psParallelCompact.cpp revision 13544:61c0ae8bee4e
1/*
2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "aot/aotLoader.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/parallel/gcTaskManager.hpp"
32#include "gc/parallel/parallelScavengeHeap.inline.hpp"
33#include "gc/parallel/parMarkBitMap.inline.hpp"
34#include "gc/parallel/pcTasks.hpp"
35#include "gc/parallel/psAdaptiveSizePolicy.hpp"
36#include "gc/parallel/psCompactionManager.inline.hpp"
37#include "gc/parallel/psMarkSweep.hpp"
38#include "gc/parallel/psMarkSweepDecorator.hpp"
39#include "gc/parallel/psOldGen.hpp"
40#include "gc/parallel/psParallelCompact.inline.hpp"
41#include "gc/parallel/psPromotionManager.inline.hpp"
42#include "gc/parallel/psScavenge.hpp"
43#include "gc/parallel/psYoungGen.hpp"
44#include "gc/shared/gcCause.hpp"
45#include "gc/shared/gcHeapSummary.hpp"
46#include "gc/shared/gcId.hpp"
47#include "gc/shared/gcLocker.inline.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/isGCActiveMark.hpp"
52#include "gc/shared/referencePolicy.hpp"
53#include "gc/shared/referenceProcessor.hpp"
54#include "gc/shared/spaceDecorator.hpp"
55#include "logging/log.hpp"
56#include "memory/resourceArea.hpp"
57#include "oops/instanceKlass.inline.hpp"
58#include "oops/instanceMirrorKlass.inline.hpp"
59#include "oops/methodData.hpp"
60#include "oops/objArrayKlass.inline.hpp"
61#include "oops/oop.inline.hpp"
62#include "runtime/atomic.hpp"
63#include "runtime/safepoint.hpp"
64#include "runtime/vmThread.hpp"
65#include "services/management.hpp"
66#include "services/memTracker.hpp"
67#include "services/memoryService.hpp"
68#include "utilities/align.hpp"
69#include "utilities/debug.hpp"
70#include "utilities/events.hpp"
71#include "utilities/formatBuffer.hpp"
72#include "utilities/stack.inline.hpp"
73
74#include <math.h>
75
76// All sizes are in HeapWords.
77const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
78const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
79const size_t ParallelCompactData::RegionSizeBytes =
80  RegionSize << LogHeapWordSize;
81const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
82const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
83const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
84
85const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
86const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
87const size_t ParallelCompactData::BlockSizeBytes  =
88  BlockSize << LogHeapWordSize;
89const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
90const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
91const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
92
93const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
94const size_t ParallelCompactData::Log2BlocksPerRegion =
95  Log2RegionSize - Log2BlockSize;
96
97const ParallelCompactData::RegionData::region_sz_t
98ParallelCompactData::RegionData::dc_shift = 27;
99
100const ParallelCompactData::RegionData::region_sz_t
101ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
102
103const ParallelCompactData::RegionData::region_sz_t
104ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
105
106const ParallelCompactData::RegionData::region_sz_t
107ParallelCompactData::RegionData::los_mask = ~dc_mask;
108
109const ParallelCompactData::RegionData::region_sz_t
110ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
111
112const ParallelCompactData::RegionData::region_sz_t
113ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
114
115SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
116
117ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
118
119double PSParallelCompact::_dwl_mean;
120double PSParallelCompact::_dwl_std_dev;
121double PSParallelCompact::_dwl_first_term;
122double PSParallelCompact::_dwl_adjustment;
123#ifdef  ASSERT
124bool   PSParallelCompact::_dwl_initialized = false;
125#endif  // #ifdef ASSERT
126
127void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
128                       HeapWord* destination)
129{
130  assert(src_region_idx != 0, "invalid src_region_idx");
131  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
132  assert(destination != NULL, "invalid destination argument");
133
134  _src_region_idx = src_region_idx;
135  _partial_obj_size = partial_obj_size;
136  _destination = destination;
137
138  // These fields may not be updated below, so make sure they're clear.
139  assert(_dest_region_addr == NULL, "should have been cleared");
140  assert(_first_src_addr == NULL, "should have been cleared");
141
142  // Determine the number of destination regions for the partial object.
143  HeapWord* const last_word = destination + partial_obj_size - 1;
144  const ParallelCompactData& sd = PSParallelCompact::summary_data();
145  HeapWord* const beg_region_addr = sd.region_align_down(destination);
146  HeapWord* const end_region_addr = sd.region_align_down(last_word);
147
148  if (beg_region_addr == end_region_addr) {
149    // One destination region.
150    _destination_count = 1;
151    if (end_region_addr == destination) {
152      // The destination falls on a region boundary, thus the first word of the
153      // partial object will be the first word copied to the destination region.
154      _dest_region_addr = end_region_addr;
155      _first_src_addr = sd.region_to_addr(src_region_idx);
156    }
157  } else {
158    // Two destination regions.  When copied, the partial object will cross a
159    // destination region boundary, so a word somewhere within the partial
160    // object will be the first word copied to the second destination region.
161    _destination_count = 2;
162    _dest_region_addr = end_region_addr;
163    const size_t ofs = pointer_delta(end_region_addr, destination);
164    assert(ofs < _partial_obj_size, "sanity");
165    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
166  }
167}
168
169void SplitInfo::clear()
170{
171  _src_region_idx = 0;
172  _partial_obj_size = 0;
173  _destination = NULL;
174  _destination_count = 0;
175  _dest_region_addr = NULL;
176  _first_src_addr = NULL;
177  assert(!is_valid(), "sanity");
178}
179
180#ifdef  ASSERT
181void SplitInfo::verify_clear()
182{
183  assert(_src_region_idx == 0, "not clear");
184  assert(_partial_obj_size == 0, "not clear");
185  assert(_destination == NULL, "not clear");
186  assert(_destination_count == 0, "not clear");
187  assert(_dest_region_addr == NULL, "not clear");
188  assert(_first_src_addr == NULL, "not clear");
189}
190#endif  // #ifdef ASSERT
191
192
193void PSParallelCompact::print_on_error(outputStream* st) {
194  _mark_bitmap.print_on_error(st);
195}
196
197#ifndef PRODUCT
198const char* PSParallelCompact::space_names[] = {
199  "old ", "eden", "from", "to  "
200};
201
202void PSParallelCompact::print_region_ranges() {
203  if (!log_develop_is_enabled(Trace, gc, compaction)) {
204    return;
205  }
206  Log(gc, compaction) log;
207  ResourceMark rm;
208  LogStream ls(log.trace());
209  Universe::print_on(&ls);
210  log.trace("space  bottom     top        end        new_top");
211  log.trace("------ ---------- ---------- ---------- ----------");
212
213  for (unsigned int id = 0; id < last_space_id; ++id) {
214    const MutableSpace* space = _space_info[id].space();
215    log.trace("%u %s "
216              SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
217              SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
218              id, space_names[id],
219              summary_data().addr_to_region_idx(space->bottom()),
220              summary_data().addr_to_region_idx(space->top()),
221              summary_data().addr_to_region_idx(space->end()),
222              summary_data().addr_to_region_idx(_space_info[id].new_top()));
223  }
224}
225
226void
227print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
228{
229#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
230#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
231
232  ParallelCompactData& sd = PSParallelCompact::summary_data();
233  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
234  log_develop_trace(gc, compaction)(
235      REGION_IDX_FORMAT " " PTR_FORMAT " "
236      REGION_IDX_FORMAT " " PTR_FORMAT " "
237      REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
238      REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
239      i, p2i(c->data_location()), dci, p2i(c->destination()),
240      c->partial_obj_size(), c->live_obj_size(),
241      c->data_size(), c->source_region(), c->destination_count());
242
243#undef  REGION_IDX_FORMAT
244#undef  REGION_DATA_FORMAT
245}
246
247void
248print_generic_summary_data(ParallelCompactData& summary_data,
249                           HeapWord* const beg_addr,
250                           HeapWord* const end_addr)
251{
252  size_t total_words = 0;
253  size_t i = summary_data.addr_to_region_idx(beg_addr);
254  const size_t last = summary_data.addr_to_region_idx(end_addr);
255  HeapWord* pdest = 0;
256
257  while (i < last) {
258    ParallelCompactData::RegionData* c = summary_data.region(i);
259    if (c->data_size() != 0 || c->destination() != pdest) {
260      print_generic_summary_region(i, c);
261      total_words += c->data_size();
262      pdest = c->destination();
263    }
264    ++i;
265  }
266
267  log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
268}
269
270void
271PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
272                                              HeapWord* const beg_addr,
273                                              HeapWord* const end_addr) {
274  ::print_generic_summary_data(summary_data,beg_addr, end_addr);
275}
276
277void
278print_generic_summary_data(ParallelCompactData& summary_data,
279                           SpaceInfo* space_info)
280{
281  if (!log_develop_is_enabled(Trace, gc, compaction)) {
282    return;
283  }
284
285  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
286    const MutableSpace* space = space_info[id].space();
287    print_generic_summary_data(summary_data, space->bottom(),
288                               MAX2(space->top(), space_info[id].new_top()));
289  }
290}
291
292void
293print_initial_summary_data(ParallelCompactData& summary_data,
294                           const MutableSpace* space) {
295  if (space->top() == space->bottom()) {
296    return;
297  }
298
299  const size_t region_size = ParallelCompactData::RegionSize;
300  typedef ParallelCompactData::RegionData RegionData;
301  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
302  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
303  const RegionData* c = summary_data.region(end_region - 1);
304  HeapWord* end_addr = c->destination() + c->data_size();
305  const size_t live_in_space = pointer_delta(end_addr, space->bottom());
306
307  // Print (and count) the full regions at the beginning of the space.
308  size_t full_region_count = 0;
309  size_t i = summary_data.addr_to_region_idx(space->bottom());
310  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
311    ParallelCompactData::RegionData* c = summary_data.region(i);
312    log_develop_trace(gc, compaction)(
313        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
314        i, p2i(c->destination()),
315        c->partial_obj_size(), c->live_obj_size(),
316        c->data_size(), c->source_region(), c->destination_count());
317    ++full_region_count;
318    ++i;
319  }
320
321  size_t live_to_right = live_in_space - full_region_count * region_size;
322
323  double max_reclaimed_ratio = 0.0;
324  size_t max_reclaimed_ratio_region = 0;
325  size_t max_dead_to_right = 0;
326  size_t max_live_to_right = 0;
327
328  // Print the 'reclaimed ratio' for regions while there is something live in
329  // the region or to the right of it.  The remaining regions are empty (and
330  // uninteresting), and computing the ratio will result in division by 0.
331  while (i < end_region && live_to_right > 0) {
332    c = summary_data.region(i);
333    HeapWord* const region_addr = summary_data.region_to_addr(i);
334    const size_t used_to_right = pointer_delta(space->top(), region_addr);
335    const size_t dead_to_right = used_to_right - live_to_right;
336    const double reclaimed_ratio = double(dead_to_right) / live_to_right;
337
338    if (reclaimed_ratio > max_reclaimed_ratio) {
339            max_reclaimed_ratio = reclaimed_ratio;
340            max_reclaimed_ratio_region = i;
341            max_dead_to_right = dead_to_right;
342            max_live_to_right = live_to_right;
343    }
344
345    ParallelCompactData::RegionData* c = summary_data.region(i);
346    log_develop_trace(gc, compaction)(
347        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
348        "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
349        i, p2i(c->destination()),
350        c->partial_obj_size(), c->live_obj_size(),
351        c->data_size(), c->source_region(), c->destination_count(),
352        reclaimed_ratio, dead_to_right, live_to_right);
353
354
355    live_to_right -= c->data_size();
356    ++i;
357  }
358
359  // Any remaining regions are empty.  Print one more if there is one.
