psParallelCompact.cpp revision 9056:dc9930a04ab0
1181847Sjkim/*
2181847Sjkim * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3181847Sjkim * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4181847Sjkim *
5181847Sjkim * This code is free software; you can redistribute it and/or modify it
6181847Sjkim * under the terms of the GNU General Public License version 2 only, as
7181847Sjkim * published by the Free Software Foundation.
8181847Sjkim *
9181847Sjkim * This code is distributed in the hope that it will be useful, but WITHOUT
10181847Sjkim * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11181847Sjkim * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12181847Sjkim * version 2 for more details (a copy is included in the LICENSE file that
13181847Sjkim * accompanied this code).
14181847Sjkim *
15181847Sjkim * You should have received a copy of the GNU General Public License version
16181847Sjkim * 2 along with this work; if not, write to the Free Software Foundation,
17181847Sjkim * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18181847Sjkim *
19181847Sjkim * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20181847Sjkim * or visit www.oracle.com if you need additional information or have any
21181847Sjkim * questions.
22181847Sjkim *
23181847Sjkim */
24181847Sjkim
25181847Sjkim#include "precompiled.hpp"
26181847Sjkim#include "classfile/stringTable.hpp"
27181847Sjkim#include "classfile/systemDictionary.hpp"
28181847Sjkim#include "code/codeCache.hpp"
29181847Sjkim#include "gc/parallel/gcTaskManager.hpp"
30182393Sjkim#include "gc/parallel/parallelScavengeHeap.inline.hpp"
31181847Sjkim#include "gc/parallel/pcTasks.hpp"
32#include "gc/parallel/psAdaptiveSizePolicy.hpp"
33#include "gc/parallel/psCompactionManager.inline.hpp"
34#include "gc/parallel/psMarkSweep.hpp"
35#include "gc/parallel/psMarkSweepDecorator.hpp"
36#include "gc/parallel/psOldGen.hpp"
37#include "gc/parallel/psParallelCompact.inline.hpp"
38#include "gc/parallel/psPromotionManager.inline.hpp"
39#include "gc/parallel/psScavenge.hpp"
40#include "gc/parallel/psYoungGen.hpp"
41#include "gc/shared/gcCause.hpp"
42#include "gc/shared/gcHeapSummary.hpp"
43#include "gc/shared/gcLocker.inline.hpp"
44#include "gc/shared/gcTimer.hpp"
45#include "gc/shared/gcTrace.hpp"
46#include "gc/shared/gcTraceTime.hpp"
47#include "gc/shared/isGCActiveMark.hpp"
48#include "gc/shared/referencePolicy.hpp"
49#include "gc/shared/referenceProcessor.hpp"
50#include "gc/shared/spaceDecorator.hpp"
51#include "oops/instanceKlass.inline.hpp"
52#include "oops/instanceMirrorKlass.inline.hpp"
53#include "oops/methodData.hpp"
54#include "oops/objArrayKlass.inline.hpp"
55#include "oops/oop.inline.hpp"
56#include "runtime/atomic.inline.hpp"
57#include "runtime/fprofiler.hpp"
58#include "runtime/safepoint.hpp"
59#include "runtime/vmThread.hpp"
60#include "services/management.hpp"
61#include "services/memTracker.hpp"
62#include "services/memoryService.hpp"
63#include "utilities/events.hpp"
64#include "utilities/stack.inline.hpp"
65
66#include <math.h>
67
68// All sizes are in HeapWords.
69const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
70const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
71const size_t ParallelCompactData::RegionSizeBytes =
72  RegionSize << LogHeapWordSize;
73const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
74const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
75const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
76
77const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
78const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
79const size_t ParallelCompactData::BlockSizeBytes  =
80  BlockSize << LogHeapWordSize;
81const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
82const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
83const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
84
85const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
86const size_t ParallelCompactData::Log2BlocksPerRegion =
87  Log2RegionSize - Log2BlockSize;
88
89const ParallelCompactData::RegionData::region_sz_t
90ParallelCompactData::RegionData::dc_shift = 27;
91
92const ParallelCompactData::RegionData::region_sz_t
93ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
94
95const ParallelCompactData::RegionData::region_sz_t
96ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
97
98const ParallelCompactData::RegionData::region_sz_t
99ParallelCompactData::RegionData::los_mask = ~dc_mask;
100
101const ParallelCompactData::RegionData::region_sz_t
102ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
103
104const ParallelCompactData::RegionData::region_sz_t
105ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
106
107SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
108bool      PSParallelCompact::_print_phases = false;
109
110ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
111
112double PSParallelCompact::_dwl_mean;
113double PSParallelCompact::_dwl_std_dev;
114double PSParallelCompact::_dwl_first_term;
115double PSParallelCompact::_dwl_adjustment;
116#ifdef  ASSERT
117bool   PSParallelCompact::_dwl_initialized = false;
118#endif  // #ifdef ASSERT
119
120void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
121                       HeapWord* destination)
122{
123  assert(src_region_idx != 0, "invalid src_region_idx");
124  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
125  assert(destination != NULL, "invalid destination argument");
126
127  _src_region_idx = src_region_idx;
128  _partial_obj_size = partial_obj_size;
129  _destination = destination;
130
131  // These fields may not be updated below, so make sure they're clear.
132  assert(_dest_region_addr == NULL, "should have been cleared");
133  assert(_first_src_addr == NULL, "should have been cleared");
134
135  // Determine the number of destination regions for the partial object.
136  HeapWord* const last_word = destination + partial_obj_size - 1;
137  const ParallelCompactData& sd = PSParallelCompact::summary_data();
138  HeapWord* const beg_region_addr = sd.region_align_down(destination);
139  HeapWord* const end_region_addr = sd.region_align_down(last_word);
140
141  if (beg_region_addr == end_region_addr) {
142    // One destination region.
143    _destination_count = 1;
144    if (end_region_addr == destination) {
145      // The destination falls on a region boundary, thus the first word of the
146      // partial object will be the first word copied to the destination region.
147      _dest_region_addr = end_region_addr;
148      _first_src_addr = sd.region_to_addr(src_region_idx);
149    }
150  } else {
151    // Two destination regions.  When copied, the partial object will cross a
152    // destination region boundary, so a word somewhere within the partial
153    // object will be the first word copied to the second destination region.
154    _destination_count = 2;
155    _dest_region_addr = end_region_addr;
156    const size_t ofs = pointer_delta(end_region_addr, destination);
157    assert(ofs < _partial_obj_size, "sanity");
158    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
159  }
160}
161
162void SplitInfo::clear()
163{
164  _src_region_idx = 0;
165  _partial_obj_size = 0;
166  _destination = NULL;
167  _destination_count = 0;
168  _dest_region_addr = NULL;
169  _first_src_addr = NULL;
170  assert(!is_valid(), "sanity");
171}
172
173#ifdef  ASSERT
174void SplitInfo::verify_clear()
175{
176  assert(_src_region_idx == 0, "not clear");
177  assert(_partial_obj_size == 0, "not clear");
178  assert(_destination == NULL, "not clear");
179  assert(_destination_count == 0, "not clear");
180  assert(_dest_region_addr == NULL, "not clear");
181  assert(_first_src_addr == NULL, "not clear");
182}
183#endif  // #ifdef ASSERT
184
185
186void PSParallelCompact::print_on_error(outputStream* st) {
187  _mark_bitmap.print_on_error(st);
188}
189
190#ifndef PRODUCT
191const char* PSParallelCompact::space_names[] = {
192  "old ", "eden", "from", "to  "
193};
194
195void PSParallelCompact::print_region_ranges()
196{
197  tty->print_cr("space  bottom     top        end        new_top");
198  tty->print_cr("------ ---------- ---------- ---------- ----------");
199
200  for (unsigned int id = 0; id < last_space_id; ++id) {
201    const MutableSpace* space = _space_info[id].space();
202    tty->print_cr("%u %s "
203                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
204                  SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
205                  id, space_names[id],
206                  summary_data().addr_to_region_idx(space->bottom()),
207                  summary_data().addr_to_region_idx(space->top()),
208                  summary_data().addr_to_region_idx(space->end()),
209                  summary_data().addr_to_region_idx(_space_info[id].new_top()));
210  }
211}
212
213void
214print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
215{
216#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
217#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
218
219  ParallelCompactData& sd = PSParallelCompact::summary_data();
220  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
221  tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
222                REGION_IDX_FORMAT " " PTR_FORMAT " "
223                REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
224                REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
225                i, p2i(c->data_location()), dci, p2i(c->destination()),
226                c->partial_obj_size(), c->live_obj_size(),
227                c->data_size(), c->source_region(), c->destination_count());
228
229#undef  REGION_IDX_FORMAT
230#undef  REGION_DATA_FORMAT
231}
232
233void
234print_generic_summary_data(ParallelCompactData& summary_data,
235                           HeapWord* const beg_addr,
236                           HeapWord* const end_addr)
237{
238  size_t total_words = 0;
239  size_t i = summary_data.addr_to_region_idx(beg_addr);
240  const size_t last = summary_data.addr_to_region_idx(end_addr);
241  HeapWord* pdest = 0;
242
243  while (i <= last) {
244    ParallelCompactData::RegionData* c = summary_data.region(i);
245    if (c->data_size() != 0 || c->destination() != pdest) {
246      print_generic_summary_region(i, c);
247      total_words += c->data_size();
248      pdest = c->destination();
249    }
250    ++i;
251  }
252
253  tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
254}
255
256void
257print_generic_summary_data(ParallelCompactData& summary_data,
258                           SpaceInfo* space_info)
259{
260  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
261    const MutableSpace* space = space_info[id].space();
262    print_generic_summary_data(summary_data, space->bottom(),
263                               MAX2(space->top(), space_info[id].new_top()));
264  }
265}
266
267void
268print_initial_summary_region(size_t i,
269                             const ParallelCompactData::RegionData* c,
270                             bool newline = true)
271{
272  tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
273             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
274             SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
275             i, p2i(c->destination()),
276             c->partial_obj_size(), c->live_obj_size(),
277             c->data_size(), c->source_region(), c->destination_count());
278  if (newline) tty->cr();
279}
280
281void
282print_initial_summary_data(ParallelCompactData& summary_data,
283                           const MutableSpace* space) {
284  if (space->top() == space->bottom()) {
285    return;
286  }
287
288  const size_t region_size = ParallelCompactData::RegionSize;
289  typedef ParallelCompactData::RegionData RegionData;
290  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
291  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
292  const RegionData* c = summary_data.region(end_region - 1);
293  HeapWord* end_addr = c->destination() + c->data_size();
294  const size_t live_in_space = pointer_delta(end_addr, space->bottom());
295
296  // Print (and count) the full regions at the beginning of the space.
297  size_t full_region_count = 0;
298  size_t i = summary_data.addr_to_region_idx(space->bottom());
299  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
300    print_initial_summary_region(i, summary_data.region(i));
301    ++full_region_count;
302    ++i;
303  }
304
305  size_t live_to_right = live_in_space - full_region_count * region_size;
306
307  double max_reclaimed_ratio = 0.0;
308  size_t max_reclaimed_ratio_region = 0;
309  size_t max_dead_to_right = 0;
310  size_t max_live_to_right = 0;
311
312  // Print the 'reclaimed ratio' for regions while there is something live in
313  // the region or to the right of it.  The remaining regions are empty (and
314  // uninteresting), and computing the ratio will result in division by 0.
315  while (i < end_region && live_to_right > 0) {
316    c = summary_data.region(i);
317    HeapWord* const region_addr = summary_data.region_to_addr(i);
318    const size_t used_to_right = pointer_delta(space->top(), region_addr);
319    const size_t dead_to_right = used_to_right - live_to_right;
320    const double reclaimed_ratio = double(dead_to_right) / live_to_right;
321
322    if (reclaimed_ratio > max_reclaimed_ratio) {
323            max_reclaimed_ratio = reclaimed_ratio;
324            max_reclaimed_ratio_region = i;
325            max_dead_to_right = dead_to_right;
326            max_live_to_right = live_to_right;
327    }
328
329    print_initial_summary_region(i, c, false);
330    tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
331                  reclaimed_ratio, dead_to_right, live_to_right);
332
333    live_to_right -= c->data_size();
334    ++i;
335  }
336
337  // Any remaining regions are empty.  Print one more if there is one.
338  if (i < end_region) {
339    print_initial_summary_region(i, summary_data.region(i));
340  }
341
342  tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
343                "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
344                max_reclaimed_ratio_region, max_dead_to_right,
345                max_live_to_right, max_reclaimed_ratio);
346}
347
348void
349print_initial_summary_data(ParallelCompactData& summary_data,
350                           SpaceInfo* space_info) {
351  unsigned int id = PSParallelCompact::old_space_id;
352  const MutableSpace* space;
353  do {
354    space = space_info[id].space();
355    print_initial_summary_data(summary_data, space);
356  } while (++id < PSParallelCompact::eden_space_id);
357
358  do {
359    space = space_info[id].space();
360    print_generic_summary_data(summary_data, space->bottom(), space->top());
361  } while (++id < PSParallelCompact::last_space_id);
362}
363#endif  // #ifndef PRODUCT
364
365#ifdef  ASSERT
366size_t add_obj_count;
367size_t add_obj_size;
368size_t mark_bitmap_count;
369size_t mark_bitmap_size;
370#endif  // #ifdef ASSERT
371
372ParallelCompactData::ParallelCompactData()
373{
374  _region_start = 0;
375
376  _region_vspace = 0;
377  _reserved_byte_size = 0;
378  _region_data = 0;
379  _region_count = 0;
380
381  _block_vspace = 0;
382  _block_data = 0;
383  _block_count = 0;
384}
385
386bool ParallelCompactData::initialize(MemRegion covered_region)
387{
388  _region_start = covered_region.start();
389  const size_t region_size = covered_region.word_size();
390  DEBUG_ONLY(_region_end = _region_start + region_size;)
391
392  assert(region_align_down(_region_start) == _region_start,
393         "region start not aligned");
394  assert((region_size & RegionSizeOffsetMask) == 0,
395         "region size not a multiple of RegionSize");
396
397  bool result = initialize_region_data(region_size) && initialize_block_data();
398  return result;
399}
400
401PSVirtualSpace*
402ParallelCompactData::create_vspace(size_t count, size_t element_size)
403{
404  const size_t raw_bytes = count * element_size;
405  const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
406  const size_t granularity = os::vm_allocation_granularity();
407  _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
408
409  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
410    MAX2(page_sz, granularity);
411  ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
412  os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
413                       rs.size());
414
415  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
416
417  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
418  if (vspace != 0) {
419    if (vspace->expand_by(_reserved_byte_size)) {
420      return vspace;
421    }
422    delete vspace;
423    // Release memory reserved in the space.
