pointed to non-surviving objects.)
2453  // Global (weak) JNI handles
2454  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2455
2456  CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2457  CodeCache::blobs_do(&adjust_from_blobs);
2458  StringTable::oops_do(adjust_pointer_closure());
2459  ref_processor()->weak_oops_do(adjust_pointer_closure());
2460  // Roots were visited so references into the young gen in roots
2461  // may have been scanned.  Process them also.
2462  // Should the reference processor have a span that excludes
2463  // young gen objects?
2464  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2465}
2466
2467void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2468                                                      uint parallel_gc_threads)
2469{
2470  GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer);
2471
2472  // Find the threads that are active
2473  unsigned int which = 0;
2474
2475  const uint task_count = MAX2(parallel_gc_threads, 1U);
2476  for (uint j = 0; j < task_count; j++) {
2477    q->enqueue(new DrainStacksCompactionTask(j));
2478    ParCompactionManager::verify_region_list_empty(j);
2479    // Set the region stacks variables to "no" region stack values
2480    // so that they will be recognized and needing a region stack
2481    // in the stealing tasks if they do not get one by executing
2482    // a draining stack.
2483    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2484    cm->set_region_stack(NULL);
2485    cm->set_region_stack_index((uint)max_uintx);
2486  }
2487  ParCompactionManager::reset_recycled_stack_index();
2488
2489  // Find all regions that are available (can be filled immediately) and
2490  // distribute them to the thread stacks.  The iteration is done in reverse
2491  // order (high to low) so the regions will be removed in ascending order.
2492
2493  const ParallelCompactData& sd = PSParallelCompact::summary_data();
2494
2495  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2496  // A region index which corresponds to the tasks created above.
2497  // "which" must be 0 <= which < task_count
2498
2499  which = 0;
2500  // id + 1 is used to test termination so unsigned  can
2501  // be used with an old_space_id == 0.
2502  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2503    SpaceInfo* const space_info = _space_info + id;
2504    MutableSpace* const space = space_info->space();
2505    HeapWord* const new_top = space_info->new_top();
2506
2507    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2508    const size_t end_region =
2509      sd.addr_to_region_idx(sd.region_align_up(new_top));
2510
2511    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2512      if (sd.region(cur)->claim_unsafe()) {
2513        ParCompactionManager::region_list_push(which, cur);
2514
2515        if (TraceParallelOldGCCompactionPhase && Verbose) {
2516          const size_t count_mod_8 = fillable_regions & 7;
2517          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2518          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2519          if (count_mod_8 == 7) gclog_or_tty->cr();
2520        }
2521
2522        NOT_PRODUCT(++fillable_regions;)
2523
2524        // Assign regions to tasks in round-robin fashion.
2525        if (++which == task_count) {
2526          assert(which <= parallel_gc_threads,
2527            "Inconsistent number of workers");
2528          which = 0;
2529        }
2530      }
2531    }
2532  }
2533
2534  if (TraceParallelOldGCCompactionPhase) {
2535    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2536    gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2537  }
2538}
2539
2540#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2541
2542void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2543                                                    uint parallel_gc_threads) {
2544  GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer);
2545
2546  ParallelCompactData& sd = PSParallelCompact::summary_data();
2547
2548  // Iterate over all the spaces adding tasks for updating
2549  // regions in the dense prefix.  Assume that 1 gc thread
2550  // will work on opening the gaps and the remaining gc threads
2551  // will work on the dense prefix.
2552  unsigned int space_id;
2553  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2554    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2555    const MutableSpace* const space = _space_info[space_id].space();
2556
2557    if (dense_prefix_end == space->bottom()) {
2558      // There is no dense prefix for this space.
2559      continue;
2560    }
2561
2562    // The dense prefix is before this region.
2563    size_t region_index_end_dense_prefix =
2564        sd.addr_to_region_idx(dense_prefix_end);
2565    RegionData* const dense_prefix_cp =
2566      sd.region(region_index_end_dense_prefix);
2567    assert(dense_prefix_end == space->end() ||
2568           dense_prefix_cp->available() ||
2569           dense_prefix_cp->claimed(),
2570           "The region after the dense prefix should always be ready to fill");
2571
2572    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2573
2574    // Is there dense prefix work?