360  if (i < end_region) {
361    ParallelCompactData::RegionData* c = summary_data.region(i);
362    log_develop_trace(gc, compaction)(
363        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
364         i, p2i(c->destination()),
365         c->partial_obj_size(), c->live_obj_size(),
366         c->data_size(), c->source_region(), c->destination_count());
367  }
368
369  log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
370                                    max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
371}
372
373void
374print_initial_summary_data(ParallelCompactData& summary_data,
375                           SpaceInfo* space_info) {
376  if (!log_develop_is_enabled(Trace, gc, compaction)) {
377    return;
378  }
379
380  unsigned int id = PSParallelCompact::old_space_id;
381  const MutableSpace* space;
382  do {
383    space = space_info[id].space();
384    print_initial_summary_data(summary_data, space);
385  } while (++id < PSParallelCompact::eden_space_id);
386
387  do {
388    space = space_info[id].space();
389    print_generic_summary_data(summary_data, space->bottom(), space->top());
390  } while (++id < PSParallelCompact::last_space_id);
391}
392#endif  // #ifndef PRODUCT
393
394#ifdef  ASSERT
395size_t add_obj_count;
396size_t add_obj_size;
397size_t mark_bitmap_count;
398size_t mark_bitmap_size;
399#endif  // #ifdef ASSERT
400
401ParallelCompactData::ParallelCompactData()
402{
403  _region_start = 0;
404
405  _region_vspace = 0;
406  _reserved_byte_size = 0;
407  _region_data = 0;
408  _region_count = 0;
409
410  _block_vspace = 0;
411  _block_data = 0;
412  _block_count = 0;
413}
414
415bool ParallelCompactData::initialize(MemRegion covered_region)
416{
417  _region_start = covered_region.start();
418  const size_t region_size = covered_region.word_size();
419  DEBUG_ONLY(_region_end = _region_start + region_size;)
420
421  assert(region_align_down(_region_start) == _region_start,
422         "region start not aligned");
423  assert((region_size & RegionSizeOffsetMask) == 0,
424         "region size not a multiple of RegionSize");
425
426  bool result = initialize_region_data(region_size) && initialize_block_data();
427  return result;
428}
429
430PSVirtualSpace*
431ParallelCompactData::create_vspace(size_t count, size_t element_size)
432{
433  const size_t raw_bytes = count * element_size;
434  const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
435  const size_t granularity = os::vm_allocation_granularity();
436  _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
437
438  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
439    MAX2(page_sz, granularity);
440  ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
441  os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
442                       rs.size());
443
444  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
445
446  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
447  if (vspace != 0) {
448    if (vspace->expand_by(_reserved_byte_size)) {
449      return vspace;
450    }
451    delete vspace;
452    // Release memory reserved in the space.
453    rs.release();
454  }
455
456  return 0;
457}
458
459bool ParallelCompactData::initialize_region_data(size_t region_size)
460{
461  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
462  _region_vspace = create_vspace(count, sizeof(RegionData));
463  if (_region_vspace != 0) {
464    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
465    _region_count = count;
466    return true;
467  }
468  return false;
469}
470
471bool ParallelCompactData::initialize_block_data()
472{
473  assert(_region_count != 0, "region data must be initialized first");
474  const size_t count = _region_count << Log2BlocksPerRegion;
475  _block_vspace = create_vspace(count, sizeof(BlockData));
476  if (_block_vspace != 0) {
477    _block_data = (BlockData*)_block_vspace->reserved_low_addr();
478    _block_count = count;
479    return true;
480  }
481  return false;
482}
483
484void ParallelCompactData::clear()
485{
486  memset(_region_data, 0, _region_vspace->committed_size());
487  memset(_block_data, 0, _block_vspace->committed_size());
488}
489
490void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
491  assert(beg_region <= _region_count, "beg_region out of range");
492  assert(end_region <= _region_count, "end_region out of range");
493  assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
494
495  const size_t region_cnt = end_region - beg_region;
496  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
497
498  const size_t beg_block = beg_region * BlocksPerRegion;
499  const size_t block_cnt = region_cnt * BlocksPerRegion;
500  memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
501}
502
503HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
504{
505  const RegionData* cur_cp = region(region_idx);
506  const RegionData* const end_cp = region(region_count() - 1);
507
508  HeapWord* result = region_to_addr(region_idx);
509  if (cur_cp < end_cp) {
510    do {
511      result += cur_cp->partial_obj_size();
512    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
513  }
514  return result;
515}
516
517void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
518{
519  const size_t obj_ofs = pointer_delta(addr, _region_start);
520  const size_t beg_region = obj_ofs >> Log2RegionSize;
521  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
522
523  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
524  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
525
526  if (beg_region == end_region) {
527    // All in one region.
528    _region_data[beg_region].add_live_obj(len);
529    return;
530  }
531
532  // First region.
533  const size_t beg_ofs = region_offset(addr);
534  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
535
536  Klass* klass = ((oop)addr)->klass();
537  // Middle regions--completely spanned by this object.
538  for (size_t region = beg_region + 1; region < end_region; ++region) {
539    _region_data[region].set_partial_obj_size(RegionSize);
540    _region_data[region].set_partial_obj_addr(addr);
541  }
542
543  // Last region.
544  const size_t end_ofs = region_offset(addr + len - 1);
545  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
546  _region_data[end_region].set_partial_obj_addr(addr);
547}
548
549void
550ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
551{
552  assert(region_offset(beg) == 0, "not RegionSize aligned");
553  assert(region_offset(end) == 0, "not RegionSize aligned");
554
555  size_t cur_region = addr_to_region_idx(beg);
556  const size_t end_region = addr_to_region_idx(end);
557  HeapWord* addr = beg;
558  while (cur_region < end_region) {
559    _region_data[cur_region].set_destination(addr);
560    _region_data[cur_region].set_destination_count(0);
561    _region_data[cur_region].set_source_region(cur_region);
562    _region_data[cur_region].set_data_location(addr);
563
564    // Update live_obj_size so the region appears completely full.
565    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
566    _region_data[cur_region].set_live_obj_size(live_size);
567
568    ++cur_region;
569    addr += RegionSize;
570  }
571}
572
573// Find the point at which a space can be split and, if necessary, record the
574// split point.
575//
576// If the current src region (which overflowed the destination space) doesn't
577// have a partial object, the split point is at the beginning of the current src
578// region (an "easy" split, no extra bookkeeping required).
579//
580// If the current src region has a partial object, the split point is in the
581// region where that partial object starts (call it the split_region).  If
582// split_region has a partial object, then the split point is just after that
583// partial object (a "hard" split where we have to record the split data and
584// zero the partial_obj_size field).  With a "hard" split, we know that the
585// partial_obj ends within split_region because the partial object that caused
586// the overflow starts in split_region.  If split_region doesn't have a partial
587// obj, then the split is at the beginning of split_region (another "easy"
588// split).
589HeapWord*
590ParallelCompactData::summarize_split_space(size_t src_region,
591                                           SplitInfo& split_info,
592                                           HeapWord* destination,
593                                           HeapWord* target_end,
594                                           HeapWord** target_next)
595{
596  assert(destination <= target_end, "sanity");
597  assert(destination + _region_data[src_region].data_size() > target_end,
598    "region should not fit into target space");
599  assert(is_region_aligned(target_end), "sanity");
600
601  size_t split_region = src_region;
602  HeapWord* split_destination = destination;
603  size_t partial_obj_size = _region_data[src_region].partial_obj_size();
604
605  if (destination + partial_obj_size > target_end) {
606    // The split point is just after the partial object (if any) in the
607    // src_region that contains the start of the object that overflowed the
608    // destination space.
609    //
610    // Find the start of the "overflow" object and set split_region to the
611    // region containing it.
612    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
613    split_region = addr_to_region_idx(overflow_obj);
614
615    // Clear the source_region field of all destination regions whose first word
616    // came from data after the split point (a non-null source_region field
617    // implies a region must be filled).
618    //
619    // An alternative to the simple loop below:  clear during post_compact(),
620    // which uses memcpy instead of individual stores, and is easy to
621    // parallelize.  (The downside is that it clears the entire RegionData
622    // object as opposed to just one field.)
623    //
624    // post_compact() would have to clear the summary data up to the highest
625    // address that was written during the summary phase, which would be
626    //
627    //         max(top, max(new_top, clear_top))
628    //
629    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
630    // to target_end.
631    const RegionData* const sr = region(split_region);
632    const size_t beg_idx =
633      addr_to_region_idx(region_align_up(sr->destination() +
634                                         sr->partial_obj_size()));
635    const size_t end_idx = addr_to_region_idx(target_end);
636
637    log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
638    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
639      _region_data[idx].set_source_region(0);
640    }
641
642    // Set split_destination and partial_obj_size to reflect the split region.
643    split_destination = sr->destination();
644    partial_obj_size = sr->partial_obj_size();
645  }
646
647  // The split is recorded only if a partial object extends onto the region.
648  if (partial_obj_size != 0) {
649    _region_data[split_region].set_partial_obj_size(0);
650    split_info.record(split_region, partial_obj_size, split_destination);
651  }
652
653  // Setup the continuation addresses.
654  *target_next = split_destination + partial_obj_size;
655  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
656
657  if (log_develop_is_enabled(Trace, gc, compaction)) {
658    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
659    log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
660                                      split_type, p2i(source_next), split_region, partial_obj_size);
661    log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
662                                      split_type, p2i(split_destination),
663                                      addr_to_region_idx(split_destination),
664                                      p2i(*target_next));
665
666    if (partial_obj_size != 0) {
667      HeapWord* const po_beg = split_info.destination();
668      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
669      log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
670                                        split_type,
671                                        p2i(po_beg), addr_to_region_idx(po_beg),
672                                        p2i(po_end), addr_to_region_idx(po_end));
673    }
674  }
675
676  return source_next;
677}
678
679bool ParallelCompactData::summarize(SplitInfo& split_info,
680                                    HeapWord* source_beg, HeapWord* source_end,
681                                    HeapWord** source_next,
682                                    HeapWord* target_beg, HeapWord* target_end,
683                                    HeapWord** target_next)
684{
685  HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
686  log_develop_trace(gc, compaction)(
687      "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
688      "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
689      p2i(source_beg), p2i(source_end), p2i(source_next_val),
690      p2i(target_beg), p2i(target_end), p2i(*target_next));
691
692  size_t cur_region = addr_to_region_idx(source_beg);
693  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
694
695  HeapWord *dest_addr = target_beg;
696  while (cur_region < end_region) {
697    // The destination must be set even if the region has no data.
698    _region_data[cur_region].set_destination(dest_addr);
699
700    size_t words = _region_data[cur_region].data_size();
701    if (words > 0) {
702      // If cur_region does not fit entirely into the target space, find a point
703      // at which the source space can be 'split' so that part is copied to the
704      // target space and the rest is copied elsewhere.
705      if (dest_addr + words > target_end) {
706        assert(source_next != NULL, "source_next is NULL when splitting");
707        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
708                                             target_end, target_next);
709        return false;
710      }
711
712      // Compute the destination_count for cur_region, and if necessary, update
713      // source_region for a destination region.  The source_region field is
714      // updated if cur_region is the first (left-most) region to be copied to a
715      // destination region.
716      //
717      // The destination_count calculation is a bit subtle.  A region that has
718      // data that compacts into itself does not count itself as a destination.
719      // This maintains the invariant that a zero count means the region is
720      // available and can be claimed and then filled.
721      uint destination_count = 0;
722      if (split_info.is_split(cur_region)) {
723        // The current region has been split:  the partial object will be copied
724        // to one destination space and the remaining data will be copied to
725        // another destination space.  Adjust the initial destination_count and,
726        // if necessary, set the source_region field if the partial object will
727        // cross a destination region boundary.
728        destination_count = split_info.destination_count();
729        if (destination_count == 2) {
730          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
731          _region_data[dest_idx].set_source_region(cur_region);
732        }
733      }
734
735      HeapWord* const last_addr = dest_addr + words - 1;
736      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
737      const size_t dest_region_2 = addr_to_region_idx(last_addr);
738
739      // Initially assume that the destination regions will be the same and
740      // adjust the value below if necessary.  Under this assumption, if
741      // cur_region == dest_region_2, then cur_region will be compacted
742      // completely into itself.
743      destination_count += cur_region == dest_region_2 ? 0 : 1;
744      if (dest_region_1 != dest_region_2) {
745        // Destination regions differ; adjust destination_count.
746        destination_count += 1;
747        // Data from cur_region will be copied to the start of dest_region_2.