424    rs.release();
425  }
426
427  return 0;
428}
429
430bool ParallelCompactData::initialize_region_data(size_t region_size)
431{
432  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
433  _region_vspace = create_vspace(count, sizeof(RegionData));
434  if (_region_vspace != 0) {
435    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
436    _region_count = count;
437    return true;
438  }
439  return false;
440}
441
442bool ParallelCompactData::initialize_block_data()
443{
444  assert(_region_count != 0, "region data must be initialized first");
445  const size_t count = _region_count << Log2BlocksPerRegion;
446  _block_vspace = create_vspace(count, sizeof(BlockData));
447  if (_block_vspace != 0) {
448    _block_data = (BlockData*)_block_vspace->reserved_low_addr();
449    _block_count = count;
450    return true;
451  }
452  return false;
453}
454
455void ParallelCompactData::clear()
456{
457  memset(_region_data, 0, _region_vspace->committed_size());
458  memset(_block_data, 0, _block_vspace->committed_size());
459}
460
461void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
462  assert(beg_region <= _region_count, "beg_region out of range");
463  assert(end_region <= _region_count, "end_region out of range");
464  assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
465
466  const size_t region_cnt = end_region - beg_region;
467  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
468
469  const size_t beg_block = beg_region * BlocksPerRegion;
470  const size_t block_cnt = region_cnt * BlocksPerRegion;
471  memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
472}
473
474HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
475{
476  const RegionData* cur_cp = region(region_idx);
477  const RegionData* const end_cp = region(region_count() - 1);
478
479  HeapWord* result = region_to_addr(region_idx);
480  if (cur_cp < end_cp) {
481    do {
482      result += cur_cp->partial_obj_size();
483    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
484  }
485  return result;
486}
487
488void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
489{
490  const size_t obj_ofs = pointer_delta(addr, _region_start);
491  const size_t beg_region = obj_ofs >> Log2RegionSize;
492  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
493
494  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
495  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
496
497  if (beg_region == end_region) {
498    // All in one region.
499    _region_data[beg_region].add_live_obj(len);
500    return;
501  }
502
503  // First region.
504  const size_t beg_ofs = region_offset(addr);
505  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
506
507  Klass* klass = ((oop)addr)->klass();
508  // Middle regions--completely spanned by this object.
509  for (size_t region = beg_region + 1; region < end_region; ++region) {
510    _region_data[region].set_partial_obj_size(RegionSize);
511    _region_data[region].set_partial_obj_addr(addr);
512  }
513
514  // Last region.
515  const size_t end_ofs = region_offset(addr + len - 1);
516  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
517  _region_data[end_region].set_partial_obj_addr(addr);
518}
519
520void
521ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
522{
523  assert(region_offset(beg) == 0, "not RegionSize aligned");
524  assert(region_offset(end) == 0, "not RegionSize aligned");
525
526  size_t cur_region = addr_to_region_idx(beg);
527  const size_t end_region = addr_to_region_idx(end);
528  HeapWord* addr = beg;
529  while (cur_region < end_region) {
530    _region_data[cur_region].set_destination(addr);
531    _region_data[cur_region].set_destination_count(0);
532    _region_data[cur_region].set_source_region(cur_region);
533    _region_data[cur_region].set_data_location(addr);
534
535    // Update live_obj_size so the region appears completely full.
536    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
537    _region_data[cur_region].set_live_obj_size(live_size);
538
539    ++cur_region;
540    addr += RegionSize;
541  }
542}
543
544// Find the point at which a space can be split and, if necessary, record the
545// split point.
546//
547// If the current src region (which overflowed the destination space) doesn't
548// have a partial object, the split point is at the beginning of the current src
549// region (an "easy" split, no extra bookkeeping required).
550//
551// If the current src region has a partial object, the split point is in the
552// region where that partial object starts (call it the split_region).  If
553// split_region has a partial object, then the split point is just after that
554// partial object (a "hard" split where we have to record the split data and
555// zero the partial_obj_size field).  With a "hard" split, we know that the
556// partial_obj ends within split_region because the partial object that caused
557// the overflow starts in split_region.  If split_region doesn't have a partial
558// obj, then the split is at the beginning of split_region (another "easy"
559// split).
560HeapWord*
561ParallelCompactData::summarize_split_space(size_t src_region,
562                                           SplitInfo& split_info,
563                                           HeapWord* destination,
564                                           HeapWord* target_end,
565                                           HeapWord** target_next)
566{
567  assert(destination <= target_end, "sanity");
568  assert(destination + _region_data[src_region].data_size() > target_end,
569    "region should not fit into target space");
570  assert(is_region_aligned(target_end), "sanity");
571
572  size_t split_region = src_region;
573  HeapWord* split_destination = destination;
574  size_t partial_obj_size = _region_data[src_region].partial_obj_size();
575
576  if (destination + partial_obj_size > target_end) {
577    // The split point is just after the partial object (if any) in the
578    // src_region that contains the start of the object that overflowed the
579    // destination space.
580    //
581    // Find the start of the "overflow" object and set split_region to the
582    // region containing it.
583    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
584    split_region = addr_to_region_idx(overflow_obj);
585
586    // Clear the source_region field of all destination regions whose first word
587    // came from data after the split point (a non-null source_region field
588    // implies a region must be filled).
589    //
590    // An alternative to the simple loop below:  clear during post_compact(),
591    // which uses memcpy instead of individual stores, and is easy to
592    // parallelize.  (The downside is that it clears the entire RegionData
593    // object as opposed to just one field.)
594    //
595    // post_compact() would have to clear the summary data up to the highest
596    // address that was written during the summary phase, which would be
597    //
598    //         max(top, max(new_top, clear_top))
599    //
600    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
601    // to target_end.
602    const RegionData* const sr = region(split_region);
603    const size_t beg_idx =
604      addr_to_region_idx(region_align_up(sr->destination() +
605                                         sr->partial_obj_size()));
606    const size_t end_idx = addr_to_region_idx(target_end);
607
608    if (TraceParallelOldGCSummaryPhase) {
609        gclog_or_tty->print_cr("split:  clearing source_region field in ["
610                               SIZE_FORMAT ", " SIZE_FORMAT ")",
611                               beg_idx, end_idx);
612    }
613    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
614      _region_data[idx].set_source_region(0);
615    }
616
617    // Set split_destination and partial_obj_size to reflect the split region.
618    split_destination = sr->destination();
619    partial_obj_size = sr->partial_obj_size();
620  }
621
622  // The split is recorded only if a partial object extends onto the region.
623  if (partial_obj_size != 0) {
624    _region_data[split_region].set_partial_obj_size(0);
625    split_info.record(split_region, partial_obj_size, split_destination);
626  }
627
628  // Setup the continuation addresses.
629  *target_next = split_destination + partial_obj_size;
630  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
631
632  if (TraceParallelOldGCSummaryPhase) {
633    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
634    gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
635                           " pos=" SIZE_FORMAT,
636                           split_type, p2i(source_next), split_region,
637                           partial_obj_size);
638    gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
639                           " tn=" PTR_FORMAT,
640                           split_type, p2i(split_destination),
641                           addr_to_region_idx(split_destination),
642                           p2i(*target_next));
643
644    if (partial_obj_size != 0) {
645      HeapWord* const po_beg = split_info.destination();
646      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
647      gclog_or_tty->print_cr("%s split:  "
648                             "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
649                             "po_end=" PTR_FORMAT " " SIZE_FORMAT,
650                             split_type,
651                             p2i(po_beg), addr_to_region_idx(po_beg),
652                             p2i(po_end), addr_to_region_idx(po_end));
653    }
654  }
655
656  return source_next;
657}
658
659bool ParallelCompactData::summarize(SplitInfo& split_info,
660                                    HeapWord* source_beg, HeapWord* source_end,
661                                    HeapWord** source_next,
662                                    HeapWord* target_beg, HeapWord* target_end,
663                                    HeapWord** target_next)
664{
665  if (TraceParallelOldGCSummaryPhase) {
666    HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
667    tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
668                  "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
669                  p2i(source_beg), p2i(source_end), p2i(source_next_val),
670                  p2i(target_beg), p2i(target_end), p2i(*target_next));
671  }
672
673  size_t cur_region = addr_to_region_idx(source_beg);
674  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
675
676  HeapWord *dest_addr = target_beg;
677  while (cur_region < end_region) {
678    // The destination must be set even if the region has no data.
679    _region_data[cur_region].set_destination(dest_addr);
680
681    size_t words = _region_data[cur_region].data_size();
682    if (words > 0) {
683      // If cur_region does not fit entirely into the target space, find a point
684      // at which the source space can be 'split' so that part is copied to the
685      // target space and the rest is copied elsewhere.
686      if (dest_addr + words > target_end) {
687        assert(source_next != NULL, "source_next is NULL when splitting");
688        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
689                                             target_end, target_next);
690        return false;
691      }
692
693      // Compute the destination_count for cur_region, and if necessary, update
694      // source_region for a destination region.  The source_region field is
695      // updated if cur_region is the first (left-most) region to be copied to a
696      // destination region.
697      //
698      // The destination_count calculation is a bit subtle.  A region that has
699      // data that compacts into itself does not count itself as a destination.
700      // This maintains the invariant that a zero count means the region is
701      // available and can be claimed and then filled.
702      uint destination_count = 0;
703      if (split_info.is_split(cur_region)) {
704        // The current region has been split:  the partial object will be copied
705        // to one destination space and the remaining data will be copied to
706        // another destination space.  Adjust the initial destination_count and,
707        // if necessary, set the source_region field if the partial object will
708        // cross a destination region boundary.
709        destination_count = split_info.destination_count();
710        if (destination_count == 2) {
711          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
712          _region_data[dest_idx].set_source_region(cur_region);
713        }
714      }
715
716      HeapWord* const last_addr = dest_addr + words - 1;
717      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
718      const size_t dest_region_2 = addr_to_region_idx(last_addr);
719
720      // Initially assume that the destination regions will be the same and
721      // adjust the value below if necessary.  Under this assumption, if
722      // cur_region == dest_region_2, then cur_region will be compacted
723      // completely into itself.
724      destination_count += cur_region == dest_region_2 ? 0 : 1;
725      if (dest_region_1 != dest_region_2) {
726        // Destination regions differ; adjust destination_count.
727        destination_count += 1;
728        // Data from cur_region will be copied to the start of dest_region_2.
729        _region_data[dest_region_2].set_source_region(cur_region);
730      } else if (region_offset(dest_addr) == 0) {
731        // Data from cur_region will be copied to the start of the destination
732        // region.
733        _region_data[dest_region_1].set_source_region(cur_region);
734      }
735
736      _region_data[cur_region].set_destination_count(destination_count);
737      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
738      dest_addr += words;
739    }
740
741    ++cur_region;
742  }
743
744  *target_next = dest_addr;
745  return true;
746}
747
748HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
749  assert(addr != NULL, "Should detect NULL oop earlier");
750  assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
751  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
752
753  // Region covering the object.
754  RegionData* const region_ptr = addr_to_region_ptr(addr);
755  HeapWord* result = region_ptr->destination();
756
757  // If the entire Region is live, the new location is region->destination + the
758  // offset of the object within in the Region.
759
760  // Run some performance tests to determine if this special case pays off.  It
761  // is worth it for pointers into the dense prefix.  If the optimization to
762  // avoid pointer updates in regions that only point to the dense prefix is
763  // ever implemented, this should be revisited.
764  if (region_ptr->data_size() == RegionSize) {
765    result += region_offset(addr);
766    return result;
767  }
768
769  // Otherwise, the new location is region->destination + block offset + the
770  // number of live words in the Block that are (a) to the left of addr and (b)
771  // due to objects that start in the Block.
772
773  // Fill in the block table if necessary.  This is unsynchronized, so multiple
774  // threads may fill the block table for a region (harmless, since it is
775  // idempotent).
776  if (!region_ptr->blocks_filled()) {
777    PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
778    region_ptr->set_blocks_filled();
779  }
780
781  HeapWord* const search_start = block_align_down(addr);
782  const size_t block_offset = addr_to_block_ptr(addr)->offset();
783
784  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
785  const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
786  result += block_offset + live;
787  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
788  return result;
789}
790
791#ifdef ASSERT
792void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
793{
794  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
795  const size_t* const end = (const size_t*)vspace->committed_high_addr();
796  for (const size_t* p = beg; p < end; ++p) {
797    assert(*p == 0, "not zero");
798  }
799}
800
801void ParallelCompactData::verify_clear()
802{
803  verify_clear(_region_vspace);
804  verify_clear(_block_vspace);
805}
806#endif  // #ifdef ASSERT
807
808STWGCTimer          PSParallelCompact::_gc_timer;
809ParallelOldTracer   PSParallelCompact::_gc_tracer;
810elapsedTimer        PSParallelCompact::_accumulated_time;
811unsigned int        PSParallelCompact::_total_invocations = 0;
812unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
813jlong               PSParallelCompact::_time_of_last_gc = 0;
814CollectorCounters*  PSParallelCompact::_counters = NULL;
815ParMarkBitMap       PSParallelCompact::_mark_bitmap;
816ParallelCompactData PSParallelCompact::_summary_data;
817
818PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
819
820bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
821
822PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
823PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
824
825void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
826  klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
827}
828
829void PSParallelCompact::post_initialize() {
830  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
831  MemRegion mr = heap->reserved_region();
832  _ref_processor =
833    new ReferenceProcessor(mr,            // span
834                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
835                           ParallelGCThreads, // mt processing degree
836                           true,              // mt discovery
837                           ParallelGCThreads, // mt discovery degree
838                           true,              // atomic_discovery
839                           &_is_alive_closure); // non-header is alive closure
840  _counters = new CollectorCounters("PSParallelCompact", 1);
841
842  // Initialize static fields in ParCompactionManager.
843  ParCompactionManager::initialize(mark_bitmap());
844}
845
846bool PSParallelCompact::initialize() {
847  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
848  MemRegion mr = heap->reserved_region();
849
850  // Was the old gen get allocated successfully?