2575    size_t total_dense_prefix_regions =
2576      region_index_end_dense_prefix - region_index_start;
2577    // How many regions of the dense prefix should be given to
2578    // each thread?
2579    if (total_dense_prefix_regions > 0) {
2580      uint tasks_for_dense_prefix = 1;
2581      if (total_dense_prefix_regions <=
2582          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2583        // Don't over partition.  This assumes that
2584        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2585        // so there are not many regions to process.
2586        tasks_for_dense_prefix = parallel_gc_threads;
2587      } else {
2588        // Over partition
2589        tasks_for_dense_prefix = parallel_gc_threads *
2590          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2591      }
2592      size_t regions_per_thread = total_dense_prefix_regions /
2593        tasks_for_dense_prefix;
2594      // Give each thread at least 1 region.
2595      if (regions_per_thread == 0) {
2596        regions_per_thread = 1;
2597      }
2598
2599      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2600        if (region_index_start >= region_index_end_dense_prefix) {
2601          break;
2602        }
2603        // region_index_end is not processed
2604        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2605                                       region_index_end_dense_prefix);
2606        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2607                                             region_index_start,
2608                                             region_index_end));
2609        region_index_start = region_index_end;
2610      }
2611    }
2612    // This gets any part of the dense prefix that did not
2613    // fit evenly.
2614    if (region_index_start < region_index_end_dense_prefix) {
2615      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2616                                           region_index_start,
2617                                           region_index_end_dense_prefix));
2618    }
2619  }
2620}
2621
2622void PSParallelCompact::enqueue_region_stealing_tasks(
2623                                     GCTaskQueue* q,
2624                                     ParallelTaskTerminator* terminator_ptr,
2625                                     uint parallel_gc_threads) {
2626  GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer);
2627
2628  // Once a thread has drained it's stack, it should try to steal regions from
2629  // other threads.
2630  if (parallel_gc_threads > 1) {
2631    for (uint j = 0; j < parallel_gc_threads; j++) {
2632      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2633    }
2634  }
2635}
2636
2637#ifdef ASSERT
2638// Write a histogram of the number of times the block table was filled for a
2639// region.
2640void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2641{
2642  if (!TraceParallelOldGCCompactionPhase) return;
2643
2644  typedef ParallelCompactData::RegionData rd_t;
2645  ParallelCompactData& sd = summary_data();
2646
2647  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2648    MutableSpace* const spc = _space_info[id].space();
2649    if (spc->bottom() != spc->top()) {
2650      const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2651      HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2652      const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2653
2654      size_t histo[5] = { 0, 0, 0, 0, 0 };
2655      const size_t histo_len = sizeof(histo) / sizeof(size_t);
2656      const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2657
2658      for (const rd_t* cur = beg; cur < end; ++cur) {
2659        ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2660      }
2661      out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2662      for (size_t i = 0; i < histo_len; ++i) {
2663        out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2664                   histo[i], 100.0 * histo[i] / region_cnt);
2665      }
2666      out->cr();
2667    }
2668  }
2669}
2670#endif // #ifdef ASSERT
2671
2672void PSParallelCompact::compact() {
2673  // trace("5");
2674  GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer);
2675
2676  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2677  PSOldGen* old_gen = heap->old_gen();
2678  old_gen->start_array()->reset();
2679  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2680  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2681  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2682  ParallelTaskTerminator terminator(active_gc_threads, qset);
2683
2684  GCTaskQueue* q = GCTaskQueue::create();
2685  enqueue_region_draining_tasks(q, active_gc_threads);
2686  enqueue_dense_prefix_tasks(q, active_gc_threads);
2687  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2688
2689  {
2690    GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer);
2691
2692    gc_task_manager()->execute_and_wait(q);
2693
2694#ifdef  ASSERT
2695    // Verify that all regions have been processed before the deferred updates.
2696    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2697      verify_complete(SpaceId(id));
2698    }
2699#endif
2700  }
2701
2702  {
2703    // Update the deferred objects, if any.  Any compaction manager can be used.