748        _region_data[dest_region_2].set_source_region(cur_region);
749      } else if (region_offset(dest_addr) == 0) {
750        // Data from cur_region will be copied to the start of the destination
751        // region.
752        _region_data[dest_region_1].set_source_region(cur_region);
753      }
754
755      _region_data[cur_region].set_destination_count(destination_count);
756      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
757      dest_addr += words;
758    }
759
760    ++cur_region;
761  }
762
763  *target_next = dest_addr;
764  return true;
765}
766
767HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
768  assert(addr != NULL, "Should detect NULL oop earlier");
769  assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
770  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
771
772  // Region covering the object.
773  RegionData* const region_ptr = addr_to_region_ptr(addr);
774  HeapWord* result = region_ptr->destination();
775
776  // If the entire Region is live, the new location is region->destination + the
777  // offset of the object within in the Region.
778
779  // Run some performance tests to determine if this special case pays off.  It
780  // is worth it for pointers into the dense prefix.  If the optimization to
781  // avoid pointer updates in regions that only point to the dense prefix is
782  // ever implemented, this should be revisited.
783  if (region_ptr->data_size() == RegionSize) {
784    result += region_offset(addr);
785    return result;
786  }
787
788  // Otherwise, the new location is region->destination + block offset + the
789  // number of live words in the Block that are (a) to the left of addr and (b)
790  // due to objects that start in the Block.
791
792  // Fill in the block table if necessary.  This is unsynchronized, so multiple
793  // threads may fill the block table for a region (harmless, since it is
794  // idempotent).
795  if (!region_ptr->blocks_filled()) {
796    PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
797    region_ptr->set_blocks_filled();
798  }
799
800  HeapWord* const search_start = block_align_down(addr);
801  const size_t block_offset = addr_to_block_ptr(addr)->offset();
802
803  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
804  const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
805  result += block_offset + live;
806  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
807  return result;
808}
809
810#ifdef ASSERT
811void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
812{
813  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
814  const size_t* const end = (const size_t*)vspace->committed_high_addr();
815  for (const size_t* p = beg; p < end; ++p) {
816    assert(*p == 0, "not zero");
817  }
818}
819
820void ParallelCompactData::verify_clear()
821{
822  verify_clear(_region_vspace);
823  verify_clear(_block_vspace);
824}
825#endif  // #ifdef ASSERT
826
827STWGCTimer          PSParallelCompact::_gc_timer;
828ParallelOldTracer   PSParallelCompact::_gc_tracer;
829elapsedTimer        PSParallelCompact::_accumulated_time;
830unsigned int        PSParallelCompact::_total_invocations = 0;
831unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
832jlong               PSParallelCompact::_time_of_last_gc = 0;
833CollectorCounters*  PSParallelCompact::_counters = NULL;
834ParMarkBitMap       PSParallelCompact::_mark_bitmap;
835ParallelCompactData PSParallelCompact::_summary_data;
836
837PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
838
839bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
840
841void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
842  PSParallelCompact::AdjustPointerClosure closure(_cm);
843  klass->oops_do(&closure);
844}
845
846void PSParallelCompact::post_initialize() {
847  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
848  MemRegion mr = heap->reserved_region();
849  _ref_processor =
850    new ReferenceProcessor(mr,            // span
851                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
852                           ParallelGCThreads, // mt processing degree
853                           true,              // mt discovery
854                           ParallelGCThreads, // mt discovery degree
855                           true,              // atomic_discovery
856                           &_is_alive_closure); // non-header is alive closure
857  _counters = new CollectorCounters("PSParallelCompact", 1);
858
859  // Initialize static fields in ParCompactionManager.
860  ParCompactionManager::initialize(mark_bitmap());
861}
862
863bool PSParallelCompact::initialize() {
864  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
865  MemRegion mr = heap->reserved_region();
866
867  // Was the old gen get allocated successfully?
868  if (!heap->old_gen()->is_allocated()) {
869    return false;
870  }
871
872  initialize_space_info();
873  initialize_dead_wood_limiter();
874
875  if (!_mark_bitmap.initialize(mr)) {
876    vm_shutdown_during_initialization(
877      err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
878      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
879      _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
880    return false;
881  }
882
883  if (!_summary_data.initialize(mr)) {
884    vm_shutdown_during_initialization(
885      err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
886      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
887      _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
888    return false;
889  }
890
891  return true;
892}
893
894void PSParallelCompact::initialize_space_info()
895{
896  memset(&_space_info, 0, sizeof(_space_info));
897
898  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
899  PSYoungGen* young_gen = heap->young_gen();
900
901  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
902  _space_info[eden_space_id].set_space(young_gen->eden_space());
903  _space_info[from_space_id].set_space(young_gen->from_space());
904  _space_info[to_space_id].set_space(young_gen->to_space());
905
906  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
907}
908
909void PSParallelCompact::initialize_dead_wood_limiter()
910{
911  const size_t max = 100;
912  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
913  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
914  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
915  DEBUG_ONLY(_dwl_initialized = true;)
916  _dwl_adjustment = normal_distribution(1.0);
917}
918
919void
920PSParallelCompact::clear_data_covering_space(SpaceId id)
921{
922  // At this point, top is the value before GC, new_top() is the value that will
923  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
924  // should be marked above top.  The summary data is cleared to the larger of
925  // top & new_top.
926  MutableSpace* const space = _space_info[id].space();
927  HeapWord* const bot = space->bottom();
928  HeapWord* const top = space->top();
929  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
930
931  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
932  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
933  _mark_bitmap.clear_range(beg_bit, end_bit);
934
935  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
936  const size_t end_region =
937    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
938  _summary_data.clear_range(beg_region, end_region);
939
940  // Clear the data used to 'split' regions.
941  SplitInfo& split_info = _space_info[id].split_info();
942  if (split_info.is_valid()) {
943    split_info.clear();
944  }
945  DEBUG_ONLY(split_info.verify_clear();)
946}
947
948void PSParallelCompact::pre_compact()
949{
950  // Update the from & to space pointers in space_info, since they are swapped
951  // at each young gen gc.  Do the update unconditionally (even though a
952  // promotion failure does not swap spaces) because an unknown number of young
953  // collections will have swapped the spaces an unknown number of times.
954  GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
955  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
956  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
957  _space_info[to_space_id].set_space(heap->young_gen()->to_space());
958
959  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
960  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
961
962  // Increment the invocation count
963  heap->increment_total_collections(true);
964
965  // We need to track unique mark sweep invocations as well.
966  _total_invocations++;
967
968  heap->print_heap_before_gc();
969  heap->trace_heap_before_gc(&_gc_tracer);
970
971  // Fill in TLABs
972  heap->accumulate_statistics_all_tlabs();
973  heap->ensure_parsability(true);  // retire TLABs
974
975  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
976    HandleMark hm;  // Discard invalid handles created during verification
977    Universe::verify("Before GC");
978  }
979
980  // Verify object start arrays
981  if (VerifyObjectStartArray &&
982      VerifyBeforeGC) {
983    heap->old_gen()->verify_object_start_array();
984  }
985
986  DEBUG_ONLY(mark_bitmap()->verify_clear();)
987  DEBUG_ONLY(summary_data().verify_clear();)
988
989  // Have worker threads release resources the next time they run a task.
990  gc_task_manager()->release_all_resources();
991
992  ParCompactionManager::reset_all_bitmap_query_caches();
993}
994
995void PSParallelCompact::post_compact()
996{
997  GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
998
999  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1000    // Clear the marking bitmap, summary data and split info.
1001    clear_data_covering_space(SpaceId(id));
1002    // Update top().  Must be done after clearing the bitmap and summary data.
1003    _space_info[id].publish_new_top();
1004  }
1005
1006  MutableSpace* const eden_space = _space_info[eden_space_id].space();
1007  MutableSpace* const from_space = _space_info[from_space_id].space();
1008  MutableSpace* const to_space   = _space_info[to_space_id].space();
1009
1010  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1011  bool eden_empty = eden_space->is_empty();
1012  if (!eden_empty) {
1013    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1014                                            heap->young_gen(), heap->old_gen());
1015  }
1016
1017  // Update heap occupancy information which is used as input to the soft ref
1018  // clearing policy at the next gc.
1019  Universe::update_heap_info_at_gc();
1020
1021  bool young_gen_empty = eden_empty && from_space->is_empty() &&
1022    to_space->is_empty();
1023
1024  ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1025  MemRegion old_mr = heap->old_gen()->reserved();
1026  if (young_gen_empty) {
1027    modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1028  } else {
1029    modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1030  }
1031
1032  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1033  ClassLoaderDataGraph::purge();
1034  MetaspaceAux::verify_metrics();
1035
1036  CodeCache::gc_epilogue();
1037  JvmtiExport::gc_epilogue();
1038
1039#if defined(COMPILER2) || INCLUDE_JVMCI
1040  DerivedPointerTable::update_pointers();
1041#endif
1042
1043  ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->num_q());
1044
1045  ref_processor()->enqueue_discovered_references(NULL, &pt);
1046
1047  pt.print_enqueue_phase();
1048
1049  if (ZapUnusedHeapArea) {
1050    heap->gen_mangle_unused_area();
1051  }
1052
1053  // Update time of last GC
1054  reset_millis_since_last_gc();
1055}
1056
1057HeapWord*
1058PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1059                                                    bool maximum_compaction)
1060{
1061  const size_t region_size = ParallelCompactData::RegionSize;
1062  const ParallelCompactData& sd = summary_data();
1063
1064  const MutableSpace* const space = _space_info[id].space();
1065  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1066  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1067  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1068
1069  // Skip full regions at the beginning of the space--they are necessarily part
1070  // of the dense prefix.
1071  size_t full_count = 0;
1072  const RegionData* cp;
1073  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1074    ++full_count;
1075  }
1076
1077  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1078  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1079  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1080  if (maximum_compaction || cp == end_cp || interval_ended) {
1081    _maximum_compaction_gc_num = total_invocations();
1082    return sd.region_to_addr(cp);
1083  }
1084
1085  HeapWord* const new_top = _space_info[id].new_top();
1086  const size_t space_live = pointer_delta(new_top, space->bottom());
1087  const size_t space_used = space->used_in_words();
1088  const size_t space_capacity = space->capacity_in_words();
1089
1090  const double cur_density = double(space_live) / space_capacity;
1091  const double deadwood_density =
1092    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1093  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1094
1095  if (TraceParallelOldGCDensePrefix) {
1096    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1097                  cur_density, deadwood_density, deadwood_goal);
1098    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1099                  "space_cap=" SIZE_FORMAT,
1100                  space_live, space_used,
1101                  space_capacity);
1102  }
1103
1104  // XXX - Use binary search?
1105  HeapWord* dense_prefix = sd.region_to_addr(cp);
1106  const RegionData* full_cp = cp;
1107  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1108  while (cp < end_cp) {
1109    HeapWord* region_destination = cp->destination();
1110    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1111    if (TraceParallelOldGCDensePrefix && Verbose) {
1112      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1113                    "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1114                    sd.region(cp), p2i(region_destination),
1115                    p2i(dense_prefix), cur_deadwood);
1116    }
1117
1118    if (cur_deadwood >= deadwood_goal) {
1119      // Found the region that has the correct amount of deadwood to the left.
1120      // This typically occurs after crossing a fairly sparse set of regions, so
1121      // iterate backwards over those sparse regions, looking for the region
1122      // that has the lowest density of live objects 'to the right.'