851  if (!heap->old_gen()->is_allocated()) {
852    return false;
853  }
854
855  initialize_space_info();
856  initialize_dead_wood_limiter();
857
858  if (!_mark_bitmap.initialize(mr)) {
859    vm_shutdown_during_initialization(
860      err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
861      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
862      _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
863    return false;
864  }
865
866  if (!_summary_data.initialize(mr)) {
867    vm_shutdown_during_initialization(
868      err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
869      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
870      _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
871    return false;
872  }
873
874  return true;
875}
876
877void PSParallelCompact::initialize_space_info()
878{
879  memset(&_space_info, 0, sizeof(_space_info));
880
881  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
882  PSYoungGen* young_gen = heap->young_gen();
883
884  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
885  _space_info[eden_space_id].set_space(young_gen->eden_space());
886  _space_info[from_space_id].set_space(young_gen->from_space());
887  _space_info[to_space_id].set_space(young_gen->to_space());
888
889  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
890}
891
892void PSParallelCompact::initialize_dead_wood_limiter()
893{
894  const size_t max = 100;
895  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
896  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
897  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
898  DEBUG_ONLY(_dwl_initialized = true;)
899  _dwl_adjustment = normal_distribution(1.0);
900}
901
902// Simple class for storing info about the heap at the start of GC, to be used
903// after GC for comparison/printing.
904class PreGCValues {
905public:
906  PreGCValues() { }
907  PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
908
909  void fill(ParallelScavengeHeap* heap) {
910    _heap_used      = heap->used();
911    _young_gen_used = heap->young_gen()->used_in_bytes();
912    _old_gen_used   = heap->old_gen()->used_in_bytes();
913    _metadata_used  = MetaspaceAux::used_bytes();
914  };
915
916  size_t heap_used() const      { return _heap_used; }
917  size_t young_gen_used() const { return _young_gen_used; }
918  size_t old_gen_used() const   { return _old_gen_used; }
919  size_t metadata_used() const  { return _metadata_used; }
920
921private:
922  size_t _heap_used;
923  size_t _young_gen_used;
924  size_t _old_gen_used;
925  size_t _metadata_used;
926};
927
928void
929PSParallelCompact::clear_data_covering_space(SpaceId id)
930{
931  // At this point, top is the value before GC, new_top() is the value that will
932  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
933  // should be marked above top.  The summary data is cleared to the larger of
934  // top & new_top.
935  MutableSpace* const space = _space_info[id].space();
936  HeapWord* const bot = space->bottom();
937  HeapWord* const top = space->top();
938  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
939
940  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
941  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
942  _mark_bitmap.clear_range(beg_bit, end_bit);
943
944  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
945  const size_t end_region =
946    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
947  _summary_data.clear_range(beg_region, end_region);
948
949  // Clear the data used to 'split' regions.
950  SplitInfo& split_info = _space_info[id].split_info();
951  if (split_info.is_valid()) {
952    split_info.clear();
953  }
954  DEBUG_ONLY(split_info.verify_clear();)
955}
956
957void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
958{
959  // Update the from & to space pointers in space_info, since they are swapped
960  // at each young gen gc.  Do the update unconditionally (even though a
961  // promotion failure does not swap spaces) because an unknown number of young
962  // collections will have swapped the spaces an unknown number of times.
963  GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
964  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
965  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
966  _space_info[to_space_id].set_space(heap->young_gen()->to_space());
967
968  pre_gc_values->fill(heap);
969
970  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
971  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
972
973  // Increment the invocation count
974  heap->increment_total_collections(true);
975
976  // We need to track unique mark sweep invocations as well.
977  _total_invocations++;
978
979  heap->print_heap_before_gc();
980  heap->trace_heap_before_gc(&_gc_tracer);
981
982  // Fill in TLABs
983  heap->accumulate_statistics_all_tlabs();
984  heap->ensure_parsability(true);  // retire TLABs
985
986  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
987    HandleMark hm;  // Discard invalid handles created during verification
988    Universe::verify(" VerifyBeforeGC:");
989  }
990
991  // Verify object start arrays
992  if (VerifyObjectStartArray &&
993      VerifyBeforeGC) {
994    heap->old_gen()->verify_object_start_array();
995  }
996
997  DEBUG_ONLY(mark_bitmap()->verify_clear();)
998  DEBUG_ONLY(summary_data().verify_clear();)
999
1000  // Have worker threads release resources the next time they run a task.
1001  gc_task_manager()->release_all_resources();
1002}
1003
1004void PSParallelCompact::post_compact()
1005{
1006  GCTraceTime tm("post compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1007
1008  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1009    // Clear the marking bitmap, summary data and split info.
1010    clear_data_covering_space(SpaceId(id));
1011    // Update top().  Must be done after clearing the bitmap and summary data.
1012    _space_info[id].publish_new_top();
1013  }
1014
1015  MutableSpace* const eden_space = _space_info[eden_space_id].space();
1016  MutableSpace* const from_space = _space_info[from_space_id].space();
1017  MutableSpace* const to_space   = _space_info[to_space_id].space();
1018
1019  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1020  bool eden_empty = eden_space->is_empty();
1021  if (!eden_empty) {
1022    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1023                                            heap->young_gen(), heap->old_gen());
1024  }
1025
1026  // Update heap occupancy information which is used as input to the soft ref
1027  // clearing policy at the next gc.
1028  Universe::update_heap_info_at_gc();
1029
1030  bool young_gen_empty = eden_empty && from_space->is_empty() &&
1031    to_space->is_empty();
1032
1033  ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1034  MemRegion old_mr = heap->old_gen()->reserved();
1035  if (young_gen_empty) {
1036    modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1037  } else {
1038    modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1039  }
1040
1041  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1042  ClassLoaderDataGraph::purge();
1043  MetaspaceAux::verify_metrics();
1044
1045  CodeCache::gc_epilogue();
1046  JvmtiExport::gc_epilogue();
1047
1048  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1049
1050  ref_processor()->enqueue_discovered_references(NULL);
1051
1052  if (ZapUnusedHeapArea) {
1053    heap->gen_mangle_unused_area();
1054  }
1055
1056  // Update time of last GC
1057  reset_millis_since_last_gc();
1058}
1059
1060HeapWord*
1061PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1062                                                    bool maximum_compaction)
1063{
1064  const size_t region_size = ParallelCompactData::RegionSize;
1065  const ParallelCompactData& sd = summary_data();
1066
1067  const MutableSpace* const space = _space_info[id].space();
1068  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1069  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1070  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1071
1072  // Skip full regions at the beginning of the space--they are necessarily part
1073  // of the dense prefix.
1074  size_t full_count = 0;
1075  const RegionData* cp;
1076  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1077    ++full_count;
1078  }
1079
1080  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1081  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1082  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1083  if (maximum_compaction || cp == end_cp || interval_ended) {
1084    _maximum_compaction_gc_num = total_invocations();
1085    return sd.region_to_addr(cp);
1086  }
1087
1088  HeapWord* const new_top = _space_info[id].new_top();
1089  const size_t space_live = pointer_delta(new_top, space->bottom());
1090  const size_t space_used = space->used_in_words();
1091  const size_t space_capacity = space->capacity_in_words();
1092
1093  const double cur_density = double(space_live) / space_capacity;
1094  const double deadwood_density =
1095    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1096  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1097
1098  if (TraceParallelOldGCDensePrefix) {
1099    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1100                  cur_density, deadwood_density, deadwood_goal);
1101    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1102                  "space_cap=" SIZE_FORMAT,
1103                  space_live, space_used,
1104                  space_capacity);
1105  }
1106
1107  // XXX - Use binary search?
1108  HeapWord* dense_prefix = sd.region_to_addr(cp);
1109  const RegionData* full_cp = cp;
1110  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1111  while (cp < end_cp) {
1112    HeapWord* region_destination = cp->destination();
1113    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1114    if (TraceParallelOldGCDensePrefix && Verbose) {
1115      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1116                    "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1117                    sd.region(cp), p2i(region_destination),
1118                    p2i(dense_prefix), cur_deadwood);
1119    }
1120
1121    if (cur_deadwood >= deadwood_goal) {
1122      // Found the region that has the correct amount of deadwood to the left.
1123      // This typically occurs after crossing a fairly sparse set of regions, so
1124      // iterate backwards over those sparse regions, looking for the region
1125      // that has the lowest density of live objects 'to the right.'
1126      size_t space_to_left = sd.region(cp) * region_size;
1127      size_t live_to_left = space_to_left - cur_deadwood;
1128      size_t space_to_right = space_capacity - space_to_left;
1129      size_t live_to_right = space_live - live_to_left;
1130      double density_to_right = double(live_to_right) / space_to_right;
1131      while (cp > full_cp) {
1132        --cp;
1133        const size_t prev_region_live_to_right = live_to_right -
1134          cp->data_size();
1135        const size_t prev_region_space_to_right = space_to_right + region_size;
1136        double prev_region_density_to_right =
1137          double(prev_region_live_to_right) / prev_region_space_to_right;
1138        if (density_to_right <= prev_region_density_to_right) {
1139          return dense_prefix;
1140        }
1141        if (TraceParallelOldGCDensePrefix && Verbose) {
1142          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1143                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1144                        prev_region_density_to_right);
1145        }
1146        dense_prefix -= region_size;
1147        live_to_right = prev_region_live_to_right;
1148        space_to_right = prev_region_space_to_right;
1149        density_to_right = prev_region_density_to_right;
1150      }
1151      return dense_prefix;
1152    }
1153
1154    dense_prefix += region_size;
1155    ++cp;
1156  }
1157
1158  return dense_prefix;
1159}
1160
1161#ifndef PRODUCT
1162void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1163                                                 const SpaceId id,
1164                                                 const bool maximum_compaction,
1165                                                 HeapWord* const addr)
1166{
1167  const size_t region_idx = summary_data().addr_to_region_idx(addr);
1168  RegionData* const cp = summary_data().region(region_idx);
1169  const MutableSpace* const space = _space_info[id].space();
1170  HeapWord* const new_top = _space_info[id].new_top();
1171
1172  const size_t space_live = pointer_delta(new_top, space->bottom());
1173  const size_t dead_to_left = pointer_delta(addr, cp->destination());
1174  const size_t space_cap = space->capacity_in_words();
1175  const double dead_to_left_pct = double(dead_to_left) / space_cap;
1176  const size_t live_to_right = new_top - cp->destination();
1177  const size_t dead_to_right = space->top() - addr - live_to_right;
1178
1179  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1180                "spl=" SIZE_FORMAT " "
1181                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1182                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1183                " ratio=%10.8f",
1184                algorithm, p2i(addr), region_idx,
1185                space_live,
1186                dead_to_left, dead_to_left_pct,
1187                dead_to_right, live_to_right,
1188                double(dead_to_right) / live_to_right);
1189}
1190#endif  // #ifndef PRODUCT
1191
1192// Return a fraction indicating how much of the generation can be treated as
1193// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1194// based on the density of live objects in the generation to determine a limit,
1195// which is then adjusted so the return value is min_percent when the density is
1196// 1.
1197//
1198// The following table shows some return values for a different values of the
1199// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1200// min_percent is 1.
1201//
1202//                          fraction allowed as dead wood
1203//         -----------------------------------------------------------------
1204// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1205// ------- ---------- ---------- ---------- ---------- ---------- ----------
1206// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1207// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1208// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1209// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1210// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1211// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1212// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1213// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1214// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1215// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1216// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1217// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1218// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1219// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1220// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1221// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1222// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1223// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1224// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1225// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1226// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1227
1228double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1229{
1230  assert(_dwl_initialized, "uninitialized");
1231
1232  // The raw limit is the value of the normal distribution at x = density.
1233  const double raw_limit = normal_distribution(density);
1234
1235  // Adjust the raw limit so it becomes the minimum when the density is 1.
1236  //
1237  // First subtract the adjustment value (which is simply the precomputed value
1238  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1239  // Then add the minimum value, so the minimum is returned when the density is
1240  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1241  const double min = double(min_percent) / 100.0;
1242  const double limit = raw_limit - _dwl_adjustment + min;
1243  return MAX2(limit, 0.0);
1244}
1245
1246ParallelCompactData::RegionData*
1247PSParallelCompact::first_dead_space_region(const RegionData* beg,
1248                                           const RegionData* end)
1249{
1250  const size_t region_size = ParallelCompactData::RegionSize;
1251  ParallelCompactData& sd = summary_data();
1252  size_t left = sd.region(beg);
1253  size_t right = end > beg ? sd.region(end) - 1 : left;
1254
1255  // Binary search.
1256  while (left < right) {
1257    // Equivalent to (left + right) / 2, but does not overflow.
1258    const size_t middle = left + (right - left) / 2;
1259    RegionData* const middle_ptr = sd.region(middle);
1260    HeapWord* const dest = middle_ptr->destination();
1261    HeapWord* const addr = sd.region_to_addr(middle);
1262    assert(dest != NULL, "sanity");
1263    assert(dest <= addr, "must move left");
1264
1265    if (middle > left && dest < addr) {
1266      right = middle - 1;
1267    } else if (middle < right && middle_ptr->data_size() == region_size) {
1268      left = middle + 1;
1269    } else {
1270      return middle_ptr;
1271    }
1272  }
1273  return sd.region(left);
1274}
1275
1276ParallelCompactData::RegionData*
1277PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1278                                          const RegionData* end,
1279                                          size_t dead_words)
1280{
1281  ParallelCompactData& sd = summary_data();
1282  size_t left = sd.region(beg);
1283  size_t right = end > beg ? sd.region(end) - 1 : left;
1284
1285  // Binary search.
1286  while (left < right) {
1287    // Equivalent to (left + right) / 2, but does not overflow.
1288    const size_t middle = left + (right - left) / 2;
1289    RegionData* const middle_ptr = sd.region(middle);
1290    HeapWord* const dest = middle_ptr->destination();
1291    HeapWord* const addr = sd.region_to_addr(middle);
1292    assert(dest != NULL, "sanity");
1293    assert(dest <= addr, "must move left");
1294
1295    const size_t dead_to_left = pointer_delta(addr, dest);
1296    if (middle > left && dead_to_left > dead_words) {
1297      right = middle - 1;
1298    } else if (middle < right && dead_to_left < dead_words) {
1299      left = middle + 1;
1300    } else {
1301      return middle_ptr;
1302    }
1303  }
1304  return sd.region(left);
1305}
1306
1307// The result is valid during the summary phase, after the initial summarization
1308// of each space into itself, and before final summarization.