2704    GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer);
2705    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2706    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2707      update_deferred_objects(cm, SpaceId(id));
2708    }
2709  }
2710
2711  DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2712}
2713
2714#ifdef  ASSERT
2715void PSParallelCompact::verify_complete(SpaceId space_id) {
2716  // All Regions between space bottom() to new_top() should be marked as filled
2717  // and all Regions between new_top() and top() should be available (i.e.,
2718  // should have been emptied).
2719  ParallelCompactData& sd = summary_data();
2720  SpaceInfo si = _space_info[space_id];
2721  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2722  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2723  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2724  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2725  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2726
2727  bool issued_a_warning = false;
2728
2729  size_t cur_region;
2730  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2731    const RegionData* const c = sd.region(cur_region);
2732    if (!c->completed()) {
2733      warning("region " SIZE_FORMAT " not filled:  "
2734              "destination_count=%u",
2735              cur_region, c->destination_count());
2736      issued_a_warning = true;
2737    }
2738  }
2739
2740  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2741    const RegionData* const c = sd.region(cur_region);
2742    if (!c->available()) {
2743      warning("region " SIZE_FORMAT " not empty:   "
2744              "destination_count=%u",
2745              cur_region, c->destination_count());
2746      issued_a_warning = true;
2747    }
2748  }
2749
2750  if (issued_a_warning) {
2751    print_region_ranges();
2752  }
2753}
2754#endif  // #ifdef ASSERT
2755
2756inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2757  _start_array->allocate_block(addr);
2758  compaction_manager()->update_contents(oop(addr));
2759}
2760
2761// Update interior oops in the ranges of regions [beg_region, end_region).
2762void
2763PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2764                                                       SpaceId space_id,
2765                                                       size_t beg_region,
2766                                                       size_t end_region) {
2767  ParallelCompactData& sd = summary_data();
2768  ParMarkBitMap* const mbm = mark_bitmap();
2769
2770  HeapWord* beg_addr = sd.region_to_addr(beg_region);
2771  HeapWord* const end_addr = sd.region_to_addr(end_region);
2772  assert(beg_region <= end_region, "bad region range");
2773  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2774
2775#ifdef  ASSERT
2776  // Claim the regions to avoid triggering an assert when they are marked as
2777  // filled.
2778  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2779    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2780  }
2781#endif  // #ifdef ASSERT
2782
2783  if (beg_addr != space(space_id)->bottom()) {
2784    // Find the first live object or block of dead space that *starts* in this
2785    // range of regions.  If a partial object crosses onto the region, skip it;
2786    // it will be marked for 'deferred update' when the object head is
2787    // processed.  If dead space crosses onto the region, it is also skipped; it
2788    // will be filled when the prior region is processed.  If neither of those
2789    // apply, the first word in the region is the start of a live object or dead
2790    // space.
2791    assert(beg_addr > space(space_id)->bottom(), "sanity");
2792    const RegionData* const cp = sd.region(beg_region);
2793    if (cp->partial_obj_size() != 0) {
2794      beg_addr = sd.partial_obj_end(beg_region);
2795    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2796      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2797    }
2798  }
2799
2800  if (beg_addr < end_addr) {
2801    // A live object or block of dead space starts in this range of Regions.
2802     HeapWord* const dense_prefix_end = dense_prefix(space_id);
2803
2804    // Create closures and iterate.
2805    UpdateOnlyClosure update_closure(mbm, cm, space_id);
2806    FillClosure fill_closure(cm, space_id);
2807    ParMarkBitMap::IterationStatus status;
2808    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2809                          dense_prefix_end);
2810    if (status == ParMarkBitMap::incomplete) {
2811      update_closure.do_addr(update_closure.source());
2812    }
2813  }
2814
2815  // Mark the regions as filled.
2816  RegionData* const beg_cp = sd.region(beg_region);
2817  RegionData* const end_cp = sd.region(end_region);
2818  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2819    cp->set_completed();
2820  }
2821}
2822
2823// Return the SpaceId for the space containing addr.  If addr is not in the
2824// heap, last_space_id is returned.  In debug mode it expects the address to be
2825// in the heap and asserts such.