1123      size_t space_to_left = sd.region(cp) * region_size;
1124      size_t live_to_left = space_to_left - cur_deadwood;
1125      size_t space_to_right = space_capacity - space_to_left;
1126      size_t live_to_right = space_live - live_to_left;
1127      double density_to_right = double(live_to_right) / space_to_right;
1128      while (cp > full_cp) {
1129        --cp;
1130        const size_t prev_region_live_to_right = live_to_right -
1131          cp->data_size();
1132        const size_t prev_region_space_to_right = space_to_right + region_size;
1133        double prev_region_density_to_right =
1134          double(prev_region_live_to_right) / prev_region_space_to_right;
1135        if (density_to_right <= prev_region_density_to_right) {
1136          return dense_prefix;
1137        }
1138        if (TraceParallelOldGCDensePrefix && Verbose) {
1139          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1140                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1141                        prev_region_density_to_right);
1142        }
1143        dense_prefix -= region_size;
1144        live_to_right = prev_region_live_to_right;
1145        space_to_right = prev_region_space_to_right;
1146        density_to_right = prev_region_density_to_right;
1147      }
1148      return dense_prefix;
1149    }
1150
1151    dense_prefix += region_size;
1152    ++cp;
1153  }
1154
1155  return dense_prefix;
1156}
1157
1158#ifndef PRODUCT
1159void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1160                                                 const SpaceId id,
1161                                                 const bool maximum_compaction,
1162                                                 HeapWord* const addr)
1163{
1164  const size_t region_idx = summary_data().addr_to_region_idx(addr);
1165  RegionData* const cp = summary_data().region(region_idx);
1166  const MutableSpace* const space = _space_info[id].space();
1167  HeapWord* const new_top = _space_info[id].new_top();
1168
1169  const size_t space_live = pointer_delta(new_top, space->bottom());
1170  const size_t dead_to_left = pointer_delta(addr, cp->destination());
1171  const size_t space_cap = space->capacity_in_words();
1172  const double dead_to_left_pct = double(dead_to_left) / space_cap;
1173  const size_t live_to_right = new_top - cp->destination();
1174  const size_t dead_to_right = space->top() - addr - live_to_right;
1175
1176  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1177                "spl=" SIZE_FORMAT " "
1178                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1179                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1180                " ratio=%10.8f",
1181                algorithm, p2i(addr), region_idx,
1182                space_live,
1183                dead_to_left, dead_to_left_pct,
1184                dead_to_right, live_to_right,
1185                double(dead_to_right) / live_to_right);
1186}
1187#endif  // #ifndef PRODUCT
1188
1189// Return a fraction indicating how much of the generation can be treated as
1190// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1191// based on the density of live objects in the generation to determine a limit,
1192// which is then adjusted so the return value is min_percent when the density is
1193// 1.
1194//
1195// The following table shows some return values for a different values of the
1196// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1197// min_percent is 1.
1198//
1199//                          fraction allowed as dead wood
1200//         -----------------------------------------------------------------
1201// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1202// ------- ---------- ---------- ---------- ---------- ---------- ----------
1203// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1204// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1205// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1206// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1207// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1208// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1209// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1210// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1211// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1212// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1213// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1214// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1215// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1216// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1217// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1218// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1219// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1220// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1221// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1222// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1223// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1224
1225double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1226{
1227  assert(_dwl_initialized, "uninitialized");
1228
1229  // The raw limit is the value of the normal distribution at x = density.
1230  const double raw_limit = normal_distribution(density);
1231
1232  // Adjust the raw limit so it becomes the minimum when the density is 1.
1233  //
1234  // First subtract the adjustment value (which is simply the precomputed value
1235  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1236  // Then add the minimum value, so the minimum is returned when the density is
1237  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1238  const double min = double(min_percent) / 100.0;
1239  const double limit = raw_limit - _dwl_adjustment + min;
1240  return MAX2(limit, 0.0);
1241}
1242
1243ParallelCompactData::RegionData*
1244PSParallelCompact::first_dead_space_region(const RegionData* beg,
1245                                           const RegionData* end)
1246{
1247  const size_t region_size = ParallelCompactData::RegionSize;
1248  ParallelCompactData& sd = summary_data();
1249  size_t left = sd.region(beg);
1250  size_t right = end > beg ? sd.region(end) - 1 : left;
1251
1252  // Binary search.
1253  while (left < right) {
1254    // Equivalent to (left + right) / 2, but does not overflow.
1255    const size_t middle = left + (right - left) / 2;
1256    RegionData* const middle_ptr = sd.region(middle);
1257    HeapWord* const dest = middle_ptr->destination();
1258    HeapWord* const addr = sd.region_to_addr(middle);
1259    assert(dest != NULL, "sanity");
1260    assert(dest <= addr, "must move left");
1261
1262    if (middle > left && dest < addr) {
1263      right = middle - 1;
1264    } else if (middle < right && middle_ptr->data_size() == region_size) {
1265      left = middle + 1;
1266    } else {
1267      return middle_ptr;
1268    }
1269  }
1270  return sd.region(left);
1271}
1272
1273ParallelCompactData::RegionData*
1274PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1275                                          const RegionData* end,
1276                                          size_t dead_words)
1277{
1278  ParallelCompactData& sd = summary_data();
1279  size_t left = sd.region(beg);
1280  size_t right = end > beg ? sd.region(end) - 1 : left;
1281
1282  // Binary search.
1283  while (left < right) {
1284    // Equivalent to (left + right) / 2, but does not overflow.
1285    const size_t middle = left + (right - left) / 2;
1286    RegionData* const middle_ptr = sd.region(middle);
1287    HeapWord* const dest = middle_ptr->destination();
1288    HeapWord* const addr = sd.region_to_addr(middle);
1289    assert(dest != NULL, "sanity");
1290    assert(dest <= addr, "must move left");
1291
1292    const size_t dead_to_left = pointer_delta(addr, dest);
1293    if (middle > left && dead_to_left > dead_words) {
1294      right = middle - 1;
1295    } else if (middle < right && dead_to_left < dead_words) {
1296      left = middle + 1;
1297    } else {
1298      return middle_ptr;
1299    }
1300  }
1301  return sd.region(left);
1302}
1303
1304// The result is valid during the summary phase, after the initial summarization
1305// of each space into itself, and before final summarization.
1306inline double
1307PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1308                                   HeapWord* const bottom,
1309                                   HeapWord* const top,
1310                                   HeapWord* const new_top)
1311{
1312  ParallelCompactData& sd = summary_data();
1313
1314  assert(cp != NULL, "sanity");
1315  assert(bottom != NULL, "sanity");
1316  assert(top != NULL, "sanity");
1317  assert(new_top != NULL, "sanity");
1318  assert(top >= new_top, "summary data problem?");
1319  assert(new_top > bottom, "space is empty; should not be here");
1320  assert(new_top >= cp->destination(), "sanity");
1321  assert(top >= sd.region_to_addr(cp), "sanity");
1322
1323  HeapWord* const destination = cp->destination();
1324  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1325  const size_t compacted_region_live = pointer_delta(new_top, destination);
1326  const size_t compacted_region_used = pointer_delta(top,
1327                                                     sd.region_to_addr(cp));
1328  const size_t reclaimable = compacted_region_used - compacted_region_live;
1329
1330  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1331  return double(reclaimable) / divisor;
1332}
1333
1334// Return the address of the end of the dense prefix, a.k.a. the start of the
1335// compacted region.  The address is always on a region boundary.
1336//
1337// Completely full regions at the left are skipped, since no compaction can
1338// occur in those regions.  Then the maximum amount of dead wood to allow is
1339// computed, based on the density (amount live / capacity) of the generation;
1340// the region with approximately that amount of dead space to the left is
1341// identified as the limit region.  Regions between the last completely full
1342// region and the limit region are scanned and the one that has the best
1343// (maximum) reclaimed_ratio() is selected.
1344HeapWord*
1345PSParallelCompact::compute_dense_prefix(const SpaceId id,
1346                                        bool maximum_compaction)
1347{
1348  const size_t region_size = ParallelCompactData::RegionSize;
1349  const ParallelCompactData& sd = summary_data();
1350
1351  const MutableSpace* const space = _space_info[id].space();
1352  HeapWord* const top = space->top();
1353  HeapWord* const top_aligned_up = sd.region_align_up(top);
1354  HeapWord* const new_top = _space_info[id].new_top();
1355  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1356  HeapWord* const bottom = space->bottom();
1357  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1358  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1359  const RegionData* const new_top_cp =
1360    sd.addr_to_region_ptr(new_top_aligned_up);
1361
1362  // Skip full regions at the beginning of the space--they are necessarily part
1363  // of the dense prefix.
1364  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1365  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1366         space->is_empty(), "no dead space allowed to the left");
1367  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1368         "region must have dead space");
1369
1370  // The gc number is saved whenever a maximum compaction is done, and used to
1371  // determine when the maximum compaction interval has expired.  This avoids
1372  // successive max compactions for different reasons.
1373  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1374  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1375  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1376    total_invocations() == HeapFirstMaximumCompactionCount;
1377  if (maximum_compaction || full_cp == top_cp || interval_ended) {
1378    _maximum_compaction_gc_num = total_invocations();
1379    return sd.region_to_addr(full_cp);
1380  }
1381
1382  const size_t space_live = pointer_delta(new_top, bottom);
1383  const size_t space_used = space->used_in_words();
1384  const size_t space_capacity = space->capacity_in_words();
1385
1386  const double density = double(space_live) / double(space_capacity);
1387  const size_t min_percent_free = MarkSweepDeadRatio;
1388  const double limiter = dead_wood_limiter(density, min_percent_free);
1389  const size_t dead_wood_max = space_used - space_live;
1390  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1391                                      dead_wood_max);
1392
1393  if (TraceParallelOldGCDensePrefix) {
1394    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1395                  "space_cap=" SIZE_FORMAT,
1396                  space_live, space_used,
1397                  space_capacity);
1398    tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1399                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1400                  density, min_percent_free, limiter,
1401                  dead_wood_max, dead_wood_limit);
1402  }
1403
1404  // Locate the region with the desired amount of dead space to the left.
1405  const RegionData* const limit_cp =
1406    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1407
1408  // Scan from the first region with dead space to the limit region and find the
1409  // one with the best (largest) reclaimed ratio.
1410  double best_ratio = 0.0;
1411  const RegionData* best_cp = full_cp;
1412  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1413    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1414    if (tmp_ratio > best_ratio) {
1415      best_cp = cp;
1416      best_ratio = tmp_ratio;
1417    }
1418  }
1419
1420  return sd.region_to_addr(best_cp);
1421}
1422
1423void PSParallelCompact::summarize_spaces_quick()
1424{
1425  for (unsigned int i = 0; i < last_space_id; ++i) {
1426    const MutableSpace* space = _space_info[i].space();
1427    HeapWord** nta = _space_info[i].new_top_addr();
1428    bool result = _summary_data.summarize(_space_info[i].split_info(),
1429                                          space->bottom(), space->top(), NULL,
1430                                          space->bottom(), space->end(), nta);
1431    assert(result, "space must fit into itself");
1432    _space_info[i].set_dense_prefix(space->bottom());
1433  }
1434}
1435
1436void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1437{
1438  HeapWord* const dense_prefix_end = dense_prefix(id);
1439  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1440  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1441  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1442    // Only enough dead space is filled so that any remaining dead space to the
1443    // left is larger than the minimum filler object.  (The remainder is filled
1444    // during the copy/update phase.)
1445    //
1446    // The size of the dead space to the right of the boundary is not a
1447    // concern, since compaction will be able to use whatever space is
1448    // available.
1449    //
1450    // Here '||' is the boundary, 'x' represents a don't care bit and a box
1451    // surrounds the space to be filled with an object.
1452    //
1453    // In the 32-bit VM, each bit represents two 32-bit words:
1454    //                              +---+
1455    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1456    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1457    //                              +---+
1458    //
1459    // In the 64-bit VM, each bit represents one 64-bit word:
1460    //                              +------------+
1461    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1462    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1463    //                              +------------+
1464    //                          +-------+
1465    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1466    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1467    //                          +-------+
1468    //                      +-----------+
1469    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1470    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1471    //                      +-----------+
1472    //                          +-------+
1473    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1474    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1475    //                          +-------+
1476
1477    // Initially assume case a, c or e will apply.
1478    size_t obj_len = CollectedHeap::min_fill_size();
1479    HeapWord* obj_beg = dense_prefix_end - obj_len;
1480
1481#ifdef  _LP64
1482    if (MinObjAlignment > 1) { // object alignment > heap word size
1483      // Cases a, c or e.
1484    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1485      // Case b above.
1486      obj_beg = dense_prefix_end - 1;
1487    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1488               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1489      // Case d above.