1309inline double
1310PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1311                                   HeapWord* const bottom,
1312                                   HeapWord* const top,
1313                                   HeapWord* const new_top)
1314{
1315  ParallelCompactData& sd = summary_data();
1316
1317  assert(cp != NULL, "sanity");
1318  assert(bottom != NULL, "sanity");
1319  assert(top != NULL, "sanity");
1320  assert(new_top != NULL, "sanity");
1321  assert(top >= new_top, "summary data problem?");
1322  assert(new_top > bottom, "space is empty; should not be here");
1323  assert(new_top >= cp->destination(), "sanity");
1324  assert(top >= sd.region_to_addr(cp), "sanity");
1325
1326  HeapWord* const destination = cp->destination();
1327  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1328  const size_t compacted_region_live = pointer_delta(new_top, destination);
1329  const size_t compacted_region_used = pointer_delta(top,
1330                                                     sd.region_to_addr(cp));
1331  const size_t reclaimable = compacted_region_used - compacted_region_live;
1332
1333  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1334  return double(reclaimable) / divisor;
1335}
1336
1337// Return the address of the end of the dense prefix, a.k.a. the start of the
1338// compacted region.  The address is always on a region boundary.
1339//
1340// Completely full regions at the left are skipped, since no compaction can
1341// occur in those regions.  Then the maximum amount of dead wood to allow is
1342// computed, based on the density (amount live / capacity) of the generation;
1343// the region with approximately that amount of dead space to the left is
1344// identified as the limit region.  Regions between the last completely full
1345// region and the limit region are scanned and the one that has the best
1346// (maximum) reclaimed_ratio() is selected.
1347HeapWord*
1348PSParallelCompact::compute_dense_prefix(const SpaceId id,
1349                                        bool maximum_compaction)
1350{
1351  if (ParallelOldGCSplitALot) {
1352    if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1353      // The value was chosen to provoke splitting a young gen space; use it.
1354      return _space_info[id].dense_prefix();
1355    }
1356  }
1357
1358  const size_t region_size = ParallelCompactData::RegionSize;
1359  const ParallelCompactData& sd = summary_data();
1360
1361  const MutableSpace* const space = _space_info[id].space();
1362  HeapWord* const top = space->top();
1363  HeapWord* const top_aligned_up = sd.region_align_up(top);
1364  HeapWord* const new_top = _space_info[id].new_top();
1365  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1366  HeapWord* const bottom = space->bottom();
1367  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1368  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1369  const RegionData* const new_top_cp =
1370    sd.addr_to_region_ptr(new_top_aligned_up);
1371
1372  // Skip full regions at the beginning of the space--they are necessarily part
1373  // of the dense prefix.
1374  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1375  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1376         space->is_empty(), "no dead space allowed to the left");
1377  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1378         "region must have dead space");
1379
1380  // The gc number is saved whenever a maximum compaction is done, and used to
1381  // determine when the maximum compaction interval has expired.  This avoids
1382  // successive max compactions for different reasons.
1383  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1384  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1385  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1386    total_invocations() == HeapFirstMaximumCompactionCount;
1387  if (maximum_compaction || full_cp == top_cp || interval_ended) {
1388    _maximum_compaction_gc_num = total_invocations();
1389    return sd.region_to_addr(full_cp);
1390  }
1391
1392  const size_t space_live = pointer_delta(new_top, bottom);
1393  const size_t space_used = space->used_in_words();
1394  const size_t space_capacity = space->capacity_in_words();
1395
1396  const double density = double(space_live) / double(space_capacity);
1397  const size_t min_percent_free = MarkSweepDeadRatio;
1398  const double limiter = dead_wood_limiter(density, min_percent_free);
1399  const size_t dead_wood_max = space_used - space_live;
1400  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1401                                      dead_wood_max);
1402
1403  if (TraceParallelOldGCDensePrefix) {
1404    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1405                  "space_cap=" SIZE_FORMAT,
1406                  space_live, space_used,
1407                  space_capacity);
1408    tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1409                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1410                  density, min_percent_free, limiter,
1411                  dead_wood_max, dead_wood_limit);
1412  }
1413
1414  // Locate the region with the desired amount of dead space to the left.
1415  const RegionData* const limit_cp =
1416    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1417
1418  // Scan from the first region with dead space to the limit region and find the
1419  // one with the best (largest) reclaimed ratio.
1420  double best_ratio = 0.0;
1421  const RegionData* best_cp = full_cp;
1422  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1423    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1424    if (tmp_ratio > best_ratio) {
1425      best_cp = cp;
1426      best_ratio = tmp_ratio;
1427    }
1428  }
1429
1430#if     0
1431  // Something to consider:  if the region with the best ratio is 'close to' the
1432  // first region w/free space, choose the first region with free space
1433  // ("first-free").  The first-free region is usually near the start of the
1434  // heap, which means we are copying most of the heap already, so copy a bit
1435  // more to get complete compaction.
1436  if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1437    _maximum_compaction_gc_num = total_invocations();
1438    best_cp = full_cp;
1439  }
1440#endif  // #if 0
1441
1442  return sd.region_to_addr(best_cp);
1443}
1444
1445#ifndef PRODUCT
1446void
1447PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1448                                          size_t words)
1449{
1450  if (TraceParallelOldGCSummaryPhase) {
1451    tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1452                  SIZE_FORMAT, p2i(start), p2i(start + words), words);
1453  }
1454
1455  ObjectStartArray* const start_array = _space_info[id].start_array();
1456  CollectedHeap::fill_with_objects(start, words);
1457  for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1458    _mark_bitmap.mark_obj(p, words);
1459    _summary_data.add_obj(p, words);
1460    start_array->allocate_block(p);
1461  }
1462}
1463
1464void
1465PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1466{
1467  ParallelCompactData& sd = summary_data();
1468  MutableSpace* space = _space_info[id].space();
1469
1470  // Find the source and destination start addresses.
1471  HeapWord* const src_addr = sd.region_align_down(start);
1472  HeapWord* dst_addr;
1473  if (src_addr < start) {
1474    dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1475  } else if (src_addr > space->bottom()) {
1476    // The start (the original top() value) is aligned to a region boundary so
1477    // the associated region does not have a destination.  Compute the
1478    // destination from the previous region.
1479    RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1480    dst_addr = cp->destination() + cp->data_size();
1481  } else {
1482    // Filling the entire space.
1483    dst_addr = space->bottom();
1484  }
1485  assert(dst_addr != NULL, "sanity");
1486
1487  // Update the summary data.
1488  bool result = _summary_data.summarize(_space_info[id].split_info(),
1489                                        src_addr, space->top(), NULL,
1490                                        dst_addr, space->end(),
1491                                        _space_info[id].new_top_addr());
1492  assert(result, "should not fail:  bad filler object size");
1493}
1494
1495void
1496PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1497{
1498  if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1499    return;
1500  }
1501
1502  MutableSpace* const space = _space_info[id].space();
1503  if (space->is_empty()) {
1504    HeapWord* b = space->bottom();
1505    HeapWord* t = b + space->capacity_in_words() / 2;
1506    space->set_top(t);
1507    if (ZapUnusedHeapArea) {
1508      space->set_top_for_allocations();
1509    }
1510
1511    size_t min_size = CollectedHeap::min_fill_size();
1512    size_t obj_len = min_size;
1513    while (b + obj_len <= t) {
1514      CollectedHeap::fill_with_object(b, obj_len);
1515      mark_bitmap()->mark_obj(b, obj_len);
1516      summary_data().add_obj(b, obj_len);
1517      b += obj_len;
1518      obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1519    }
1520    if (b < t) {
1521      // The loop didn't completely fill to t (top); adjust top downward.
1522      space->set_top(b);
1523      if (ZapUnusedHeapArea) {
1524        space->set_top_for_allocations();
1525      }
1526    }
1527
1528    HeapWord** nta = _space_info[id].new_top_addr();
1529    bool result = summary_data().summarize(_space_info[id].split_info(),
1530                                           space->bottom(), space->top(), NULL,
1531                                           space->bottom(), space->end(), nta);
1532    assert(result, "space must fit into itself");
1533  }
1534}
1535
1536void
1537PSParallelCompact::provoke_split(bool & max_compaction)
1538{
1539  if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1540    return;
1541  }
1542
1543  const size_t region_size = ParallelCompactData::RegionSize;
1544  ParallelCompactData& sd = summary_data();
1545
1546  MutableSpace* const eden_space = _space_info[eden_space_id].space();
1547  MutableSpace* const from_space = _space_info[from_space_id].space();
1548  const size_t eden_live = pointer_delta(eden_space->top(),
1549                                         _space_info[eden_space_id].new_top());
1550  const size_t from_live = pointer_delta(from_space->top(),
1551                                         _space_info[from_space_id].new_top());
1552
1553  const size_t min_fill_size = CollectedHeap::min_fill_size();
1554  const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1555  const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1556  const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1557  const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1558
1559  // Choose the space to split; need at least 2 regions live (or fillable).
1560  SpaceId id;
1561  MutableSpace* space;
1562  size_t live_words;
1563  size_t fill_words;
1564  if (eden_live + eden_fillable >= region_size * 2) {
1565    id = eden_space_id;
1566    space = eden_space;
1567    live_words = eden_live;
1568    fill_words = eden_fillable;
1569  } else if (from_live + from_fillable >= region_size * 2) {
1570    id = from_space_id;
1571    space = from_space;
1572    live_words = from_live;
1573    fill_words = from_fillable;
1574  } else {
1575    return; // Give up.
1576  }
1577  assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1578
1579  if (live_words < region_size * 2) {
1580    // Fill from top() to end() w/live objects of mixed sizes.
1581    HeapWord* const fill_start = space->top();
1582    live_words += fill_words;
1583
1584    space->set_top(fill_start + fill_words);
1585    if (ZapUnusedHeapArea) {
1586      space->set_top_for_allocations();
1587    }
1588
1589    HeapWord* cur_addr = fill_start;
1590    while (fill_words > 0) {
1591      const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1592      size_t cur_size = MIN2(align_object_size_(r), fill_words);
1593      if (fill_words - cur_size < min_fill_size) {
1594        cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1595      }
1596
1597      CollectedHeap::fill_with_object(cur_addr, cur_size);
1598      mark_bitmap()->mark_obj(cur_addr, cur_size);
1599      sd.add_obj(cur_addr, cur_size);
1600
1601      cur_addr += cur_size;
1602      fill_words -= cur_size;
1603    }
1604
1605    summarize_new_objects(id, fill_start);
1606  }
1607
1608  max_compaction = false;
1609
1610  // Manipulate the old gen so that it has room for about half of the live data
1611  // in the target young gen space (live_words / 2).
1612  id = old_space_id;
1613  space = _space_info[id].space();
1614  const size_t free_at_end = space->free_in_words();
1615  const size_t free_target = align_object_size(live_words / 2);
1616  const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1617
1618  if (free_at_end >= free_target + min_fill_size) {
1619    // Fill space above top() and set the dense prefix so everything survives.
1620    HeapWord* const fill_start = space->top();
1621    const size_t fill_size = free_at_end - free_target;
1622    space->set_top(space->top() + fill_size);
1623    if (ZapUnusedHeapArea) {
1624      space->set_top_for_allocations();
1625    }
1626    fill_with_live_objects(id, fill_start, fill_size);
1627    summarize_new_objects(id, fill_start);
1628    _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1629  } else if (dead + free_at_end > free_target) {
1630    // Find a dense prefix that makes the right amount of space available.
1631    HeapWord* cur = sd.region_align_down(space->top());
1632    HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1633    size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1634    while (dead_to_right < free_target) {
1635      cur -= region_size;
1636      cur_destination = sd.addr_to_region_ptr(cur)->destination();
1637      dead_to_right = pointer_delta(space->end(), cur_destination);
1638    }
1639    _space_info[id].set_dense_prefix(cur);
1640  }
1641}
1642#endif // #ifndef PRODUCT
1643
1644void PSParallelCompact::summarize_spaces_quick()
1645{
1646  for (unsigned int i = 0; i < last_space_id; ++i) {
1647    const MutableSpace* space = _space_info[i].space();
1648    HeapWord** nta = _space_info[i].new_top_addr();
1649    bool result = _summary_data.summarize(_space_info[i].split_info(),
1650                                          space->bottom(), space->top(), NULL,
1651                                          space->bottom(), space->end(), nta);
1652    assert(result, "space must fit into itself");
1653    _space_info[i].set_dense_prefix(space->bottom());
1654  }
1655
1656#ifndef PRODUCT
1657  if (ParallelOldGCSplitALot) {
1658    provoke_split_fill_survivor(to_space_id);
1659  }
1660#endif // #ifndef PRODUCT
1661}
1662
1663void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1664{
1665  HeapWord* const dense_prefix_end = dense_prefix(id);
1666  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1667  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1668  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1669    // Only enough dead space is filled so that any remaining dead space to the
1670    // left is larger than the minimum filler object.  (The remainder is filled
1671    // during the copy/update phase.)
1672    //
1673    // The size of the dead space to the right of the boundary is not a
1674    // concern, since compaction will be able to use whatever space is
1675    // available.
1676    //
1677    // Here '||' is the boundary, 'x' represents a don't care bit and a box
1678    // surrounds the space to be filled with an object.
1679    //
1680    // In the 32-bit VM, each bit represents two 32-bit words:
1681    //                              +---+
1682    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1683    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1684    //                              +---+
1685    //
1686    // In the 64-bit VM, each bit represents one 64-bit word:
1687    //                              +------------+
1688    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1689    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1690    //                              +------------+
1691    //                          +-------+
1692    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1693    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1694    //                          +-------+
1695    //                      +-----------+
1696    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1697    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1698    //                      +-----------+
1699    //                          +-------+
1700    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1701    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1702    //                          +-------+
1703
1704    // Initially assume case a, c or e will apply.
1705    size_t obj_len = CollectedHeap::min_fill_size();
1706    HeapWord* obj_beg = dense_prefix_end - obj_len;
1707
1708#ifdef  _LP64
1709    if (MinObjAlignment > 1) { // object alignment > heap word size
1710      // Cases a, c or e.