2826PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2827  assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2828
2829  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2830    if (_space_info[id].space()->contains(addr)) {
2831      return SpaceId(id);
2832    }
2833  }
2834
2835  assert(false, "no space contains the addr");
2836  return last_space_id;
2837}
2838
2839void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2840                                                SpaceId id) {
2841  assert(id < last_space_id, "bad space id");
2842
2843  ParallelCompactData& sd = summary_data();
2844  const SpaceInfo* const space_info = _space_info + id;
2845  ObjectStartArray* const start_array = space_info->start_array();
2846
2847  const MutableSpace* const space = space_info->space();
2848  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2849  HeapWord* const beg_addr = space_info->dense_prefix();
2850  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2851
2852  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2853  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2854  const RegionData* cur_region;
2855  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2856    HeapWord* const addr = cur_region->deferred_obj_addr();
2857    if (addr != NULL) {
2858      if (start_array != NULL) {
2859        start_array->allocate_block(addr);
2860      }
2861      cm->update_contents(oop(addr));
2862      assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2863    }
2864  }
2865}
2866
2867// Skip over count live words starting from beg, and return the address of the
2868// next live word.  Unless marked, the word corresponding to beg is assumed to
2869// be dead.  Callers must either ensure beg does not correspond to the middle of
2870// an object, or account for those live words in some other way.  Callers must
2871// also ensure that there are enough live words in the range [beg, end) to skip.
2872HeapWord*
2873PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2874{
2875  assert(count > 0, "sanity");
2876
2877  ParMarkBitMap* m = mark_bitmap();
2878  idx_t bits_to_skip = m->words_to_bits(count);
2879  idx_t cur_beg = m->addr_to_bit(beg);
2880  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2881
2882  do {
2883    cur_beg = m->find_obj_beg(cur_beg, search_end);
2884    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2885    const size_t obj_bits = cur_end - cur_beg + 1;
2886    if (obj_bits > bits_to_skip) {
2887      return m->bit_to_addr(cur_beg + bits_to_skip);
2888    }
2889    bits_to_skip -= obj_bits;
2890    cur_beg = cur_end + 1;
2891  } while (bits_to_skip > 0);
2892
2893  // Skipping the desired number of words landed just past the end of an object.
2894  // Find the start of the next object.
2895  cur_beg = m->find_obj_beg(cur_beg, search_end);
2896  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2897  return m->bit_to_addr(cur_beg);
2898}
2899
2900HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2901                                            SpaceId src_space_id,
2902                                            size_t src_region_idx)
2903{
2904  assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2905
2906  const SplitInfo& split_info = _space_info[src_space_id].split_info();
2907  if (split_info.dest_region_addr() == dest_addr) {
2908    // The partial object ending at the split point contains the first word to
2909    // be copied to dest_addr.
2910    return split_info.first_src_addr();
2911  }
2912
2913  const ParallelCompactData& sd = summary_data();
2914  ParMarkBitMap* const bitmap = mark_bitmap();
2915  const size_t RegionSize = ParallelCompactData::RegionSize;
2916
2917  assert(sd.is_region_aligned(dest_addr), "not aligned");
2918  const RegionData* const src_region_ptr = sd.region(src_region_idx);
2919  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2920  HeapWord* const src_region_destination = src_region_ptr->destination();
2921
2922  assert(dest_addr >= src_region_destination, "wrong src region");
2923  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2924
2925  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2926  HeapWord* const src_region_end = src_region_beg + RegionSize;
2927
2928  HeapWord* addr = src_region_beg;
2929  if (dest_addr == src_region_destination) {
2930    // Return the first live word in the source region.
2931    if (partial_obj_size == 0) {
2932      addr = bitmap->find_obj_beg(addr, src_region_end);
2933      assert(addr < src_region_end, "no objects start in src region");
2934    }
2935    return addr;
2936  }
2937
2938  // Must skip some live data.
2939  size_t words_to_skip = dest_addr - src_region_destination;
2940  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2941
2942  if (partial_obj_size >= words_to_skip) {
2943    // All the live words to skip are part of the partial object.
2944    addr += words_to_skip;
2945    if (partial_obj_size == words_to_skip) {
2946      // Find the first live word past the partial object.