1490      obj_beg = dense_prefix_end - 3;
1491      obj_len = 3;
1492    }
1493#endif  // #ifdef _LP64
1494
1495    CollectedHeap::fill_with_object(obj_beg, obj_len);
1496    _mark_bitmap.mark_obj(obj_beg, obj_len);
1497    _summary_data.add_obj(obj_beg, obj_len);
1498    assert(start_array(id) != NULL, "sanity");
1499    start_array(id)->allocate_block(obj_beg);
1500  }
1501}
1502
1503void
1504PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1505{
1506  assert(id < last_space_id, "id out of range");
1507  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1508         "should have been reset in summarize_spaces_quick()");
1509
1510  const MutableSpace* space = _space_info[id].space();
1511  if (_space_info[id].new_top() != space->bottom()) {
1512    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1513    _space_info[id].set_dense_prefix(dense_prefix_end);
1514
1515#ifndef PRODUCT
1516    if (TraceParallelOldGCDensePrefix) {
1517      print_dense_prefix_stats("ratio", id, maximum_compaction,
1518                               dense_prefix_end);
1519      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1520      print_dense_prefix_stats("density", id, maximum_compaction, addr);
1521    }
1522#endif  // #ifndef PRODUCT
1523
1524    // Recompute the summary data, taking into account the dense prefix.  If
1525    // every last byte will be reclaimed, then the existing summary data which
1526    // compacts everything can be left in place.
1527    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1528      // If dead space crosses the dense prefix boundary, it is (at least
1529      // partially) filled with a dummy object, marked live and added to the
1530      // summary data.  This simplifies the copy/update phase and must be done
1531      // before the final locations of objects are determined, to prevent
1532      // leaving a fragment of dead space that is too small to fill.
1533      fill_dense_prefix_end(id);
1534
1535      // Compute the destination of each Region, and thus each object.
1536      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1537      _summary_data.summarize(_space_info[id].split_info(),
1538                              dense_prefix_end, space->top(), NULL,
1539                              dense_prefix_end, space->end(),
1540                              _space_info[id].new_top_addr());
1541    }
1542  }
1543
1544  if (log_develop_is_enabled(Trace, gc, compaction)) {
1545    const size_t region_size = ParallelCompactData::RegionSize;
1546    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1547    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1548    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1549    HeapWord* const new_top = _space_info[id].new_top();
1550    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1551    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1552    log_develop_trace(gc, compaction)(
1553        "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1554        "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1555        "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1556        id, space->capacity_in_words(), p2i(dense_prefix_end),
1557        dp_region, dp_words / region_size,
1558        cr_words / region_size, p2i(new_top));
1559  }
1560}
1561
1562#ifndef PRODUCT
1563void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1564                                          HeapWord* dst_beg, HeapWord* dst_end,
1565                                          SpaceId src_space_id,
1566                                          HeapWord* src_beg, HeapWord* src_end)
1567{
1568  log_develop_trace(gc, compaction)(
1569      "Summarizing %d [%s] into %d [%s]:  "
1570      "src=" PTR_FORMAT "-" PTR_FORMAT " "
1571      SIZE_FORMAT "-" SIZE_FORMAT " "
1572      "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1573      SIZE_FORMAT "-" SIZE_FORMAT,
1574      src_space_id, space_names[src_space_id],
1575      dst_space_id, space_names[dst_space_id],
1576      p2i(src_beg), p2i(src_end),
1577      _summary_data.addr_to_region_idx(src_beg),
1578      _summary_data.addr_to_region_idx(src_end),
1579      p2i(dst_beg), p2i(dst_end),
1580      _summary_data.addr_to_region_idx(dst_beg),
1581      _summary_data.addr_to_region_idx(dst_end));
1582}
1583#endif  // #ifndef PRODUCT
1584
1585void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1586                                      bool maximum_compaction)
1587{
1588  GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1589
1590#ifdef  ASSERT
1591  if (TraceParallelOldGCMarkingPhase) {
1592    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1593                  "add_obj_bytes=" SIZE_FORMAT,
1594                  add_obj_count, add_obj_size * HeapWordSize);
1595    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1596                  "mark_bitmap_bytes=" SIZE_FORMAT,
1597                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1598  }
1599#endif  // #ifdef ASSERT
1600
1601  // Quick summarization of each space into itself, to see how much is live.
1602  summarize_spaces_quick();
1603
1604  log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1605  NOT_PRODUCT(print_region_ranges());
1606  NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1607
1608  // The amount of live data that will end up in old space (assuming it fits).
1609  size_t old_space_total_live = 0;
1610  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1611    old_space_total_live += pointer_delta(_space_info[id].new_top(),
1612                                          _space_info[id].space()->bottom());
1613  }
1614
1615  MutableSpace* const old_space = _space_info[old_space_id].space();
1616  const size_t old_capacity = old_space->capacity_in_words();
1617  if (old_space_total_live > old_capacity) {
1618    // XXX - should also try to expand
1619    maximum_compaction = true;
1620  }
1621
1622  // Old generations.
1623  summarize_space(old_space_id, maximum_compaction);
1624
1625  // Summarize the remaining spaces in the young gen.  The initial target space
1626  // is the old gen.  If a space does not fit entirely into the target, then the
1627  // remainder is compacted into the space itself and that space becomes the new
1628  // target.
1629  SpaceId dst_space_id = old_space_id;
1630  HeapWord* dst_space_end = old_space->end();
1631  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1632  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1633    const MutableSpace* space = _space_info[id].space();
1634    const size_t live = pointer_delta(_space_info[id].new_top(),
1635                                      space->bottom());
1636    const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1637
1638    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1639                                  SpaceId(id), space->bottom(), space->top());)
1640    if (live > 0 && live <= available) {
1641      // All the live data will fit.
1642      bool done = _summary_data.summarize(_space_info[id].split_info(),
1643                                          space->bottom(), space->top(),
1644                                          NULL,
1645                                          *new_top_addr, dst_space_end,
1646                                          new_top_addr);
1647      assert(done, "space must fit into old gen");
1648
1649      // Reset the new_top value for the space.
1650      _space_info[id].set_new_top(space->bottom());
1651    } else if (live > 0) {
1652      // Attempt to fit part of the source space into the target space.
1653      HeapWord* next_src_addr = NULL;
1654      bool done = _summary_data.summarize(_space_info[id].split_info(),
1655                                          space->bottom(), space->top(),
1656                                          &next_src_addr,
1657                                          *new_top_addr, dst_space_end,
1658                                          new_top_addr);
1659      assert(!done, "space should not fit into old gen");
1660      assert(next_src_addr != NULL, "sanity");
1661
1662      // The source space becomes the new target, so the remainder is compacted
1663      // within the space itself.
1664      dst_space_id = SpaceId(id);
1665      dst_space_end = space->end();
1666      new_top_addr = _space_info[id].new_top_addr();
1667      NOT_PRODUCT(summary_phase_msg(dst_space_id,
1668                                    space->bottom(), dst_space_end,
1669                                    SpaceId(id), next_src_addr, space->top());)
1670      done = _summary_data.summarize(_space_info[id].split_info(),
1671                                     next_src_addr, space->top(),
1672                                     NULL,
1673                                     space->bottom(), dst_space_end,
1674                                     new_top_addr);
1675      assert(done, "space must fit when compacted into itself");
1676      assert(*new_top_addr <= space->top(), "usage should not grow");
1677    }
1678  }
1679
1680  log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1681  NOT_PRODUCT(print_region_ranges());
1682  NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1683}
1684
1685// This method should contain all heap-specific policy for invoking a full
1686// collection.  invoke_no_policy() will only attempt to compact the heap; it
1687// will do nothing further.  If we need to bail out for policy reasons, scavenge
1688// before full gc, or any other specialized behavior, it needs to be added here.
1689//
1690// Note that this method should only be called from the vm_thread while at a
1691// safepoint.
1692//
1693// Note that the all_soft_refs_clear flag in the collector policy
1694// may be true because this method can be called without intervening
1695// activity.  For example when the heap space is tight and full measure
1696// are being taken to free space.
1697void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1698  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1699  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1700         "should be in vm thread");
1701
1702  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1703  GCCause::Cause gc_cause = heap->gc_cause();
1704  assert(!heap->is_gc_active(), "not reentrant");
1705
1706  PSAdaptiveSizePolicy* policy = heap->size_policy();
1707  IsGCActiveMark mark;
1708
1709  if (ScavengeBeforeFullGC) {
1710    PSScavenge::invoke_no_policy();
1711  }
1712
1713  const bool clear_all_soft_refs =
1714    heap->collector_policy()->should_clear_all_soft_refs();
1715
1716  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1717                                      maximum_heap_compaction);
1718}
1719
1720// This method contains no policy. You should probably
1721// be calling invoke() instead.
1722bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1723  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1724  assert(ref_processor() != NULL, "Sanity");
1725
1726  if (GCLocker::check_active_before_gc()) {
1727    return false;
1728  }
1729
1730  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1731
1732  GCIdMark gc_id_mark;
1733  _gc_timer.register_gc_start();
1734  _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1735
1736  TimeStamp marking_start;
1737  TimeStamp compaction_start;
1738  TimeStamp collection_exit;
1739
1740  GCCause::Cause gc_cause = heap->gc_cause();
1741  PSYoungGen* young_gen = heap->young_gen();
1742  PSOldGen* old_gen = heap->old_gen();
1743  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1744
1745  // The scope of casr should end after code that can change
1746  // CollectorPolicy::_should_clear_all_soft_refs.
1747  ClearedAllSoftRefs casr(maximum_heap_compaction,
1748                          heap->collector_policy());
1749
1750  if (ZapUnusedHeapArea) {
1751    // Save information needed to minimize mangling
1752    heap->record_gen_tops_before_GC();
1753  }
1754
1755  // Make sure data structures are sane, make the heap parsable, and do other
1756  // miscellaneous bookkeeping.
1757  pre_compact();
1758
1759  PreGCValues pre_gc_values(heap);
1760
1761  // Get the compaction manager reserved for the VM thread.
1762  ParCompactionManager* const vmthread_cm =
1763    ParCompactionManager::manager_array(gc_task_manager()->workers());
1764
1765  {
1766    ResourceMark rm;
1767    HandleMark hm;
1768
1769    // Set the number of GC threads to be used in this collection
1770    gc_task_manager()->set_active_gang();
1771    gc_task_manager()->task_idle_workers();
1772
1773    GCTraceCPUTime tcpu;
1774    GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1775
1776    heap->pre_full_gc_dump(&_gc_timer);
1777
1778    TraceCollectorStats tcs(counters());
1779    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1780
1781    if (TraceOldGenTime) accumulated_time()->start();
1782
1783    // Let the size policy know we're starting
1784    size_policy->major_collection_begin();
1785
1786    CodeCache::gc_prologue();
1787
1788#if defined(COMPILER2) || INCLUDE_JVMCI
1789    DerivedPointerTable::clear();
1790#endif
1791
1792    ref_processor()->enable_discovery();
1793    ref_processor()->setup_policy(maximum_heap_compaction);
1794
1795    bool marked_for_unloading = false;
1796
1797    marking_start.update();
1798    marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1799
1800    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1801      && GCCause::is_user_requested_gc(gc_cause);
1802    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1803
1804#if defined(COMPILER2) || INCLUDE_JVMCI
1805    assert(DerivedPointerTable::is_active(), "Sanity");
1806    DerivedPointerTable::set_active(false);
1807#endif
1808
1809    // adjust_roots() updates Universe::_intArrayKlassObj which is
1810    // needed by the compaction for filling holes in the dense prefix.
1811    adjust_roots(vmthread_cm);
1812
1813    compaction_start.update();
1814    compact();
1815
1816    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1817    // done before resizing.
1818    post_compact();
1819
1820    // Let the size policy know we're done
1821    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1822
1823    if (UseAdaptiveSizePolicy) {
1824      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1825      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1826                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1827
1828      // Don't check if the size_policy is ready here.  Let
1829      // the size_policy check that internally.
1830      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1831          AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1832        // Swap the survivor spaces if from_space is empty. The
1833        // resize_young_gen() called below is normally used after
1834        // a successful young GC and swapping of survivor spaces;
1835        // otherwise, it will fail to resize the young gen with
1836        // the current implementation.