1711    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1712      // Case b above.
1713      obj_beg = dense_prefix_end - 1;
1714    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1715               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1716      // Case d above.
1717      obj_beg = dense_prefix_end - 3;
1718      obj_len = 3;
1719    }
1720#endif  // #ifdef _LP64
1721
1722    CollectedHeap::fill_with_object(obj_beg, obj_len);
1723    _mark_bitmap.mark_obj(obj_beg, obj_len);
1724    _summary_data.add_obj(obj_beg, obj_len);
1725    assert(start_array(id) != NULL, "sanity");
1726    start_array(id)->allocate_block(obj_beg);
1727  }
1728}
1729
1730void
1731PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1732{
1733  RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1734  HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1735  RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1736  for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1737    cur->set_source_region(0);
1738  }
1739}
1740
1741void
1742PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1743{
1744  assert(id < last_space_id, "id out of range");
1745  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1746         ParallelOldGCSplitALot && id == old_space_id,
1747         "should have been reset in summarize_spaces_quick()");
1748
1749  const MutableSpace* space = _space_info[id].space();
1750  if (_space_info[id].new_top() != space->bottom()) {
1751    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1752    _space_info[id].set_dense_prefix(dense_prefix_end);
1753
1754#ifndef PRODUCT
1755    if (TraceParallelOldGCDensePrefix) {
1756      print_dense_prefix_stats("ratio", id, maximum_compaction,
1757                               dense_prefix_end);
1758      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1759      print_dense_prefix_stats("density", id, maximum_compaction, addr);
1760    }
1761#endif  // #ifndef PRODUCT
1762
1763    // Recompute the summary data, taking into account the dense prefix.  If
1764    // every last byte will be reclaimed, then the existing summary data which
1765    // compacts everything can be left in place.
1766    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1767      // If dead space crosses the dense prefix boundary, it is (at least
1768      // partially) filled with a dummy object, marked live and added to the
1769      // summary data.  This simplifies the copy/update phase and must be done
1770      // before the final locations of objects are determined, to prevent
1771      // leaving a fragment of dead space that is too small to fill.
1772      fill_dense_prefix_end(id);
1773
1774      // Compute the destination of each Region, and thus each object.
1775      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1776      _summary_data.summarize(_space_info[id].split_info(),
1777                              dense_prefix_end, space->top(), NULL,
1778                              dense_prefix_end, space->end(),
1779                              _space_info[id].new_top_addr());
1780    }
1781  }
1782
1783  if (TraceParallelOldGCSummaryPhase) {
1784    const size_t region_size = ParallelCompactData::RegionSize;
1785    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1786    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1787    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1788    HeapWord* const new_top = _space_info[id].new_top();
1789    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1790    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1791    tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1792                  "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1793                  "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1794                  id, space->capacity_in_words(), p2i(dense_prefix_end),
1795                  dp_region, dp_words / region_size,
1796                  cr_words / region_size, p2i(new_top));
1797  }
1798}
1799
1800#ifndef PRODUCT
1801void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1802                                          HeapWord* dst_beg, HeapWord* dst_end,
1803                                          SpaceId src_space_id,
1804                                          HeapWord* src_beg, HeapWord* src_end)
1805{
1806  if (TraceParallelOldGCSummaryPhase) {
1807    tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1808                  "src=" PTR_FORMAT "-" PTR_FORMAT " "
1809                  SIZE_FORMAT "-" SIZE_FORMAT " "
1810                  "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1811                  SIZE_FORMAT "-" SIZE_FORMAT,
1812                  src_space_id, space_names[src_space_id],
1813                  dst_space_id, space_names[dst_space_id],
1814                  p2i(src_beg), p2i(src_end),
1815                  _summary_data.addr_to_region_idx(src_beg),
1816                  _summary_data.addr_to_region_idx(src_end),
1817                  p2i(dst_beg), p2i(dst_end),
1818                  _summary_data.addr_to_region_idx(dst_beg),
1819                  _summary_data.addr_to_region_idx(dst_end));
1820  }
1821}
1822#endif  // #ifndef PRODUCT
1823
1824void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1825                                      bool maximum_compaction)
1826{
1827  GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1828  // trace("2");
1829
1830#ifdef  ASSERT
1831  if (TraceParallelOldGCMarkingPhase) {
1832    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1833                  "add_obj_bytes=" SIZE_FORMAT,
1834                  add_obj_count, add_obj_size * HeapWordSize);
1835    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1836                  "mark_bitmap_bytes=" SIZE_FORMAT,
1837                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1838  }
1839#endif  // #ifdef ASSERT
1840
1841  // Quick summarization of each space into itself, to see how much is live.
1842  summarize_spaces_quick();
1843
1844  if (TraceParallelOldGCSummaryPhase) {
1845    tty->print_cr("summary_phase:  after summarizing each space to self");
1846    Universe::print();
1847    NOT_PRODUCT(print_region_ranges());
1848    if (Verbose) {
1849      NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1850    }
1851  }
1852
1853  // The amount of live data that will end up in old space (assuming it fits).
1854  size_t old_space_total_live = 0;
1855  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1856    old_space_total_live += pointer_delta(_space_info[id].new_top(),
1857                                          _space_info[id].space()->bottom());
1858  }
1859
1860  MutableSpace* const old_space = _space_info[old_space_id].space();
1861  const size_t old_capacity = old_space->capacity_in_words();
1862  if (old_space_total_live > old_capacity) {
1863    // XXX - should also try to expand
1864    maximum_compaction = true;
1865  }
1866#ifndef PRODUCT
1867  if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1868    provoke_split(maximum_compaction);
1869  }
1870#endif // #ifndef PRODUCT
1871
1872  // Old generations.
1873  summarize_space(old_space_id, maximum_compaction);
1874
1875  // Summarize the remaining spaces in the young gen.  The initial target space
1876  // is the old gen.  If a space does not fit entirely into the target, then the
1877  // remainder is compacted into the space itself and that space becomes the new
1878  // target.
1879  SpaceId dst_space_id = old_space_id;
1880  HeapWord* dst_space_end = old_space->end();
1881  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1882  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1883    const MutableSpace* space = _space_info[id].space();
1884    const size_t live = pointer_delta(_space_info[id].new_top(),
1885                                      space->bottom());
1886    const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1887
1888    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1889                                  SpaceId(id), space->bottom(), space->top());)
1890    if (live > 0 && live <= available) {
1891      // All the live data will fit.
1892      bool done = _summary_data.summarize(_space_info[id].split_info(),
1893                                          space->bottom(), space->top(),
1894                                          NULL,
1895                                          *new_top_addr, dst_space_end,
1896                                          new_top_addr);
1897      assert(done, "space must fit into old gen");
1898
1899      // Reset the new_top value for the space.
1900      _space_info[id].set_new_top(space->bottom());
1901    } else if (live > 0) {
1902      // Attempt to fit part of the source space into the target space.
1903      HeapWord* next_src_addr = NULL;
1904      bool done = _summary_data.summarize(_space_info[id].split_info(),
1905                                          space->bottom(), space->top(),
1906                                          &next_src_addr,
1907                                          *new_top_addr, dst_space_end,
1908                                          new_top_addr);
1909      assert(!done, "space should not fit into old gen");
1910      assert(next_src_addr != NULL, "sanity");
1911
1912      // The source space becomes the new target, so the remainder is compacted
1913      // within the space itself.
1914      dst_space_id = SpaceId(id);
1915      dst_space_end = space->end();
1916      new_top_addr = _space_info[id].new_top_addr();
1917      NOT_PRODUCT(summary_phase_msg(dst_space_id,
1918                                    space->bottom(), dst_space_end,
1919                                    SpaceId(id), next_src_addr, space->top());)
1920      done = _summary_data.summarize(_space_info[id].split_info(),
1921                                     next_src_addr, space->top(),
1922                                     NULL,
1923                                     space->bottom(), dst_space_end,
1924                                     new_top_addr);
1925      assert(done, "space must fit when compacted into itself");
1926      assert(*new_top_addr <= space->top(), "usage should not grow");
1927    }
1928  }
1929
1930  if (TraceParallelOldGCSummaryPhase) {
1931    tty->print_cr("summary_phase:  after final summarization");
1932    Universe::print();
1933    NOT_PRODUCT(print_region_ranges());
1934    if (Verbose) {
1935      NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1936    }
1937  }
1938}
1939
1940// This method should contain all heap-specific policy for invoking a full
1941// collection.  invoke_no_policy() will only attempt to compact the heap; it
1942// will do nothing further.  If we need to bail out for policy reasons, scavenge
1943// before full gc, or any other specialized behavior, it needs to be added here.
1944//
1945// Note that this method should only be called from the vm_thread while at a
1946// safepoint.
1947//
1948// Note that the all_soft_refs_clear flag in the collector policy
1949// may be true because this method can be called without intervening
1950// activity.  For example when the heap space is tight and full measure
1951// are being taken to free space.
1952void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1953  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1954  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1955         "should be in vm thread");
1956
1957  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1958  GCCause::Cause gc_cause = heap->gc_cause();
1959  assert(!heap->is_gc_active(), "not reentrant");
1960
1961  PSAdaptiveSizePolicy* policy = heap->size_policy();
1962  IsGCActiveMark mark;
1963
1964  if (ScavengeBeforeFullGC) {
1965    PSScavenge::invoke_no_policy();
1966  }
1967
1968  const bool clear_all_soft_refs =
1969    heap->collector_policy()->should_clear_all_soft_refs();
1970
1971  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1972                                      maximum_heap_compaction);
1973}
1974
1975// This method contains no policy. You should probably
1976// be calling invoke() instead.
1977bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1978  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1979  assert(ref_processor() != NULL, "Sanity");
1980
1981  if (GC_locker::check_active_before_gc()) {
1982    return false;
1983  }
1984
1985  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1986
1987  _gc_timer.register_gc_start();
1988  _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1989
1990  TimeStamp marking_start;
1991  TimeStamp compaction_start;
1992  TimeStamp collection_exit;
1993
1994  GCCause::Cause gc_cause = heap->gc_cause();
1995  PSYoungGen* young_gen = heap->young_gen();
1996  PSOldGen* old_gen = heap->old_gen();
1997  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1998
1999  // The scope of casr should end after code that can change
2000  // CollectorPolicy::_should_clear_all_soft_refs.
2001  ClearedAllSoftRefs casr(maximum_heap_compaction,
2002                          heap->collector_policy());
2003
2004  if (ZapUnusedHeapArea) {
2005    // Save information needed to minimize mangling
2006    heap->record_gen_tops_before_GC();
2007  }
2008
2009  heap->pre_full_gc_dump(&_gc_timer);
2010
2011  _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2012
2013  // Make sure data structures are sane, make the heap parsable, and do other
2014  // miscellaneous bookkeeping.
2015  PreGCValues pre_gc_values;
2016  pre_compact(&pre_gc_values);
2017
2018  // Get the compaction manager reserved for the VM thread.
2019  ParCompactionManager* const vmthread_cm =
2020    ParCompactionManager::manager_array(gc_task_manager()->workers());
2021
2022  // Place after pre_compact() where the number of invocations is incremented.
2023  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2024
2025  {
2026    ResourceMark rm;
2027    HandleMark hm;
2028
2029    // Set the number of GC threads to be used in this collection
2030    gc_task_manager()->set_active_gang();
2031    gc_task_manager()->task_idle_workers();
2032
2033    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2034    GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
2035    TraceCollectorStats tcs(counters());
2036    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2037
2038    if (TraceOldGenTime) accumulated_time()->start();
2039
2040    // Let the size policy know we're starting
2041    size_policy->major_collection_begin();
2042
2043    CodeCache::gc_prologue();
2044
2045    COMPILER2_PRESENT(DerivedPointerTable::clear());
2046
2047    ref_processor()->enable_discovery();
2048    ref_processor()->setup_policy(maximum_heap_compaction);
2049
2050    bool marked_for_unloading = false;
2051
2052    marking_start.update();
2053    marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
2054
2055    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2056      && GCCause::is_user_requested_gc(gc_cause);
2057    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2058
2059    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2060    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2061
2062    // adjust_roots() updates Universe::_intArrayKlassObj which is
2063    // needed by the compaction for filling holes in the dense prefix.
2064    adjust_roots();
2065
2066    compaction_start.update();
2067    compact();
2068
2069    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
2070    // done before resizing.
2071    post_compact();
2072
2073    // Let the size policy know we're done
2074    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2075
2076    if (UseAdaptiveSizePolicy) {
2077      if (PrintAdaptiveSizePolicy) {
2078        gclog_or_tty->print("AdaptiveSizeStart: ");
2079        gclog_or_tty->stamp();
2080        gclog_or_tty->print_cr(" collection: %d ",
2081                       heap->total_collections());
2082        if (Verbose) {
2083          gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
2084            " young_gen_capacity: " SIZE_FORMAT,
2085            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2086        }
2087      }
2088
2089      // Don't check if the size_policy is ready here.  Let
2090      // the size_policy check that internally.
2091      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2092          AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
2093        // Swap the survivor spaces if from_space is empty. The
2094        // resize_young_gen() called below is normally used after
2095        // a successful young GC and swapping of survivor spaces;
2096        // otherwise, it will fail to resize the young gen with
2097        // the current implementation.