2947      addr = bitmap->find_obj_beg(addr, src_region_end);
2948      assert(addr < src_region_end, "wrong src region");
2949    }
2950    return addr;
2951  }
2952
2953  // Skip over the partial object (if any).
2954  if (partial_obj_size != 0) {
2955    words_to_skip -= partial_obj_size;
2956    addr += partial_obj_size;
2957  }
2958
2959  // Skip over live words due to objects that start in the region.
2960  addr = skip_live_words(addr, src_region_end, words_to_skip);
2961  assert(addr < src_region_end, "wrong src region");
2962  return addr;
2963}
2964
2965void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2966                                                     SpaceId src_space_id,
2967                                                     size_t beg_region,
2968                                                     HeapWord* end_addr)
2969{
2970  ParallelCompactData& sd = summary_data();
2971
2972#ifdef ASSERT
2973  MutableSpace* const src_space = _space_info[src_space_id].space();
2974  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2975  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2976         "src_space_id does not match beg_addr");
2977  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2978         "src_space_id does not match end_addr");
2979#endif // #ifdef ASSERT
2980
2981  RegionData* const beg = sd.region(beg_region);
2982  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2983
2984  // Regions up to new_top() are enqueued if they become available.
2985  HeapWord* const new_top = _space_info[src_space_id].new_top();
2986  RegionData* const enqueue_end =
2987    sd.addr_to_region_ptr(sd.region_align_up(new_top));
2988
2989  for (RegionData* cur = beg; cur < end; ++cur) {
2990    assert(cur->data_size() > 0, "region must have live data");
2991    cur->decrement_destination_count();
2992    if (cur < enqueue_end && cur->available() && cur->claim()) {
2993      cm->push_region(sd.region(cur));
2994    }
2995  }
2996}
2997
2998size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2999                                          SpaceId& src_space_id,
3000                                          HeapWord*& src_space_top,
3001                                          HeapWord* end_addr)
3002{
3003  typedef ParallelCompactData::RegionData RegionData;
3004
3005  ParallelCompactData& sd = PSParallelCompact::summary_data();
3006  const size_t region_size = ParallelCompactData::RegionSize;
3007
3008  size_t src_region_idx = 0;
3009
3010  // Skip empty regions (if any) up to the top of the space.
3011  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3012  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3013  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3014  const RegionData* const top_region_ptr =
3015    sd.addr_to_region_ptr(top_aligned_up);
3016  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3017    ++src_region_ptr;
3018  }
3019
3020  if (src_region_ptr < top_region_ptr) {
3021    // The next source region is in the current space.  Update src_region_idx
3022    // and the source address to match src_region_ptr.
3023    src_region_idx = sd.region(src_region_ptr);
3024    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3025    if (src_region_addr > closure.source()) {
3026      closure.set_source(src_region_addr);
3027    }
3028    return src_region_idx;
3029  }
3030
3031  // Switch to a new source space and find the first non-empty region.
3032  unsigned int space_id = src_space_id + 1;
3033  assert(space_id < last_space_id, "not enough spaces");
3034
3035  HeapWord* const destination = closure.destination();
3036
3037  do {
3038    MutableSpace* space = _space_info[space_id].space();
3039    HeapWord* const bottom = space->bottom();
3040    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3041
3042    // Iterate over the spaces that do not compact into themselves.
3043    if (bottom_cp->destination() != bottom) {
3044      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3045      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3046
3047      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3048        if (src_cp->live_obj_size() > 0) {
3049          // Found it.
3050          assert(src_cp->destination() == destination,
3051                 "first live obj in the space must match the destination");
3052          assert(src_cp->partial_obj_size() == 0,
3053                 "a space cannot begin with a partial obj");
3054
3055          src_space_id = SpaceId(space_id);
3056          src_space_top = space->top();
3057          const size_t src_region_idx = sd.region(src_cp);
3058          closure.set_source(sd.region_to_addr(src_region_idx));
3059          return src_region_idx;
3060        } else {
3061          assert(src_cp->data_size() == 0, "sanity");
3062        }
3063      }
3064    }
3065  } while (++space_id < last_space_id);
3066
3067  assert(false, "no source region was found");
3068  return 0;
3069}
3070
3071void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3072{
3073  typedef ParMarkBitMap::IterationStatus IterationStatus;
3074  const size_t RegionSize = ParallelCompactData::RegionSize;
3075  ParMarkBitMap* const bitmap = mark_bitmap();
3076  ParallelCompactData& sd = summary_data();
3077  RegionData* const region_ptr = sd.region(region_idx);
3078
3079  // Get the items needed to construct the closure.