1837        if (young_gen->from_space()->is_empty()) {
1838          young_gen->from_space()->clear(SpaceDecorator::Mangle);
1839          young_gen->swap_spaces();
1840        }
1841
1842        // Calculate optimal free space amounts
1843        assert(young_gen->max_size() >
1844          young_gen->from_space()->capacity_in_bytes() +
1845          young_gen->to_space()->capacity_in_bytes(),
1846          "Sizes of space in young gen are out-of-bounds");
1847
1848        size_t young_live = young_gen->used_in_bytes();
1849        size_t eden_live = young_gen->eden_space()->used_in_bytes();
1850        size_t old_live = old_gen->used_in_bytes();
1851        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1852        size_t max_old_gen_size = old_gen->max_gen_size();
1853        size_t max_eden_size = young_gen->max_size() -
1854          young_gen->from_space()->capacity_in_bytes() -
1855          young_gen->to_space()->capacity_in_bytes();
1856
1857        // Used for diagnostics
1858        size_policy->clear_generation_free_space_flags();
1859
1860        size_policy->compute_generations_free_space(young_live,
1861                                                    eden_live,
1862                                                    old_live,
1863                                                    cur_eden,
1864                                                    max_old_gen_size,
1865                                                    max_eden_size,
1866                                                    true /* full gc*/);
1867
1868        size_policy->check_gc_overhead_limit(young_live,
1869                                             eden_live,
1870                                             max_old_gen_size,
1871                                             max_eden_size,
1872                                             true /* full gc*/,
1873                                             gc_cause,
1874                                             heap->collector_policy());
1875
1876        size_policy->decay_supplemental_growth(true /* full gc*/);
1877
1878        heap->resize_old_gen(
1879          size_policy->calculated_old_free_size_in_bytes());
1880
1881        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1882                               size_policy->calculated_survivor_size_in_bytes());
1883      }
1884
1885      log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1886    }
1887
1888    if (UsePerfData) {
1889      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1890      counters->update_counters();
1891      counters->update_old_capacity(old_gen->capacity_in_bytes());
1892      counters->update_young_capacity(young_gen->capacity_in_bytes());
1893    }
1894
1895    heap->resize_all_tlabs();
1896
1897    // Resize the metaspace capacity after a collection
1898    MetaspaceGC::compute_new_size();
1899
1900    if (TraceOldGenTime) {
1901      accumulated_time()->stop();
1902    }
1903
1904    young_gen->print_used_change(pre_gc_values.young_gen_used());
1905    old_gen->print_used_change(pre_gc_values.old_gen_used());
1906    MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1907
1908    // Track memory usage and detect low memory
1909    MemoryService::track_memory_usage();
1910    heap->update_counters();
1911    gc_task_manager()->release_idle_workers();
1912
1913    heap->post_full_gc_dump(&_gc_timer);
1914  }
1915
1916#ifdef ASSERT
1917  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1918    ParCompactionManager* const cm =
1919      ParCompactionManager::manager_array(int(i));
1920    assert(cm->marking_stack()->is_empty(),       "should be empty");
1921    assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1922  }
1923#endif // ASSERT
1924
1925  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1926    HandleMark hm;  // Discard invalid handles created during verification
1927    Universe::verify("After GC");
1928  }
1929
1930  // Re-verify object start arrays
1931  if (VerifyObjectStartArray &&
1932      VerifyAfterGC) {
1933    old_gen->verify_object_start_array();
1934  }
1935
1936  if (ZapUnusedHeapArea) {
1937    old_gen->object_space()->check_mangled_unused_area_complete();
1938  }
1939
1940  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1941
1942  collection_exit.update();
1943
1944  heap->print_heap_after_gc();
1945  heap->trace_heap_after_gc(&_gc_tracer);
1946
1947  log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1948                         marking_start.ticks(), compaction_start.ticks(),
1949                         collection_exit.ticks());
1950  gc_task_manager()->print_task_time_stamps();
1951
1952#ifdef TRACESPINNING
1953  ParallelTaskTerminator::print_termination_counts();
1954#endif
1955
1956  AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1957
1958  _gc_timer.register_gc_end();
1959
1960  _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1961  _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1962
1963  return true;
1964}
1965
1966bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1967                                             PSYoungGen* young_gen,
1968                                             PSOldGen* old_gen) {
1969  MutableSpace* const eden_space = young_gen->eden_space();
1970  assert(!eden_space->is_empty(), "eden must be non-empty");
1971  assert(young_gen->virtual_space()->alignment() ==
1972         old_gen->virtual_space()->alignment(), "alignments do not match");
1973
1974  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1975    return false;
1976  }
1977
1978  // Both generations must be completely committed.
1979  if (young_gen->virtual_space()->uncommitted_size() != 0) {
1980    return false;
1981  }
1982  if (old_gen->virtual_space()->uncommitted_size() != 0) {
1983    return false;
1984  }
1985
1986  // Figure out how much to take from eden.  Include the average amount promoted
1987  // in the total; otherwise the next young gen GC will simply bail out to a
1988  // full GC.
1989  const size_t alignment = old_gen->virtual_space()->alignment();
1990  const size_t eden_used = eden_space->used_in_bytes();
1991  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1992  const size_t absorb_size = align_up(eden_used + promoted, alignment);
1993  const size_t eden_capacity = eden_space->capacity_in_bytes();
1994
1995  if (absorb_size >= eden_capacity) {
1996    return false; // Must leave some space in eden.
1997  }
1998
1999  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2000  if (new_young_size < young_gen->min_gen_size()) {
2001    return false; // Respect young gen minimum size.
2002  }
2003
2004  log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
2005                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2006                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2007                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2008                        absorb_size / K,
2009                        eden_capacity / K, (eden_capacity - absorb_size) / K,
2010                        young_gen->from_space()->used_in_bytes() / K,
2011                        young_gen->to_space()->used_in_bytes() / K,
2012                        young_gen->capacity_in_bytes() / K, new_young_size / K);
2013
2014  // Fill the unused part of the old gen.
2015  MutableSpace* const old_space = old_gen->object_space();
2016  HeapWord* const unused_start = old_space->top();
2017  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2018
2019  if (unused_words > 0) {
2020    if (unused_words < CollectedHeap::min_fill_size()) {
2021      return false;  // If the old gen cannot be filled, must give up.
2022    }
2023    CollectedHeap::fill_with_objects(unused_start, unused_words);
2024  }
2025
2026  // Take the live data from eden and set both top and end in the old gen to
2027  // eden top.  (Need to set end because reset_after_change() mangles the region
2028  // from end to virtual_space->high() in debug builds).
2029  HeapWord* const new_top = eden_space->top();
2030  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2031                                        absorb_size);
2032  young_gen->reset_after_change();
2033  old_space->set_top(new_top);
2034  old_space->set_end(new_top);
2035  old_gen->reset_after_change();
2036
2037  // Update the object start array for the filler object and the data from eden.
2038  ObjectStartArray* const start_array = old_gen->start_array();
2039  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2040    start_array->allocate_block(p);
2041  }
2042
2043  // Could update the promoted average here, but it is not typically updated at
2044  // full GCs and the value to use is unclear.  Something like
2045  //
2046  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2047
2048  size_policy->set_bytes_absorbed_from_eden(absorb_size);
2049  return true;
2050}
2051
2052GCTaskManager* const PSParallelCompact::gc_task_manager() {
2053  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2054    "shouldn't return NULL");
2055  return ParallelScavengeHeap::gc_task_manager();
2056}
2057
2058void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2059                                      bool maximum_heap_compaction,
2060                                      ParallelOldTracer *gc_tracer) {
2061  // Recursively traverse all live objects and mark them
2062  GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2063
2064  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2065  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2066  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2067  TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2068  ParallelTaskTerminator terminator(active_gc_threads, qset);
2069
2070  ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2071  ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2072
2073  // Need new claim bits before marking starts.
2074  ClassLoaderDataGraph::clear_claimed_marks();
2075
2076  {
2077    GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2078
2079    ParallelScavengeHeap::ParStrongRootsScope psrs;
2080
2081    GCTaskQueue* q = GCTaskQueue::create();
2082
2083    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2084    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2085    // We scan the thread roots in parallel
2086    Threads::create_thread_roots_marking_tasks(q);
2087    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2088    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2089    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2090    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2091    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2092    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2093
2094    if (active_gc_threads > 1) {
2095      for (uint j = 0; j < active_gc_threads; j++) {
2096        q->enqueue(new StealMarkingTask(&terminator));
2097      }
2098    }
2099
2100    gc_task_manager()->execute_and_wait(q);
2101  }
2102
2103  // Process reference objects found during marking
2104  {
2105    GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2106
2107    ReferenceProcessorStats stats;
2108    ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->num_q());
2109    if (ref_processor()->processing_is_mt()) {
2110      RefProcTaskExecutor task_executor;
2111      stats = ref_processor()->process_discovered_references(
2112        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2113        &task_executor, &pt);
2114    } else {
2115      stats = ref_processor()->process_discovered_references(
2116        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2117        &pt);
2118    }
2119
2120    gc_tracer->report_gc_reference_stats(stats);
2121    pt.print_all_references();
2122  }
2123
2124  // This is the point where the entire marking should have completed.
2125  assert(cm->marking_stacks_empty(), "Marking should have completed");
2126
2127  {
2128    GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2129
2130    // Follow system dictionary roots and unload classes.
2131    bool purged_class = SystemDictionary::do_unloading(is_alive_closure(), &_gc_timer);
2132
2133    // Unload nmethods.
2134    CodeCache::do_unloading(is_alive_closure(), purged_class);
2135
2136    // Prune dead klasses from subklass/sibling/implementor lists.
2137    Klass::clean_weak_klass_links(is_alive_closure());
2138  }
2139
2140  {
2141    GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2142    // Delete entries for dead interned strings.
2143    StringTable::unlink(is_alive_closure());
2144  }
2145
2146  {
2147    GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2148    // Clean up unreferenced symbols in symbol table.
2149    SymbolTable::unlink();
2150  }
2151
2152  _gc_tracer.report_object_count_after_gc(is_alive_closure());
2153}
2154
2155void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2156  // Adjust the pointers to reflect the new locations
2157  GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2158
2159  // Need new claim bits when tracing through and adjusting pointers.
2160  ClassLoaderDataGraph::clear_claimed_marks();
2161
2162  PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2163  PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2164
2165  // General strong roots.
2166  Universe::oops_do(&oop_closure);
2167  JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2168  Threads::oops_do(&oop_closure, NULL);
2169  ObjectSynchronizer::oops_do(&oop_closure);
2170  Management::oops_do(&oop_closure);
2171  JvmtiExport::oops_do(&oop_closure);
2172  SystemDictionary::oops_do(&oop_closure);
2173  ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2174
2175  // Now adjust pointers in remaining weak roots.  (All of which should
2176  // have been cleared if they pointed to non-surviving objects.)
2177  // Global (weak) JNI handles
2178  JNIHandles::weak_oops_do(&oop_closure);
2179
2180  CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2181  CodeCache::blobs_do(&adjust_from_blobs);
2182  AOTLoader::oops_do(&oop_closure);
2183  StringTable::oops_do(&oop_closure);
2184  ref_processor()->weak_oops_do(&oop_closure);
2185  // Roots were visited so references into the young gen in roots
2186  // may have been scanned.  Process them also.
2187  // Should the reference processor have a span that excludes
2188  // young gen objects?
2189  PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2190}
2191
2192// Helper class to print 8 region numbers per line and then print the total at the end.
2193class FillableRegionLogger : public StackObj {
2194private:
2195  Log(gc, compaction) log;
2196  static const int LineLength = 8;
2197  size_t _regions[LineLength];
2198  int _next_index;
2199  bool _enabled;
2200  size_t _total_regions;
2201public:
2202  FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2203  ~FillableRegionLogger() {
2204    log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2205  }
2206
2207  void print_line() {
2208    if (!_enabled || _next_index == 0) {
2209      return;
2210    }
2211    FormatBuffer<> line("Fillable: ");
2212    for (int i = 0; i < _next_index; i++) {
2213      line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2214    }
2215    log.trace("%s", line.buffer());
2216    _next_index = 0;
2217  }
2218
2219  void handle(size_t region) {
2220    if (!_enabled) {
2221      return;
2222    }
2223    _regions[_next_index++] = region;
2224    if (_next_index == LineLength) {
2225      print_line();
2226    }
2227    _total_regions++;
2228  }
2229};
2230
2231void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2232                                                      uint parallel_gc_threads)
2233{
2234  GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2235
2236  // Find the threads that are active
2237  unsigned int which = 0;
2238
2239  // Find all regions that are available (can be filled immediately) and
2240  // distribute them to the thread stacks.  The iteration is done in reverse
2241  // order (high to low) so the regions will be removed in ascending order.