2098        if (young_gen->from_space()->is_empty()) {
2099          young_gen->from_space()->clear(SpaceDecorator::Mangle);
2100          young_gen->swap_spaces();
2101        }
2102
2103        // Calculate optimal free space amounts
2104        assert(young_gen->max_size() >
2105          young_gen->from_space()->capacity_in_bytes() +
2106          young_gen->to_space()->capacity_in_bytes(),
2107          "Sizes of space in young gen are out-of-bounds");
2108
2109        size_t young_live = young_gen->used_in_bytes();
2110        size_t eden_live = young_gen->eden_space()->used_in_bytes();
2111        size_t old_live = old_gen->used_in_bytes();
2112        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
2113        size_t max_old_gen_size = old_gen->max_gen_size();
2114        size_t max_eden_size = young_gen->max_size() -
2115          young_gen->from_space()->capacity_in_bytes() -
2116          young_gen->to_space()->capacity_in_bytes();
2117
2118        // Used for diagnostics
2119        size_policy->clear_generation_free_space_flags();
2120
2121        size_policy->compute_generations_free_space(young_live,
2122                                                    eden_live,
2123                                                    old_live,
2124                                                    cur_eden,
2125                                                    max_old_gen_size,
2126                                                    max_eden_size,
2127                                                    true /* full gc*/);
2128
2129        size_policy->check_gc_overhead_limit(young_live,
2130                                             eden_live,
2131                                             max_old_gen_size,
2132                                             max_eden_size,
2133                                             true /* full gc*/,
2134                                             gc_cause,
2135                                             heap->collector_policy());
2136
2137        size_policy->decay_supplemental_growth(true /* full gc*/);
2138
2139        heap->resize_old_gen(
2140          size_policy->calculated_old_free_size_in_bytes());
2141
2142        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
2143                               size_policy->calculated_survivor_size_in_bytes());
2144      }
2145      if (PrintAdaptiveSizePolicy) {
2146        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2147                       heap->total_collections());
2148      }
2149    }
2150
2151    if (UsePerfData) {
2152      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2153      counters->update_counters();
2154      counters->update_old_capacity(old_gen->capacity_in_bytes());
2155      counters->update_young_capacity(young_gen->capacity_in_bytes());
2156    }
2157
2158    heap->resize_all_tlabs();
2159
2160    // Resize the metaspace capacity after a collection
2161    MetaspaceGC::compute_new_size();
2162
2163    if (TraceOldGenTime) accumulated_time()->stop();
2164
2165    if (PrintGC) {
2166      if (PrintGCDetails) {
2167        // No GC timestamp here.  This is after GC so it would be confusing.
2168        young_gen->print_used_change(pre_gc_values.young_gen_used());
2169        old_gen->print_used_change(pre_gc_values.old_gen_used());
2170        heap->print_heap_change(pre_gc_values.heap_used());
2171        MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2172      } else {
2173        heap->print_heap_change(pre_gc_values.heap_used());
2174      }
2175    }
2176
2177    // Track memory usage and detect low memory
2178    MemoryService::track_memory_usage();
2179    heap->update_counters();
2180    gc_task_manager()->release_idle_workers();
2181  }
2182
2183#ifdef ASSERT
2184  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2185    ParCompactionManager* const cm =
2186      ParCompactionManager::manager_array(int(i));
2187    assert(cm->marking_stack()->is_empty(),       "should be empty");
2188    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2189  }
2190#endif // ASSERT
2191
2192  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2193    HandleMark hm;  // Discard invalid handles created during verification
2194    Universe::verify(" VerifyAfterGC:");
2195  }
2196
2197  // Re-verify object start arrays
2198  if (VerifyObjectStartArray &&
2199      VerifyAfterGC) {
2200    old_gen->verify_object_start_array();
2201  }
2202
2203  if (ZapUnusedHeapArea) {
2204    old_gen->object_space()->check_mangled_unused_area_complete();
2205  }
2206
2207  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2208
2209  collection_exit.update();
2210
2211  heap->print_heap_after_gc();
2212  heap->trace_heap_after_gc(&_gc_tracer);
2213
2214  if (PrintGCTaskTimeStamps) {
2215    gclog_or_tty->print_cr("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " "
2216                           JLONG_FORMAT,
2217                           marking_start.ticks(), compaction_start.ticks(),
2218                           collection_exit.ticks());
2219    gc_task_manager()->print_task_time_stamps();
2220  }
2221
2222  heap->post_full_gc_dump(&_gc_timer);
2223
2224#ifdef TRACESPINNING
2225  ParallelTaskTerminator::print_termination_counts();
2226#endif
2227
2228  _gc_timer.register_gc_end();
2229
2230  _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2231  _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2232
2233  return true;
2234}
2235
2236bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2237                                             PSYoungGen* young_gen,
2238                                             PSOldGen* old_gen) {
2239  MutableSpace* const eden_space = young_gen->eden_space();
2240  assert(!eden_space->is_empty(), "eden must be non-empty");
2241  assert(young_gen->virtual_space()->alignment() ==
2242         old_gen->virtual_space()->alignment(), "alignments do not match");
2243
2244  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2245    return false;
2246  }
2247
2248  // Both generations must be completely committed.
2249  if (young_gen->virtual_space()->uncommitted_size() != 0) {
2250    return false;
2251  }
2252  if (old_gen->virtual_space()->uncommitted_size() != 0) {
2253    return false;
2254  }
2255
2256  // Figure out how much to take from eden.  Include the average amount promoted
2257  // in the total; otherwise the next young gen GC will simply bail out to a
2258  // full GC.
2259  const size_t alignment = old_gen->virtual_space()->alignment();
2260  const size_t eden_used = eden_space->used_in_bytes();
2261  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2262  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2263  const size_t eden_capacity = eden_space->capacity_in_bytes();
2264
2265  if (absorb_size >= eden_capacity) {
2266    return false; // Must leave some space in eden.
2267  }
2268
2269  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2270  if (new_young_size < young_gen->min_gen_size()) {
2271    return false; // Respect young gen minimum size.
2272  }
2273
2274  if (TraceAdaptiveGCBoundary && Verbose) {
2275    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2276                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2277                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2278                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2279                        absorb_size / K,
2280                        eden_capacity / K, (eden_capacity - absorb_size) / K,
2281                        young_gen->from_space()->used_in_bytes() / K,
2282                        young_gen->to_space()->used_in_bytes() / K,
2283                        young_gen->capacity_in_bytes() / K, new_young_size / K);
2284  }
2285
2286  // Fill the unused part of the old gen.
2287  MutableSpace* const old_space = old_gen->object_space();
2288  HeapWord* const unused_start = old_space->top();
2289  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2290
2291  if (unused_words > 0) {
2292    if (unused_words < CollectedHeap::min_fill_size()) {
2293      return false;  // If the old gen cannot be filled, must give up.
2294    }
2295    CollectedHeap::fill_with_objects(unused_start, unused_words);
2296  }
2297
2298  // Take the live data from eden and set both top and end in the old gen to
2299  // eden top.  (Need to set end because reset_after_change() mangles the region
2300  // from end to virtual_space->high() in debug builds).
2301  HeapWord* const new_top = eden_space->top();
2302  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2303                                        absorb_size);
2304  young_gen->reset_after_change();
2305  old_space->set_top(new_top);
2306  old_space->set_end(new_top);
2307  old_gen->reset_after_change();
2308
2309  // Update the object start array for the filler object and the data from eden.
2310  ObjectStartArray* const start_array = old_gen->start_array();
2311  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2312    start_array->allocate_block(p);
2313  }
2314
2315  // Could update the promoted average here, but it is not typically updated at
2316  // full GCs and the value to use is unclear.  Something like
2317  //
2318  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2319
2320  size_policy->set_bytes_absorbed_from_eden(absorb_size);
2321  return true;
2322}
2323
2324GCTaskManager* const PSParallelCompact::gc_task_manager() {
2325  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2326    "shouldn't return NULL");
2327  return ParallelScavengeHeap::gc_task_manager();
2328}
2329
2330void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2331                                      bool maximum_heap_compaction,
2332                                      ParallelOldTracer *gc_tracer) {
2333  // Recursively traverse all live objects and mark them
2334  GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2335
2336  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2337  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2338  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2339  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2340  ParallelTaskTerminator terminator(active_gc_threads, qset);
2341
2342  ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2343  ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2344
2345  // Need new claim bits before marking starts.
2346  ClassLoaderDataGraph::clear_claimed_marks();
2347
2348  {
2349    GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2350
2351    ParallelScavengeHeap::ParStrongRootsScope psrs;
2352
2353    GCTaskQueue* q = GCTaskQueue::create();
2354
2355    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2356    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2357    // We scan the thread roots in parallel
2358    Threads::create_thread_roots_marking_tasks(q);
2359    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2360    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2361    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2362    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2363    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2364    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2365    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2366
2367    if (active_gc_threads > 1) {
2368      for (uint j = 0; j < active_gc_threads; j++) {
2369        q->enqueue(new StealMarkingTask(&terminator));
2370      }
2371    }
2372
2373    gc_task_manager()->execute_and_wait(q);
2374  }
2375
2376  // Process reference objects found during marking
2377  {
2378    GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2379
2380    ReferenceProcessorStats stats;
2381    if (ref_processor()->processing_is_mt()) {
2382      RefProcTaskExecutor task_executor;
2383      stats = ref_processor()->process_discovered_references(
2384        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2385        &task_executor, &_gc_timer, _gc_tracer.gc_id());
2386    } else {
2387      stats = ref_processor()->process_discovered_references(
2388        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2389        &_gc_timer, _gc_tracer.gc_id());
2390    }
2391
2392    gc_tracer->report_gc_reference_stats(stats);
2393  }
2394
2395  GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2396
2397  // This is the point where the entire marking should have completed.
2398  assert(cm->marking_stacks_empty(), "Marking should have completed");
2399
2400  // Follow system dictionary roots and unload classes.
2401  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2402
2403  // Unload nmethods.
2404  CodeCache::do_unloading(is_alive_closure(), purged_class);
2405
2406  // Prune dead klasses from subklass/sibling/implementor lists.
2407  Klass::clean_weak_klass_links(is_alive_closure());
2408
2409  // Delete entries for dead interned strings.
2410  StringTable::unlink(is_alive_closure());
2411
2412  // Clean up unreferenced symbols in symbol table.
2413  SymbolTable::unlink();
2414  _gc_tracer.report_object_count_after_gc(is_alive_closure());
2415}
2416
2417// This should be moved to the shared markSweep code!
2418class PSAlwaysTrueClosure: public BoolObjectClosure {
2419public:
2420  bool do_object_b(oop p) { return true; }
2421};
2422static PSAlwaysTrueClosure always_true;
2423
2424void PSParallelCompact::adjust_roots() {
2425  // Adjust the pointers to reflect the new locations
2426  GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2427
2428  // Need new claim bits when tracing through and adjusting pointers.
2429  ClassLoaderDataGraph::clear_claimed_marks();
2430
2431  // General strong roots.
2432  Universe::oops_do(adjust_pointer_closure());
2433  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2434  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2435  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2436  ObjectSynchronizer::oops_do(adjust_pointer_closure());
2437  FlatProfiler::oops_do(adjust_pointer_closure());
2438  Management::oops_do(adjust_pointer_closure());
2439  JvmtiExport::oops_do(adjust_pointer_closure());
2440  SystemDictionary::oops_do(adjust_pointer_closure());
2441  ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2442
2443  // Now adjust pointers in remaining weak roots.  (All of which should
2444  // have been cleared if they pointed to non-surviving objects.)
2445  // Global (weak) JNI handles
2446  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2447
2448  CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2449  CodeCache::blobs_do(&adjust_from_blobs);
2450  StringTable::oops_do(adjust_pointer_closure());
2451  ref_processor()->weak_oops_do(adjust_pointer_closure());
2452  // Roots were visited so references into the young gen in roots
2453  // may have been scanned.  Process them also.
2454  // Should the reference processor have a span that excludes
2455  // young gen objects?
2456  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2457}
2458
2459void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2460                                                      uint parallel_gc_threads)
2461{
2462  GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2463
2464  // Find the threads that are active
2465  unsigned int which = 0;
2466
2467  const uint task_count = MAX2(parallel_gc_threads, 1U);
2468  for (uint j = 0; j < task_count; j++) {
2469    q->enqueue(new DrainStacksCompactionTask(j));
2470    ParCompactionManager::verify_region_list_empty(j);
2471    // Set the region stacks variables to "no" region stack values
2472    // so that they will be recognized and needing a region stack
2473    // in the stealing tasks if they do not get one by executing
2474    // a draining stack.
2475    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2476    cm->set_region_stack(NULL);
2477    cm->set_region_stack_index((uint)max_uintx);
2478  }
2479  ParCompactionManager::reset_recycled_stack_index();
2480
2481  // Find all regions that are available (can be filled immediately) and
2482  // distribute them to the thread stacks.  The iteration is done in reverse
2483  // order (high to low) so the regions will be removed in ascending order.
2484
2485  const ParallelCompactData& sd = PSParallelCompact::summary_data();
2486
2487  size_t fillable_regions = 0;   // A count for diagnostic purposes.
2488  // A region index which corresponds to the tasks created above.
2489  // "which" must be 0 <= which < task_count
2490
2491  which = 0;
2492  // id + 1 is used to test termination so unsigned  can
2493  // be used with an old_space_id == 0.
2494  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2495    SpaceInfo* const space_info = _space_info + id;
2496    MutableSpace* const space = space_info->space();
2497    HeapWord* const new_top = space_info->new_top();
2498
2499    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2500    const size_t end_region =
2501      sd.addr_to_region_idx(sd.region_align_up(new_top));
2502
2503    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2504      if (sd.region(cur)->claim_unsafe()) {
2505        ParCompactionManager::region_list_push(which, cur);
2506
2507        if (TraceParallelOldGCCompactionPhase && Verbose) {
2508          const size_t count_mod_8 = fillable_regions & 7;
2509          if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2510          gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2511          if (count_mod_8 == 7) gclog_or_tty->cr();
2512        }
2513
2514        NOT_PRODUCT(++fillable_regions;)
2515
2516        // Assign regions to tasks in round-robin fashion.
2517        if (++which == task_count) {
2518          assert(which <= parallel_gc_threads,
2519            "Inconsistent number of workers");
2520          which = 0;
2521        }
2522      }
2523    }
2524  }
2525
2526  if (TraceParallelOldGCCompactionPhase) {
2527    if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2528    gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2529  }
2530}
2531
2532#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2533
2534void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2535                                                    uint parallel_gc_threads) {
2536  GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2537
2538  ParallelCompactData& sd = PSParallelCompact::summary_data();
2539
2540  // Iterate over all the spaces adding tasks for updating
2541  // regions in the dense prefix.  Assume that 1 gc thread
2542  // will work on opening the gaps and the remaining gc threads
2543  // will work on the dense prefix.
2544  unsigned int space_id;
2545  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2546    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2547    const MutableSpace* const space = _space_info[space_id].space();
2548
2549    if (dense_prefix_end == space->bottom()) {
2550      // There is no dense prefix for this space.
2551      continue;
2552    }
2553
2554    // The dense prefix is before this region.