3080  HeapWord* dest_addr = sd.region_to_addr(region_idx);
3081  SpaceId dest_space_id = space_id(dest_addr);
3082  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3083  HeapWord* new_top = _space_info[dest_space_id].new_top();
3084  assert(dest_addr < new_top, "sanity");
3085  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3086
3087  // Get the source region and related info.
3088  size_t src_region_idx = region_ptr->source_region();
3089  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3090  HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3091
3092  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3093  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3094
3095  // Adjust src_region_idx to prepare for decrementing destination counts (the
3096  // destination count is not decremented when a region is copied to itself).
3097  if (src_region_idx == region_idx) {
3098    src_region_idx += 1;
3099  }
3100
3101  if (bitmap->is_unmarked(closure.source())) {
3102    // The first source word is in the middle of an object; copy the remainder
3103    // of the object or as much as will fit.  The fact that pointer updates were
3104    // deferred will be noted when the object header is processed.
3105    HeapWord* const old_src_addr = closure.source();
3106    closure.copy_partial_obj();
3107    if (closure.is_full()) {
3108      decrement_destination_counts(cm, src_space_id, src_region_idx,
3109                                   closure.source());
3110      region_ptr->set_deferred_obj_addr(NULL);
3111      region_ptr->set_completed();
3112      return;
3113    }
3114
3115    HeapWord* const end_addr = sd.region_align_down(closure.source());
3116    if (sd.region_align_down(old_src_addr) != end_addr) {
3117      // The partial object was copied from more than one source region.
3118      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3119
3120      // Move to the next source region, possibly switching spaces as well.  All
3121      // args except end_addr may be modified.
3122      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3123                                       end_addr);
3124    }
3125  }
3126
3127  do {
3128    HeapWord* const cur_addr = closure.source();
3129    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3130                                    src_space_top);
3131    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3132
3133    if (status == ParMarkBitMap::incomplete) {
3134      // The last obj that starts in the source region does not end in the
3135      // region.
3136      assert(closure.source() < end_addr, "sanity");
3137      HeapWord* const obj_beg = closure.source();
3138      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3139                                       src_space_top);
3140      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3141      if (obj_end < range_end) {
3142        // The end was found; the entire object will fit.
3143        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3144        assert(status != ParMarkBitMap::would_overflow, "sanity");
3145      } else {
3146        // The end was not found; the object will not fit.
3147        assert(range_end < src_space_top, "obj cannot cross space boundary");
3148        status = ParMarkBitMap::would_overflow;
3149      }
3150    }
3151
3152    if (status == ParMarkBitMap::would_overflow) {
3153      // The last object did not fit.  Note that interior oop updates were
3154      // deferred, then copy enough of the object to fill the region.
3155      region_ptr->set_deferred_obj_addr(closure.destination());
3156      status = closure.copy_until_full(); // copies from closure.source()
3157
3158      decrement_destination_counts(cm, src_space_id, src_region_idx,
3159                                   closure.source());
3160      region_ptr->set_completed();
3161      return;
3162    }
3163
3164    if (status == ParMarkBitMap::full) {
3165      decrement_destination_counts(cm, src_space_id, src_region_idx,
3166                                   closure.source());
3167      region_ptr->set_deferred_obj_addr(NULL);
3168      region_ptr->set_completed();
3169      return;
3170    }
3171
3172    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3173
3174    // Move to the next source region, possibly switching spaces as well.  All
3175    // args except end_addr may be modified.
3176    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3177                                     end_addr);
3178  } while (true);
3179}
3180
3181void PSParallelCompact::fill_blocks(size_t region_idx)
3182{
3183  // Fill in the block table elements for the specified region.  Each block
3184  // table element holds the number of live words in the region that are to the
3185  // left of the first object that starts in the block.  Thus only blocks in
3186  // which an object starts need to be filled.