2242
2243  const ParallelCompactData& sd = PSParallelCompact::summary_data();
2244
2245  which = 0;
2246  // id + 1 is used to test termination so unsigned  can
2247  // be used with an old_space_id == 0.
2248  FillableRegionLogger region_logger;
2249  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2250    SpaceInfo* const space_info = _space_info + id;
2251    MutableSpace* const space = space_info->space();
2252    HeapWord* const new_top = space_info->new_top();
2253
2254    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2255    const size_t end_region =
2256      sd.addr_to_region_idx(sd.region_align_up(new_top));
2257
2258    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2259      if (sd.region(cur)->claim_unsafe()) {
2260        ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2261        cm->region_stack()->push(cur);
2262        region_logger.handle(cur);
2263        // Assign regions to tasks in round-robin fashion.
2264        if (++which == parallel_gc_threads) {
2265          which = 0;
2266        }
2267      }
2268    }
2269    region_logger.print_line();
2270  }
2271}
2272
2273#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2274
2275void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2276                                                    uint parallel_gc_threads) {
2277  GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2278
2279  ParallelCompactData& sd = PSParallelCompact::summary_data();
2280
2281  // Iterate over all the spaces adding tasks for updating
2282  // regions in the dense prefix.  Assume that 1 gc thread
2283  // will work on opening the gaps and the remaining gc threads
2284  // will work on the dense prefix.
2285  unsigned int space_id;
2286  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2287    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2288    const MutableSpace* const space = _space_info[space_id].space();
2289
2290    if (dense_prefix_end == space->bottom()) {
2291      // There is no dense prefix for this space.
2292      continue;
2293    }
2294
2295    // The dense prefix is before this region.
2296    size_t region_index_end_dense_prefix =
2297        sd.addr_to_region_idx(dense_prefix_end);
2298    RegionData* const dense_prefix_cp =
2299      sd.region(region_index_end_dense_prefix);
2300    assert(dense_prefix_end == space->end() ||
2301           dense_prefix_cp->available() ||
2302           dense_prefix_cp->claimed(),
2303           "The region after the dense prefix should always be ready to fill");
2304
2305    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2306
2307    // Is there dense prefix work?
2308    size_t total_dense_prefix_regions =
2309      region_index_end_dense_prefix - region_index_start;
2310    // How many regions of the dense prefix should be given to
2311    // each thread?
2312    if (total_dense_prefix_regions > 0) {
2313      uint tasks_for_dense_prefix = 1;
2314      if (total_dense_prefix_regions <=
2315          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2316        // Don't over partition.  This assumes that
2317        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2318        // so there are not many regions to process.
2319        tasks_for_dense_prefix = parallel_gc_threads;
2320      } else {
2321        // Over partition
2322        tasks_for_dense_prefix = parallel_gc_threads *
2323          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2324      }
2325      size_t regions_per_thread = total_dense_prefix_regions /
2326        tasks_for_dense_prefix;
2327      // Give each thread at least 1 region.
2328      if (regions_per_thread == 0) {
2329        regions_per_thread = 1;
2330      }
2331
2332      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2333        if (region_index_start >= region_index_end_dense_prefix) {
2334          break;
2335        }
2336        // region_index_end is not processed
2337        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2338                                       region_index_end_dense_prefix);
2339        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2340                                             region_index_start,
2341                                             region_index_end));
2342        region_index_start = region_index_end;
2343      }
2344    }
2345    // This gets any part of the dense prefix that did not
2346    // fit evenly.
2347    if (region_index_start < region_index_end_dense_prefix) {
2348      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2349                                           region_index_start,
2350                                           region_index_end_dense_prefix));
2351    }
2352  }
2353}
2354
2355void PSParallelCompact::enqueue_region_stealing_tasks(
2356                                     GCTaskQueue* q,
2357                                     ParallelTaskTerminator* terminator_ptr,
2358                                     uint parallel_gc_threads) {
2359  GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2360
2361  // Once a thread has drained it's stack, it should try to steal regions from
2362  // other threads.
2363  for (uint j = 0; j < parallel_gc_threads; j++) {
2364    q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2365  }
2366}
2367
2368#ifdef ASSERT
2369// Write a histogram of the number of times the block table was filled for a
2370// region.
2371void PSParallelCompact::write_block_fill_histogram()
2372{
2373  if (!log_develop_is_enabled(Trace, gc, compaction)) {
2374    return;
2375  }
2376
2377  Log(gc, compaction) log;
2378  ResourceMark rm;
2379  LogStream ls(log.trace());
2380  outputStream* out = &ls;
2381
2382  typedef ParallelCompactData::RegionData rd_t;
2383  ParallelCompactData& sd = summary_data();
2384
2385  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2386    MutableSpace* const spc = _space_info[id].space();
2387    if (spc->bottom() != spc->top()) {
2388      const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2389      HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2390      const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2391
2392      size_t histo[5] = { 0, 0, 0, 0, 0 };
2393      const size_t histo_len = sizeof(histo) / sizeof(size_t);
2394      const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2395
2396      for (const rd_t* cur = beg; cur < end; ++cur) {
2397        ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2398      }
2399      out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2400      for (size_t i = 0; i < histo_len; ++i) {
2401        out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2402                   histo[i], 100.0 * histo[i] / region_cnt);
2403      }
2404      out->cr();
2405    }
2406  }
2407}
2408#endif // #ifdef ASSERT
2409
2410void PSParallelCompact::compact() {
2411  GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2412
2413  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2414  PSOldGen* old_gen = heap->old_gen();
2415  old_gen->start_array()->reset();
2416  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2417  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2418  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2419  ParallelTaskTerminator terminator(active_gc_threads, qset);
2420
2421  GCTaskQueue* q = GCTaskQueue::create();
2422  prepare_region_draining_tasks(q, active_gc_threads);
2423  enqueue_dense_prefix_tasks(q, active_gc_threads);
2424  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2425
2426  {
2427    GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2428
2429    gc_task_manager()->execute_and_wait(q);
2430
2431#ifdef  ASSERT
2432    // Verify that all regions have been processed before the deferred updates.
2433    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2434      verify_complete(SpaceId(id));
2435    }
2436#endif
2437  }
2438
2439  {
2440    // Update the deferred objects, if any.  Any compaction manager can be used.
2441    GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2442    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2443    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2444      update_deferred_objects(cm, SpaceId(id));
2445    }
2446  }
2447
2448  DEBUG_ONLY(write_block_fill_histogram());
2449}
2450
2451#ifdef  ASSERT
2452void PSParallelCompact::verify_complete(SpaceId space_id) {
2453  // All Regions between space bottom() to new_top() should be marked as filled
2454  // and all Regions between new_top() and top() should be available (i.e.,
2455  // should have been emptied).
2456  ParallelCompactData& sd = summary_data();
2457  SpaceInfo si = _space_info[space_id];
2458  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2459  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2460  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2461  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2462  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2463
2464  bool issued_a_warning = false;
2465
2466  size_t cur_region;
2467  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2468    const RegionData* const c = sd.region(cur_region);
2469    if (!c->completed()) {
2470      log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2471                      cur_region, c->destination_count());
2472      issued_a_warning = true;
2473    }
2474  }
2475
2476  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2477    const RegionData* const c = sd.region(cur_region);
2478    if (!c->available()) {
2479      log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2480                      cur_region, c->destination_count());
2481      issued_a_warning = true;
2482    }
2483  }
2484
2485  if (issued_a_warning) {
2486    print_region_ranges();
2487  }
2488}
2489#endif  // #ifdef ASSERT
2490
2491inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2492  _start_array->allocate_block(addr);
2493  compaction_manager()->update_contents(oop(addr));
2494}
2495
2496// Update interior oops in the ranges of regions [beg_region, end_region).
2497void
2498PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2499                                                       SpaceId space_id,
2500                                                       size_t beg_region,
2501                                                       size_t end_region) {
2502  ParallelCompactData& sd = summary_data();
2503  ParMarkBitMap* const mbm = mark_bitmap();
2504
2505  HeapWord* beg_addr = sd.region_to_addr(beg_region);
2506  HeapWord* const end_addr = sd.region_to_addr(end_region);
2507  assert(beg_region <= end_region, "bad region range");
2508  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2509
2510#ifdef  ASSERT
2511  // Claim the regions to avoid triggering an assert when they are marked as
2512  // filled.
2513  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2514    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2515  }
2516#endif  // #ifdef ASSERT
2517
2518  if (beg_addr != space(space_id)->bottom()) {
2519    // Find the first live object or block of dead space that *starts* in this
2520    // range of regions.  If a partial object crosses onto the region, skip it;
2521    // it will be marked for 'deferred update' when the object head is
2522    // processed.  If dead space crosses onto the region, it is also skipped; it
2523    // will be filled when the prior region is processed.  If neither of those
2524    // apply, the first word in the region is the start of a live object or dead
2525    // space.
2526    assert(beg_addr > space(space_id)->bottom(), "sanity");
2527    const RegionData* const cp = sd.region(beg_region);
2528    if (cp->partial_obj_size() != 0) {
2529      beg_addr = sd.partial_obj_end(beg_region);
2530    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2531      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2532    }
2533  }
2534
2535  if (beg_addr < end_addr) {
2536    // A live object or block of dead space starts in this range of Regions.
2537     HeapWord* const dense_prefix_end = dense_prefix(space_id);
2538
2539    // Create closures and iterate.
2540    UpdateOnlyClosure update_closure(mbm, cm, space_id);
2541    FillClosure fill_closure(cm, space_id);
2542    ParMarkBitMap::IterationStatus status;
2543    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2544                          dense_prefix_end);
2545    if (status == ParMarkBitMap::incomplete) {
2546      update_closure.do_addr(update_closure.source());
2547    }
2548  }
2549
2550  // Mark the regions as filled.
2551  RegionData* const beg_cp = sd.region(beg_region);
2552  RegionData* const end_cp = sd.region(end_region);
2553  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2554    cp->set_completed();
2555  }
2556}
2557
2558// Return the SpaceId for the space containing addr.  If addr is not in the
2559// heap, last_space_id is returned.  In debug mode it expects the address to be
2560// in the heap and asserts such.
2561PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2562  assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2563
2564  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2565    if (_space_info[id].space()->contains(addr)) {
2566      return SpaceId(id);
2567    }
2568  }
2569
2570  assert(false, "no space contains the addr");
2571  return last_space_id;
2572}
2573
2574void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2575                                                SpaceId id) {
2576  assert(id < last_space_id, "bad space id");
2577
2578  ParallelCompactData& sd = summary_data();
2579  const SpaceInfo* const space_info = _space_info + id;
2580  ObjectStartArray* const start_array = space_info->start_array();
2581
2582  const MutableSpace* const space = space_info->space();
2583  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2584  HeapWord* const beg_addr = space_info->dense_prefix();
2585  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2586
2587  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2588  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2589  const RegionData* cur_region;
2590  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2591    HeapWord* const addr = cur_region->deferred_obj_addr();
2592    if (addr != NULL) {
2593      if (start_array != NULL) {
2594        start_array->allocate_block(addr);
2595      }
2596      cm->update_contents(oop(addr));
2597      assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2598    }
2599  }
2600}
2601
2602// Skip over count live words starting from beg, and return the address of the
2603// next live word.  Unless marked, the word corresponding to beg is assumed to
2604// be dead.  Callers must either ensure beg does not correspond to the middle of
2605// an object, or account for those live words in some other way.  Callers must
2606// also ensure that there are enough live words in the range [beg, end) to skip.