2555    size_t region_index_end_dense_prefix =
2556        sd.addr_to_region_idx(dense_prefix_end);
2557    RegionData* const dense_prefix_cp =
2558      sd.region(region_index_end_dense_prefix);
2559    assert(dense_prefix_end == space->end() ||
2560           dense_prefix_cp->available() ||
2561           dense_prefix_cp->claimed(),
2562           "The region after the dense prefix should always be ready to fill");
2563
2564    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2565
2566    // Is there dense prefix work?
2567    size_t total_dense_prefix_regions =
2568      region_index_end_dense_prefix - region_index_start;
2569    // How many regions of the dense prefix should be given to
2570    // each thread?
2571    if (total_dense_prefix_regions > 0) {
2572      uint tasks_for_dense_prefix = 1;
2573      if (total_dense_prefix_regions <=
2574          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2575        // Don't over partition.  This assumes that
2576        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2577        // so there are not many regions to process.
2578        tasks_for_dense_prefix = parallel_gc_threads;
2579      } else {
2580        // Over partition
2581        tasks_for_dense_prefix = parallel_gc_threads *
2582          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2583      }
2584      size_t regions_per_thread = total_dense_prefix_regions /
2585        tasks_for_dense_prefix;
2586      // Give each thread at least 1 region.
2587      if (regions_per_thread == 0) {
2588        regions_per_thread = 1;
2589      }
2590
2591      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2592        if (region_index_start >= region_index_end_dense_prefix) {
2593          break;
2594        }
2595        // region_index_end is not processed
2596        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2597                                       region_index_end_dense_prefix);
2598        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2599                                             region_index_start,
2600                                             region_index_end));
2601        region_index_start = region_index_end;
2602      }
2603    }
2604    // This gets any part of the dense prefix that did not
2605    // fit evenly.
2606    if (region_index_start < region_index_end_dense_prefix) {
2607      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2608                                           region_index_start,
2609                                           region_index_end_dense_prefix));
2610    }
2611  }
2612}
2613
2614void PSParallelCompact::enqueue_region_stealing_tasks(
2615                                     GCTaskQueue* q,
2616                                     ParallelTaskTerminator* terminator_ptr,
2617                                     uint parallel_gc_threads) {
2618  GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2619
2620  // Once a thread has drained it's stack, it should try to steal regions from
2621  // other threads.
2622  if (parallel_gc_threads > 1) {
2623    for (uint j = 0; j < parallel_gc_threads; j++) {
2624      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2625    }
2626  }
2627}
2628
2629#ifdef ASSERT
2630// Write a histogram of the number of times the block table was filled for a
2631// region.
2632void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2633{
2634  if (!TraceParallelOldGCCompactionPhase) return;
2635
2636  typedef ParallelCompactData::RegionData rd_t;
2637  ParallelCompactData& sd = summary_data();
2638
2639  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2640    MutableSpace* const spc = _space_info[id].space();
2641    if (spc->bottom() != spc->top()) {
2642      const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2643      HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2644      const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2645
2646      size_t histo[5] = { 0, 0, 0, 0, 0 };
2647      const size_t histo_len = sizeof(histo) / sizeof(size_t);
2648      const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2649
2650      for (const rd_t* cur = beg; cur < end; ++cur) {
2651        ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2652      }
2653      out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2654      for (size_t i = 0; i < histo_len; ++i) {
2655        out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2656                   histo[i], 100.0 * histo[i] / region_cnt);
2657      }
2658      out->cr();
2659    }
2660  }
2661}
2662#endif // #ifdef ASSERT
2663
2664void PSParallelCompact::compact() {
2665  // trace("5");
2666  GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2667
2668  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2669  PSOldGen* old_gen = heap->old_gen();
2670  old_gen->start_array()->reset();
2671  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2672  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2673  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2674  ParallelTaskTerminator terminator(active_gc_threads, qset);
2675
2676  GCTaskQueue* q = GCTaskQueue::create();
2677  enqueue_region_draining_tasks(q, active_gc_threads);
2678  enqueue_dense_prefix_tasks(q, active_gc_threads);
2679  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2680
2681  {
2682    GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2683
2684    gc_task_manager()->execute_and_wait(q);
2685
2686#ifdef  ASSERT
2687    // Verify that all regions have been processed before the deferred updates.
2688    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2689      verify_complete(SpaceId(id));
2690    }
2691#endif
2692  }
2693
2694  {
2695    // Update the deferred objects, if any.  Any compaction manager can be used.
2696    GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2697    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2698    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2699      update_deferred_objects(cm, SpaceId(id));
2700    }
2701  }
2702
2703  DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2704}
2705
2706#ifdef  ASSERT
2707void PSParallelCompact::verify_complete(SpaceId space_id) {
2708  // All Regions between space bottom() to new_top() should be marked as filled
2709  // and all Regions between new_top() and top() should be available (i.e.,
2710  // should have been emptied).
2711  ParallelCompactData& sd = summary_data();
2712  SpaceInfo si = _space_info[space_id];
2713  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2714  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2715  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2716  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2717  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2718
2719  bool issued_a_warning = false;
2720
2721  size_t cur_region;
2722  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2723    const RegionData* const c = sd.region(cur_region);
2724    if (!c->completed()) {
2725      warning("region " SIZE_FORMAT " not filled:  "
2726              "destination_count=%u",
2727              cur_region, c->destination_count());
2728      issued_a_warning = true;
2729    }
2730  }
2731
2732  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2733    const RegionData* const c = sd.region(cur_region);
2734    if (!c->available()) {
2735      warning("region " SIZE_FORMAT " not empty:   "
2736              "destination_count=%u",
2737              cur_region, c->destination_count());
2738      issued_a_warning = true;
2739    }
2740  }
2741
2742  if (issued_a_warning) {
2743    print_region_ranges();
2744  }
2745}
2746#endif  // #ifdef ASSERT
2747
2748inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2749  _start_array->allocate_block(addr);
2750  compaction_manager()->update_contents(oop(addr));
2751}
2752
2753// Update interior oops in the ranges of regions [beg_region, end_region).
2754void
2755PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2756                                                       SpaceId space_id,
2757                                                       size_t beg_region,
2758                                                       size_t end_region) {
2759  ParallelCompactData& sd = summary_data();
2760  ParMarkBitMap* const mbm = mark_bitmap();
2761
2762  HeapWord* beg_addr = sd.region_to_addr(beg_region);
2763  HeapWord* const end_addr = sd.region_to_addr(end_region);
2764  assert(beg_region <= end_region, "bad region range");
2765  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2766
2767#ifdef  ASSERT
2768  // Claim the regions to avoid triggering an assert when they are marked as
2769  // filled.
2770  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2771    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2772  }
2773#endif  // #ifdef ASSERT
2774
2775  if (beg_addr != space(space_id)->bottom()) {
2776    // Find the first live object or block of dead space that *starts* in this
2777    // range of regions.  If a partial object crosses onto the region, skip it;
2778    // it will be marked for 'deferred update' when the object head is
2779    // processed.  If dead space crosses onto the region, it is also skipped; it
2780    // will be filled when the prior region is processed.  If neither of those
2781    // apply, the first word in the region is the start of a live object or dead
2782    // space.
2783    assert(beg_addr > space(space_id)->bottom(), "sanity");
2784    const RegionData* const cp = sd.region(beg_region);
2785    if (cp->partial_obj_size() != 0) {
2786      beg_addr = sd.partial_obj_end(beg_region);
2787    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2788      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2789    }
2790  }
2791
2792  if (beg_addr < end_addr) {
2793    // A live object or block of dead space starts in this range of Regions.
2794     HeapWord* const dense_prefix_end = dense_prefix(space_id);
2795
2796    // Create closures and iterate.
2797    UpdateOnlyClosure update_closure(mbm, cm, space_id);
2798    FillClosure fill_closure(cm, space_id);
2799    ParMarkBitMap::IterationStatus status;
2800    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2801                          dense_prefix_end);
2802    if (status == ParMarkBitMap::incomplete) {
2803      update_closure.do_addr(update_closure.source());
2804    }
2805  }
2806
2807  // Mark the regions as filled.
2808  RegionData* const beg_cp = sd.region(beg_region);
2809  RegionData* const end_cp = sd.region(end_region);
2810  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2811    cp->set_completed();
2812  }
2813}
2814
2815// Return the SpaceId for the space containing addr.  If addr is not in the
2816// heap, last_space_id is returned.  In debug mode it expects the address to be
2817// in the heap and asserts such.
2818PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2819  assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2820
2821  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2822    if (_space_info[id].space()->contains(addr)) {
2823      return SpaceId(id);
2824    }
2825  }
2826
2827  assert(false, "no space contains the addr");
2828  return last_space_id;
2829}
2830
2831void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2832                                                SpaceId id) {
2833  assert(id < last_space_id, "bad space id");
2834
2835  ParallelCompactData& sd = summary_data();
2836  const SpaceInfo* const space_info = _space_info + id;
2837  ObjectStartArray* const start_array = space_info->start_array();
2838
2839  const MutableSpace* const space = space_info->space();
2840  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2841  HeapWord* const beg_addr = space_info->dense_prefix();
2842  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2843
2844  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2845  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2846  const RegionData* cur_region;
2847  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2848    HeapWord* const addr = cur_region->deferred_obj_addr();
2849    if (addr != NULL) {
2850      if (start_array != NULL) {
2851        start_array->allocate_block(addr);
2852      }
2853      cm->update_contents(oop(addr));
2854      assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2855    }
2856  }
2857}
2858
2859// Skip over count live words starting from beg, and return the address of the
2860// next live word.  Unless marked, the word corresponding to beg is assumed to
2861// be dead.  Callers must either ensure beg does not correspond to the middle of
2862// an object, or account for those live words in some other way.  Callers must
2863// also ensure that there are enough live words in the range [beg, end) to skip.
2864HeapWord*
2865PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2866{
2867  assert(count > 0, "sanity");
2868
2869  ParMarkBitMap* m = mark_bitmap();
2870  idx_t bits_to_skip = m->words_to_bits(count);
2871  idx_t cur_beg = m->addr_to_bit(beg);
2872  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2873
2874  do {
2875    cur_beg = m->find_obj_beg(cur_beg, search_end);
2876    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2877    const size_t obj_bits = cur_end - cur_beg + 1;
2878    if (obj_bits > bits_to_skip) {
2879      return m->bit_to_addr(cur_beg + bits_to_skip);
2880    }
2881    bits_to_skip -= obj_bits;
2882    cur_beg = cur_end + 1;
2883  } while (bits_to_skip > 0);
2884
2885  // Skipping the desired number of words landed just past the end of an object.
2886  // Find the start of the next object.
2887  cur_beg = m->find_obj_beg(cur_beg, search_end);
2888  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2889  return m->bit_to_addr(cur_beg);
2890}
2891
2892HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2893                                            SpaceId src_space_id,
2894                                            size_t src_region_idx)
2895{
2896  assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2897
2898  const SplitInfo& split_info = _space_info[src_space_id].split_info();
2899  if (split_info.dest_region_addr() == dest_addr) {
2900    // The partial object ending at the split point contains the first word to
2901    // be copied to dest_addr.
2902    return split_info.first_src_addr();
2903  }
2904
2905  const ParallelCompactData& sd = summary_data();
2906  ParMarkBitMap* const bitmap = mark_bitmap();
2907  const size_t RegionSize = ParallelCompactData::RegionSize;
2908
2909  assert(sd.is_region_aligned(dest_addr), "not aligned");
2910  const RegionData* const src_region_ptr = sd.region(src_region_idx);
2911  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2912  HeapWord* const src_region_destination = src_region_ptr->destination();
2913
2914  assert(dest_addr >= src_region_destination, "wrong src region");
2915  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2916
2917  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2918  HeapWord* const src_region_end = src_region_beg + RegionSize;
2919
2920  HeapWord* addr = src_region_beg;
2921  if (dest_addr == src_region_destination) {
2922    // Return the first live word in the source region.
2923    if (partial_obj_size == 0) {
2924      addr = bitmap->find_obj_beg(addr, src_region_end);
2925      assert(addr < src_region_end, "no objects start in src region");
2926    }
2927    return addr;
2928  }
2929
2930  // Must skip some live data.
2931  size_t words_to_skip = dest_addr - src_region_destination;
2932  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2933
2934  if (partial_obj_size >= words_to_skip) {
2935    // All the live words to skip are part of the partial object.
2936    addr += words_to_skip;
2937    if (partial_obj_size == words_to_skip) {
2938      // Find the first live word past the partial object.
2939      addr = bitmap->find_obj_beg(addr, src_region_end);
2940      assert(addr < src_region_end, "wrong src region");
2941    }
2942    return addr;
2943  }
2944
2945  // Skip over the partial object (if any).
2946  if (partial_obj_size != 0) {
2947    words_to_skip -= partial_obj_size;
2948    addr += partial_obj_size;
2949  }
2950
2951  // Skip over live words due to objects that start in the region.
2952  addr = skip_live_words(addr, src_region_end, words_to_skip);
2953  assert(addr < src_region_end, "wrong src region");
2954  return addr;
2955}
2956
2957void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2958                                                     SpaceId src_space_id,
2959                                                     size_t beg_region,
2960                                                     HeapWord* end_addr)
2961{
2962  ParallelCompactData& sd = summary_data();
2963
2964#ifdef ASSERT
2965  MutableSpace* const src_space = _space_info[src_space_id].space();
2966  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2967  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2968         "src_space_id does not match beg_addr");
2969  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2970         "src_space_id does not match end_addr");
2971#endif // #ifdef ASSERT
2972
2973  RegionData* const beg = sd.region(beg_region);
2974  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2975
2976  // Regions up to new_top() are enqueued if they become available.
2977  HeapWord* const new_top = _space_info[src_space_id].new_top();
2978  RegionData* const enqueue_end =
2979    sd.addr_to_region_ptr(sd.region_align_up(new_top));
2980
2981  for (RegionData* cur = beg; cur < end; ++cur) {
2982    assert(cur->data_size() > 0, "region must have live data");
2983    cur->decrement_destination_count();
2984    if (cur < enqueue_end && cur->available() && cur->claim()) {
2985      cm->push_region(sd.region(cur));
2986    }
2987  }
2988}
2989
2990size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2991                                          SpaceId& src_space_id,
2992                                          HeapWord*& src_space_top,
2993                                          HeapWord* end_addr)
2994{
2995  typedef ParallelCompactData::RegionData RegionData;
2996
2997  ParallelCompactData& sd = PSParallelCompact::summary_data();
2998  const size_t region_size = ParallelCompactData::RegionSize;
2999
3000  size_t src_region_idx = 0;
3001
3002  // Skip empty regions (if any) up to the top of the space.