3187  //
3188  // The algorithm scans the section of the bitmap that corresponds to the
3189  // region, keeping a running total of the live words.  When an object start is
3190  // found, if it's the first to start in the block that contains it, the
3191  // current total is written to the block table element.
3192  const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3193  const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3194  const size_t RegionSize = ParallelCompactData::RegionSize;
3195
3196  ParallelCompactData& sd = summary_data();
3197  const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3198  if (partial_obj_size >= RegionSize) {
3199    return; // No objects start in this region.
3200  }
3201
3202  // Ensure the first loop iteration decides that the block has changed.
3203  size_t cur_block = sd.block_count();
3204
3205  const ParMarkBitMap* const bitmap = mark_bitmap();
3206
3207  const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3208  assert((size_t)1 << Log2BitsPerBlock ==
3209         bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3210
3211  size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3212  const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3213  size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3214  beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3215  while (beg_bit < range_end) {
3216    const size_t new_block = beg_bit >> Log2BitsPerBlock;
3217    if (new_block != cur_block) {
3218      cur_block = new_block;
3219      sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3220    }
3221
3222    const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3223    if (end_bit < range_end - 1) {
3224      live_bits += end_bit - beg_bit + 1;
3225      beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3226    } else {
3227      return;
3228    }
3229  }
3230}
3231
3232void
3233PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3234  const MutableSpace* sp = space(space_id);
3235  if (sp->is_empty()) {
3236    return;
3237  }
3238
3239  ParallelCompactData& sd = PSParallelCompact::summary_data();
3240  ParMarkBitMap* const bitmap = mark_bitmap();
3241  HeapWord* const dp_addr = dense_prefix(space_id);
3242  HeapWord* beg_addr = sp->bottom();
3243  HeapWord* end_addr = sp->top();
3244
3245  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3246
3247  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3248  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3249  if (beg_region < dp_region) {
3250    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3251  }
3252
3253  // The destination of the first live object that starts in the region is one
3254  // past the end of the partial object entering the region (if any).
3255  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3256  HeapWord* const new_top = _space_info[space_id].new_top();
3257  assert(new_top >= dest_addr, "bad new_top value");
3258  const size_t words = pointer_delta(new_top, dest_addr);
3259
3260  if (words > 0) {
3261    ObjectStartArray* start_array = _space_info[space_id].start_array();
3262    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3263
3264    ParMarkBitMap::IterationStatus status;
3265    status = bitmap->iterate(&closure, dest_addr, end_addr);
3266    assert(status == ParMarkBitMap::full, "iteration not complete");
3267    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3268           "live objects skipped because closure is full");
3269  }
3270}
3271
3272jlong PSParallelCompact::millis_since_last_gc() {
3273  // We need a monotonically non-decreasing time in ms but
3274  // os::javaTimeMillis() does not guarantee monotonicity.
3275  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3276  jlong ret_val = now - _time_of_last_gc;
3277  // XXX See note in genCollectedHeap::millis_since_last_gc().
3278  if (ret_val < 0) {
3279    NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
3280    return 0;
3281  }
3282  return ret_val;
3283}
3284
3285void PSParallelCompact::reset_millis_since_last_gc() {
3286  // We need a monotonically non-decreasing time in ms but
3287  // os::javaTimeMillis() does not guarantee monotonicity.
3288  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3289}
3290
3291ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3292{
3293  if (source() != destination()) {
3294    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3295    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3296  }
3297  update_state(words_remaining());
3298  assert(is_full(), "sanity");
3299  return ParMarkBitMap::full;
3300}
3301
3302void MoveAndUpdateClosure::copy_partial_obj()
3303{
3304  size_t words = words_remaining();
3305
3306  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3307  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3308  if (end_addr < range_end) {
3309    words = bitmap()->obj_size(source(), end_addr);
3310  }
3311
3312  // This test is necessary; if omitted, the pointer updates to a partial object
3313  // that crosses the dense prefix boundary could be overwritten.
3314  if (source() != destination()) {
3315    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3316    Copy::aligned_conjoint_words(source(), destination(), words);
3317  }
3318  update_state(words);
3319}
3320
3321void InstanceKlass::oop_pc_update_pointers(oop obj) {
3322  oop_oop_iterate_oop_maps<true>(obj, PSParallelCompact::adjust_pointer_closure());
3323}
3324
3325void InstanceMirrorKlass::oop_pc_update_pointers(oop obj) {
3326  InstanceKlass::oop_pc_update_pointers(obj);
3327
3328  oop_oop_iterate_statics<true>(obj, PSParallelCompact::adjust_pointer_closure());
3329}
3330
3331void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj) {
3332  InstanceKlass::oop_pc_update_pointers(obj);
3333}
3334
3335#ifdef ASSERT
3336template <class T> static void trace_reference_gc(const char *s, oop obj,
3337                                                  T* referent_addr,
3338                                                  T* next_addr,
3339                                                  T* discovered_addr) {
3340  if(TraceReferenceGC && PrintGCDetails) {
3341    gclog_or_tty->print_cr("%s obj " PTR_FORMAT, s, p2i(obj));
3342    gclog_or_tty->print_cr("     referent_addr/* " PTR_FORMAT " / "
3343                           PTR_FORMAT, p2i(referent_addr),
3344                           referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3345    gclog_or_tty->print_cr("     next_addr/* " PTR_FORMAT " / "
3346                           PTR_FORMAT, p2i(next_addr),
3347                           next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3348    gclog_or_tty->print_cr("     discovered_addr/* " PTR_FORMAT " / "
3349                           PTR_FORMAT, p2i(discovered_addr),
3350                           discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3351  }
3352}
3353#endif
3354
3355template <class T>
3356static void oop_pc_update_pointers_specialized(oop obj) {
3357  T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3358  PSParallelCompact::adjust_pointer(referent_addr);
3359  T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3360  PSParallelCompact::adjust_pointer(next_addr);
3361  T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3362  PSParallelCompact::adjust_pointer(discovered_addr);
3363  debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3364                                referent_addr, next_addr, discovered_addr);)
3365}
3366
3367void InstanceRefKlass::oop_pc_update_pointers(oop obj) {
3368  InstanceKlass::oop_pc_update_pointers(obj);
3369
3370  if (UseCompressedOops) {
3371    oop_pc_update_pointers_specialized<narrowOop>(obj);
3372  } else {
3373    oop_pc_update_pointers_specialized<oop>(obj);
3374  }
3375}
3376
3377void ObjArrayKlass::oop_pc_update_pointers(oop obj) {
3378  assert(obj->is_objArray(), "obj must be obj array");
3379  oop_oop_iterate_elements<true>(objArrayOop(obj), PSParallelCompact::adjust_pointer_closure());
3380}
3381
3382void TypeArrayKlass::oop_pc_update_pointers(oop obj) {
3383  assert(obj->is_typeArray(),"must be a type array");
3384}
3385
3386ParMarkBitMapClosure::IterationStatus
3387MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3388  assert(destination() != NULL, "sanity");
3389  assert(bitmap()->obj_size(addr) == words, "bad size");
3390
3391  _source = addr;
3392  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3393         destination(), "wrong destination");
3394
3395  if (words > words_remaining()) {
3396    return ParMarkBitMap::would_overflow;
3397  }
3398
3399  // The start_array must be updated even if the object is not moving.
3400  if (_start_array != NULL) {
3401    _start_array->allocate_block(destination());
3402  }
3403
3404  if (destination() != source()) {
3405    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3406    Copy::aligned_conjoint_words(source(), destination(), words);
3407  }
3408
3409  oop moved_oop = (oop) destination();
3410  compaction_manager()->update_contents(moved_oop);
3411  assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3412
3413  update_state(words);
3414  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3415  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3416}
3417
3418UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3419                                     ParCompactionManager* cm,
3420                                     PSParallelCompact::SpaceId space_id) :
3421  ParMarkBitMapClosure(mbm, cm),
3422  _space_id(space_id),
3423  _start_array(PSParallelCompact::start_array(space_id))
3424{
3425}
3426
3427// Updates the references in the object to their new values.
3428ParMarkBitMapClosure::IterationStatus
3429UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3430  do_addr(addr);
3431  return ParMarkBitMap::incomplete;
3432}
3433