3003  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3004  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3005  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3006  const RegionData* const top_region_ptr =
3007    sd.addr_to_region_ptr(top_aligned_up);
3008  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3009    ++src_region_ptr;
3010  }
3011
3012  if (src_region_ptr < top_region_ptr) {
3013    // The next source region is in the current space.  Update src_region_idx
3014    // and the source address to match src_region_ptr.
3015    src_region_idx = sd.region(src_region_ptr);
3016    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3017    if (src_region_addr > closure.source()) {
3018      closure.set_source(src_region_addr);
3019    }
3020    return src_region_idx;
3021  }
3022
3023  // Switch to a new source space and find the first non-empty region.
3024  unsigned int space_id = src_space_id + 1;
3025  assert(space_id < last_space_id, "not enough spaces");
3026
3027  HeapWord* const destination = closure.destination();
3028
3029  do {
3030    MutableSpace* space = _space_info[space_id].space();
3031    HeapWord* const bottom = space->bottom();
3032    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3033
3034    // Iterate over the spaces that do not compact into themselves.
3035    if (bottom_cp->destination() != bottom) {
3036      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3037      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3038
3039      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3040        if (src_cp->live_obj_size() > 0) {
3041          // Found it.
3042          assert(src_cp->destination() == destination,
3043                 "first live obj in the space must match the destination");
3044          assert(src_cp->partial_obj_size() == 0,
3045                 "a space cannot begin with a partial obj");
3046
3047          src_space_id = SpaceId(space_id);
3048          src_space_top = space->top();
3049          const size_t src_region_idx = sd.region(src_cp);
3050          closure.set_source(sd.region_to_addr(src_region_idx));
3051          return src_region_idx;
3052        } else {
3053          assert(src_cp->data_size() == 0, "sanity");
3054        }
3055      }
3056    }
3057  } while (++space_id < last_space_id);
3058
3059  assert(false, "no source region was found");
3060  return 0;
3061}
3062
3063void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3064{
3065  typedef ParMarkBitMap::IterationStatus IterationStatus;
3066  const size_t RegionSize = ParallelCompactData::RegionSize;
3067  ParMarkBitMap* const bitmap = mark_bitmap();
3068  ParallelCompactData& sd = summary_data();
3069  RegionData* const region_ptr = sd.region(region_idx);
3070
3071  // Get the items needed to construct the closure.
3072  HeapWord* dest_addr = sd.region_to_addr(region_idx);
3073  SpaceId dest_space_id = space_id(dest_addr);
3074  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3075  HeapWord* new_top = _space_info[dest_space_id].new_top();
3076  assert(dest_addr < new_top, "sanity");
3077  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3078
3079  // Get the source region and related info.
3080  size_t src_region_idx = region_ptr->source_region();
3081  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3082  HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3083
3084  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3085  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3086
3087  // Adjust src_region_idx to prepare for decrementing destination counts (the
3088  // destination count is not decremented when a region is copied to itself).
3089  if (src_region_idx == region_idx) {
3090    src_region_idx += 1;
3091  }
3092
3093  if (bitmap->is_unmarked(closure.source())) {
3094    // The first source word is in the middle of an object; copy the remainder
3095    // of the object or as much as will fit.  The fact that pointer updates were
3096    // deferred will be noted when the object header is processed.
3097    HeapWord* const old_src_addr = closure.source();
3098    closure.copy_partial_obj();
3099    if (closure.is_full()) {
3100      decrement_destination_counts(cm, src_space_id, src_region_idx,
3101                                   closure.source());
3102      region_ptr->set_deferred_obj_addr(NULL);
3103      region_ptr->set_completed();
3104      return;
3105    }
3106
3107    HeapWord* const end_addr = sd.region_align_down(closure.source());
3108    if (sd.region_align_down(old_src_addr) != end_addr) {
3109      // The partial object was copied from more than one source region.
3110      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3111
3112      // Move to the next source region, possibly switching spaces as well.  All
3113      // args except end_addr may be modified.
3114      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3115                                       end_addr);
3116    }
3117  }
3118
3119  do {
3120    HeapWord* const cur_addr = closure.source();
3121    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3122                                    src_space_top);
3123    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3124
3125    if (status == ParMarkBitMap::incomplete) {
3126      // The last obj that starts in the source region does not end in the
3127      // region.
3128      assert(closure.source() < end_addr, "sanity");
3129      HeapWord* const obj_beg = closure.source();
3130      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3131                                       src_space_top);
3132      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3133      if (obj_end < range_end) {
3134        // The end was found; the entire object will fit.
3135        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3136        assert(status != ParMarkBitMap::would_overflow, "sanity");
3137      } else {
3138        // The end was not found; the object will not fit.
3139        assert(range_end < src_space_top, "obj cannot cross space boundary");
3140        status = ParMarkBitMap::would_overflow;
3141      }
3142    }
3143
3144    if (status == ParMarkBitMap::would_overflow) {
3145      // The last object did not fit.  Note that interior oop updates were
3146      // deferred, then copy enough of the object to fill the region.
3147      region_ptr->set_deferred_obj_addr(closure.destination());
3148      status = closure.copy_until_full(); // copies from closure.source()
3149
3150      decrement_destination_counts(cm, src_space_id, src_region_idx,
3151                                   closure.source());
3152      region_ptr->set_completed();
3153      return;
3154    }
3155
3156    if (status == ParMarkBitMap::full) {
3157      decrement_destination_counts(cm, src_space_id, src_region_idx,
3158                                   closure.source());
3159      region_ptr->set_deferred_obj_addr(NULL);
3160      region_ptr->set_completed();
3161      return;
3162    }
3163
3164    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3165
3166    // Move to the next source region, possibly switching spaces as well.  All
3167    // args except end_addr may be modified.
3168    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3169                                     end_addr);
3170  } while (true);
3171}
3172
3173void PSParallelCompact::fill_blocks(size_t region_idx)
3174{
3175  // Fill in the block table elements for the specified region.  Each block
3176  // table element holds the number of live words in the region that are to the
3177  // left of the first object that starts in the block.  Thus only blocks in
3178  // which an object starts need to be filled.
3179  //
3180  // The algorithm scans the section of the bitmap that corresponds to the
3181  // region, keeping a running total of the live words.  When an object start is
3182  // found, if it's the first to start in the block that contains it, the
3183  // current total is written to the block table element.
3184  const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3185  const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3186  const size_t RegionSize = ParallelCompactData::RegionSize;
3187
3188  ParallelCompactData& sd = summary_data();
3189  const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3190  if (partial_obj_size >= RegionSize) {
3191    return; // No objects start in this region.
3192  }
3193
3194  // Ensure the first loop iteration decides that the block has changed.
3195  size_t cur_block = sd.block_count();
3196
3197  const ParMarkBitMap* const bitmap = mark_bitmap();
3198
3199  const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3200  assert((size_t)1 << Log2BitsPerBlock ==
3201         bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3202
3203  size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3204  const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3205  size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3206  beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3207  while (beg_bit < range_end) {
3208    const size_t new_block = beg_bit >> Log2BitsPerBlock;
3209    if (new_block != cur_block) {
3210      cur_block = new_block;
3211      sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3212    }
3213
3214    const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3215    if (end_bit < range_end - 1) {
3216      live_bits += end_bit - beg_bit + 1;
3217      beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3218    } else {
3219      return;
3220    }
3221  }
3222}
3223
3224void
3225PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3226  const MutableSpace* sp = space(space_id);
3227  if (sp->is_empty()) {
3228    return;
3229  }
3230
3231  ParallelCompactData& sd = PSParallelCompact::summary_data();
3232  ParMarkBitMap* const bitmap = mark_bitmap();
3233  HeapWord* const dp_addr = dense_prefix(space_id);
3234  HeapWord* beg_addr = sp->bottom();
3235  HeapWord* end_addr = sp->top();
3236
3237  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3238
3239  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3240  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3241  if (beg_region < dp_region) {
3242    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3243  }
3244
3245  // The destination of the first live object that starts in the region is one
3246  // past the end of the partial object entering the region (if any).
3247  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3248  HeapWord* const new_top = _space_info[space_id].new_top();
3249  assert(new_top >= dest_addr, "bad new_top value");
3250  const size_t words = pointer_delta(new_top, dest_addr);
3251
3252  if (words > 0) {
3253    ObjectStartArray* start_array = _space_info[space_id].start_array();
3254    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3255
3256    ParMarkBitMap::IterationStatus status;
3257    status = bitmap->iterate(&closure, dest_addr, end_addr);
3258    assert(status == ParMarkBitMap::full, "iteration not complete");
3259    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3260           "live objects skipped because closure is full");
3261  }
3262}
3263
3264jlong PSParallelCompact::millis_since_last_gc() {
3265  // We need a monotonically non-decreasing time in ms but
3266  // os::javaTimeMillis() does not guarantee monotonicity.
3267  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3268  jlong ret_val = now - _time_of_last_gc;
3269  // XXX See note in genCollectedHeap::millis_since_last_gc().
3270  if (ret_val < 0) {
3271    NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
3272    return 0;
3273  }
3274  return ret_val;
3275}
3276
3277void PSParallelCompact::reset_millis_since_last_gc() {
3278  // We need a monotonically non-decreasing time in ms but
3279  // os::javaTimeMillis() does not guarantee monotonicity.
3280  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3281}
3282
3283ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3284{
3285  if (source() != destination()) {
3286    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3287    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3288  }
3289  update_state(words_remaining());
3290  assert(is_full(), "sanity");
3291  return ParMarkBitMap::full;
3292}
3293
3294void MoveAndUpdateClosure::copy_partial_obj()
3295{
3296  size_t words = words_remaining();
3297
3298  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3299  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3300  if (end_addr < range_end) {
3301    words = bitmap()->obj_size(source(), end_addr);
3302  }
3303
3304  // This test is necessary; if omitted, the pointer updates to a partial object
3305  // that crosses the dense prefix boundary could be overwritten.
3306  if (source() != destination()) {
3307    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3308    Copy::aligned_conjoint_words(source(), destination(), words);
3309  }
3310  update_state(words);
3311}
3312
3313void InstanceKlass::oop_pc_update_pointers(oop obj) {
3314  oop_oop_iterate_oop_maps<true>(obj, PSParallelCompact::adjust_pointer_closure());
3315}
3316
3317void InstanceMirrorKlass::oop_pc_update_pointers(oop obj) {
3318  InstanceKlass::oop_pc_update_pointers(obj);
3319
3320  oop_oop_iterate_statics<true>(obj, PSParallelCompact::adjust_pointer_closure());
3321}
3322
3323void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj) {
3324  InstanceKlass::oop_pc_update_pointers(obj);
3325}
3326
3327#ifdef ASSERT
3328template <class T> static void trace_reference_gc(const char *s, oop obj,
3329                                                  T* referent_addr,
3330                                                  T* next_addr,
3331                                                  T* discovered_addr) {
3332  if(TraceReferenceGC && PrintGCDetails) {
3333    gclog_or_tty->print_cr("%s obj " PTR_FORMAT, s, p2i(obj));
3334    gclog_or_tty->print_cr("     referent_addr/* " PTR_FORMAT " / "
3335                           PTR_FORMAT, p2i(referent_addr),
3336                           referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3337    gclog_or_tty->print_cr("     next_addr/* " PTR_FORMAT " / "
3338                           PTR_FORMAT, p2i(next_addr),
3339                           next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3340    gclog_or_tty->print_cr("     discovered_addr/* " PTR_FORMAT " / "
3341                           PTR_FORMAT, p2i(discovered_addr),
3342                           discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3343  }
3344}
3345#endif
3346
3347template <class T>
3348static void oop_pc_update_pointers_specialized(oop obj) {
3349  T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3350  PSParallelCompact::adjust_pointer(referent_addr);
3351  T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3352  PSParallelCompact::adjust_pointer(next_addr);
3353  T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3354  PSParallelCompact::adjust_pointer(discovered_addr);
3355  debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3356                                referent_addr, next_addr, discovered_addr);)
3357}
3358
3359void InstanceRefKlass::oop_pc_update_pointers(oop obj) {
3360  InstanceKlass::oop_pc_update_pointers(obj);
3361
3362  if (UseCompressedOops) {
3363    oop_pc_update_pointers_specialized<narrowOop>(obj);
3364  } else {
3365    oop_pc_update_pointers_specialized<oop>(obj);
3366  }
3367}
3368
3369void ObjArrayKlass::oop_pc_update_pointers(oop obj) {
3370  assert(obj->is_objArray(), "obj must be obj array");
3371  oop_oop_iterate_elements<true>(objArrayOop(obj), PSParallelCompact::adjust_pointer_closure());
3372}
3373
3374void TypeArrayKlass::oop_pc_update_pointers(oop obj) {
3375  assert(obj->is_typeArray(),"must be a type array");
3376}
3377
3378ParMarkBitMapClosure::IterationStatus
3379MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3380  assert(destination() != NULL, "sanity");
3381  assert(bitmap()->obj_size(addr) == words, "bad size");
3382
3383  _source = addr;
3384  assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3385         destination(), "wrong destination");
3386
3387  if (words > words_remaining()) {
3388    return ParMarkBitMap::would_overflow;
3389  }
3390
3391  // The start_array must be updated even if the object is not moving.
3392  if (_start_array != NULL) {
3393    _start_array->allocate_block(destination());
3394  }
3395
3396  if (destination() != source()) {
3397    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3398    Copy::aligned_conjoint_words(source(), destination(), words);
3399  }
3400
3401  oop moved_oop = (oop) destination();
3402  compaction_manager()->update_contents(moved_oop);
3403  assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3404
3405  update_state(words);
3406  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3407  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3408}
3409
3410UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3411                                     ParCompactionManager* cm,
3412                                     PSParallelCompact::SpaceId space_id) :
3413  ParMarkBitMapClosure(mbm, cm),
3414  _space_id(space_id),
3415  _start_array(PSParallelCompact::start_array(space_id))
3416{
3417}
3418
3419// Updates the references in the object to their new values.
3420ParMarkBitMapClosure::IterationStatus
3421UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3422  do_addr(addr);
3423  return ParMarkBitMap::incomplete;
3424}
3425