2607HeapWord*
2608PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2609{
2610  assert(count > 0, "sanity");
2611
2612  ParMarkBitMap* m = mark_bitmap();
2613  idx_t bits_to_skip = m->words_to_bits(count);
2614  idx_t cur_beg = m->addr_to_bit(beg);
2615  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2616
2617  do {
2618    cur_beg = m->find_obj_beg(cur_beg, search_end);
2619    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2620    const size_t obj_bits = cur_end - cur_beg + 1;
2621    if (obj_bits > bits_to_skip) {
2622      return m->bit_to_addr(cur_beg + bits_to_skip);
2623    }
2624    bits_to_skip -= obj_bits;
2625    cur_beg = cur_end + 1;
2626  } while (bits_to_skip > 0);
2627
2628  // Skipping the desired number of words landed just past the end of an object.
2629  // Find the start of the next object.
2630  cur_beg = m->find_obj_beg(cur_beg, search_end);
2631  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2632  return m->bit_to_addr(cur_beg);
2633}
2634
2635HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2636                                            SpaceId src_space_id,
2637                                            size_t src_region_idx)
2638{
2639  assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2640
2641  const SplitInfo& split_info = _space_info[src_space_id].split_info();
2642  if (split_info.dest_region_addr() == dest_addr) {
2643    // The partial object ending at the split point contains the first word to
2644    // be copied to dest_addr.
2645    return split_info.first_src_addr();
2646  }
2647
2648  const ParallelCompactData& sd = summary_data();
2649  ParMarkBitMap* const bitmap = mark_bitmap();
2650  const size_t RegionSize = ParallelCompactData::RegionSize;
2651
2652  assert(sd.is_region_aligned(dest_addr), "not aligned");
2653  const RegionData* const src_region_ptr = sd.region(src_region_idx);
2654  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2655  HeapWord* const src_region_destination = src_region_ptr->destination();
2656
2657  assert(dest_addr >= src_region_destination, "wrong src region");
2658  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2659
2660  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2661  HeapWord* const src_region_end = src_region_beg + RegionSize;
2662
2663  HeapWord* addr = src_region_beg;
2664  if (dest_addr == src_region_destination) {
2665    // Return the first live word in the source region.
2666    if (partial_obj_size == 0) {
2667      addr = bitmap->find_obj_beg(addr, src_region_end);
2668      assert(addr < src_region_end, "no objects start in src region");
2669    }
2670    return addr;
2671  }
2672
2673  // Must skip some live data.
2674  size_t words_to_skip = dest_addr - src_region_destination;
2675  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2676
2677  if (partial_obj_size >= words_to_skip) {
2678    // All the live words to skip are part of the partial object.
2679    addr += words_to_skip;
2680    if (partial_obj_size == words_to_skip) {
2681      // Find the first live word past the partial object.
2682      addr = bitmap->find_obj_beg(addr, src_region_end);
2683      assert(addr < src_region_end, "wrong src region");
2684    }
2685    return addr;
2686  }
2687
2688  // Skip over the partial object (if any).
2689  if (partial_obj_size != 0) {
2690    words_to_skip -= partial_obj_size;
2691    addr += partial_obj_size;
2692  }
2693
2694  // Skip over live words due to objects that start in the region.
2695  addr = skip_live_words(addr, src_region_end, words_to_skip);
2696  assert(addr < src_region_end, "wrong src region");
2697  return addr;
2698}
2699
2700void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2701                                                     SpaceId src_space_id,
2702                                                     size_t beg_region,
2703                                                     HeapWord* end_addr)
2704{
2705  ParallelCompactData& sd = summary_data();
2706
2707#ifdef ASSERT
2708  MutableSpace* const src_space = _space_info[src_space_id].space();
2709  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2710  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2711         "src_space_id does not match beg_addr");
2712  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2713         "src_space_id does not match end_addr");
2714#endif // #ifdef ASSERT
2715
2716  RegionData* const beg = sd.region(beg_region);
2717  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2718
2719  // Regions up to new_top() are enqueued if they become available.
2720  HeapWord* const new_top = _space_info[src_space_id].new_top();
2721  RegionData* const enqueue_end =
2722    sd.addr_to_region_ptr(sd.region_align_up(new_top));
2723
2724  for (RegionData* cur = beg; cur < end; ++cur) {
2725    assert(cur->data_size() > 0, "region must have live data");
2726    cur->decrement_destination_count();
2727    if (cur < enqueue_end && cur->available() && cur->claim()) {
2728      cm->push_region(sd.region(cur));
2729    }
2730  }
2731}
2732
2733size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2734                                          SpaceId& src_space_id,
2735                                          HeapWord*& src_space_top,
2736                                          HeapWord* end_addr)
2737{
2738  typedef ParallelCompactData::RegionData RegionData;
2739
2740  ParallelCompactData& sd = PSParallelCompact::summary_data();
2741  const size_t region_size = ParallelCompactData::RegionSize;
2742
2743  size_t src_region_idx = 0;
2744
2745  // Skip empty regions (if any) up to the top of the space.
2746  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2747  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2748  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2749  const RegionData* const top_region_ptr =
2750    sd.addr_to_region_ptr(top_aligned_up);
2751  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2752    ++src_region_ptr;
2753  }
2754
2755  if (src_region_ptr < top_region_ptr) {
2756    // The next source region is in the current space.  Update src_region_idx
2757    // and the source address to match src_region_ptr.
2758    src_region_idx = sd.region(src_region_ptr);
2759    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2760    if (src_region_addr > closure.source()) {
2761      closure.set_source(src_region_addr);
2762    }
2763    return src_region_idx;
2764  }
2765
2766  // Switch to a new source space and find the first non-empty region.
2767  unsigned int space_id = src_space_id + 1;
2768  assert(space_id < last_space_id, "not enough spaces");
2769
2770  HeapWord* const destination = closure.destination();
2771
2772  do {
2773    MutableSpace* space = _space_info[space_id].space();
2774    HeapWord* const bottom = space->bottom();
2775    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2776
2777    // Iterate over the spaces that do not compact into themselves.
2778    if (bottom_cp->destination() != bottom) {
2779      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2780      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2781
2782      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2783        if (src_cp->live_obj_size() > 0) {
2784          // Found it.
2785          assert(src_cp->destination() == destination,
2786                 "first live obj in the space must match the destination");
2787          assert(src_cp->partial_obj_size() == 0,
2788                 "a space cannot begin with a partial obj");
2789
2790          src_space_id = SpaceId(space_id);
2791          src_space_top = space->top();
2792          const size_t src_region_idx = sd.region(src_cp);
2793          closure.set_source(sd.region_to_addr(src_region_idx));
2794          return src_region_idx;
2795        } else {
2796          assert(src_cp->data_size() == 0, "sanity");
2797        }
2798      }
2799    }
2800  } while (++space_id < last_space_id);
2801
2802  assert(false, "no source region was found");
2803  return 0;
2804}
2805
2806void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2807{
2808  typedef ParMarkBitMap::IterationStatus IterationStatus;
2809  const size_t RegionSize = ParallelCompactData::RegionSize;
2810  ParMarkBitMap* const bitmap = mark_bitmap();
2811  ParallelCompactData& sd = summary_data();
2812  RegionData* const region_ptr = sd.region(region_idx);
2813
2814  // Get the items needed to construct the closure.
2815  HeapWord* dest_addr = sd.region_to_addr(region_idx);
2816  SpaceId dest_space_id = space_id(dest_addr);
2817  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2818  HeapWord* new_top = _space_info[dest_space_id].new_top();
2819  assert(dest_addr < new_top, "sanity");
2820  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2821
2822  // Get the source region and related info.
2823  size_t src_region_idx = region_ptr->source_region();
2824  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2825  HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2826
2827  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2828  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2829
2830  // Adjust src_region_idx to prepare for decrementing destination counts (the
2831  // destination count is not decremented when a region is copied to itself).
2832  if (src_region_idx == region_idx) {
2833    src_region_idx += 1;
2834  }
2835
2836  if (bitmap->is_unmarked(closure.source())) {
2837    // The first source word is in the middle of an object; copy the remainder
2838    // of the object or as much as will fit.  The fact that pointer updates were
2839    // deferred will be noted when the object header is processed.
2840    HeapWord* const old_src_addr = closure.source();
2841    closure.copy_partial_obj();
2842    if (closure.is_full()) {
2843      decrement_destination_counts(cm, src_space_id, src_region_idx,
2844                                   closure.source());
2845      region_ptr->set_deferred_obj_addr(NULL);
2846      region_ptr->set_completed();
2847      return;
2848    }
2849
2850    HeapWord* const end_addr = sd.region_align_down(closure.source());
2851    if (sd.region_align_down(old_src_addr) != end_addr) {
2852      // The partial object was copied from more than one source region.
2853      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2854
2855      // Move to the next source region, possibly switching spaces as well.  All
2856      // args except end_addr may be modified.
2857      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2858                                       end_addr);
2859    }
2860  }
2861
2862  do {
2863    HeapWord* const cur_addr = closure.source();
2864    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2865                                    src_space_top);
2866    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2867
2868    if (status == ParMarkBitMap::incomplete) {
2869      // The last obj that starts in the source region does not end in the
2870      // region.
2871      assert(closure.source() < end_addr, "sanity");
2872      HeapWord* const obj_beg = closure.source();
2873      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2874                                       src_space_top);
2875      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2876      if (obj_end < range_end) {
2877        // The end was found; the entire object will fit.
2878        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2879        assert(status != ParMarkBitMap::would_overflow, "sanity");
2880      } else {
2881        // The end was not found; the object will not fit.
2882        assert(range_end < src_space_top, "obj cannot cross space boundary");
2883        status = ParMarkBitMap::would_overflow;
2884      }
2885    }
2886
2887    if (status == ParMarkBitMap::would_overflow) {
2888      // The last object did not fit.  Note that interior oop updates were
2889      // deferred, then copy enough of the object to fill the region.
2890      region_ptr->set_deferred_obj_addr(closure.destination());
2891      status = closure.copy_until_full(); // copies from closure.source()
2892
2893      decrement_destination_counts(cm, src_space_id, src_region_idx,
2894                                   closure.source());
2895      region_ptr->set_completed();
2896      return;
2897    }
2898
2899    if (status == ParMarkBitMap::full) {
2900      decrement_destination_counts(cm, src_space_id, src_region_idx,
2901                                   closure.source());
2902      region_ptr->set_deferred_obj_addr(NULL);
2903      region_ptr->set_completed();
2904      return;
2905    }
2906
2907    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2908
2909    // Move to the next source region, possibly switching spaces as well.  All
2910    // args except end_addr may be modified.
2911    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2912                                     end_addr);
2913  } while (true);
2914}
2915
2916void PSParallelCompact::fill_blocks(size_t region_idx)
2917{
2918  // Fill in the block table elements for the specified region.  Each block
2919  // table element holds the number of live words in the region that are to the
2920  // left of the first object that starts in the block.  Thus only blocks in
2921  // which an object starts need to be filled.
2922  //
2923  // The algorithm scans the section of the bitmap that corresponds to the
2924  // region, keeping a running total of the live words.  When an object start is
2925  // found, if it's the first to start in the block that contains it, the
2926  // current total is written to the block table element.
2927  const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2928  const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2929  const size_t RegionSize = ParallelCompactData::RegionSize;
2930
2931  ParallelCompactData& sd = summary_data();
2932  const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2933  if (partial_obj_size >= RegionSize) {
2934    return; // No objects start in this region.
2935  }
2936
2937  // Ensure the first loop iteration decides that the block has changed.
2938  size_t cur_block = sd.block_count();
2939
2940  const ParMarkBitMap* const bitmap = mark_bitmap();
2941
2942  const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2943  assert((size_t)1 << Log2BitsPerBlock ==
2944         bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2945
2946  size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2947  const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2948  size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2949  beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2950  while (beg_bit < range_end) {
2951    const size_t new_block = beg_bit >> Log2BitsPerBlock;
2952    if (new_block != cur_block) {
2953      cur_block = new_block;
2954      sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2955    }
2956
2957    const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2958    if (end_bit < range_end - 1) {
2959      live_bits += end_bit - beg_bit + 1;
2960      beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2961    } else {
2962      return;
2963    }
2964  }
2965}
2966
2967void
2968PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2969  const MutableSpace* sp = space(space_id);
2970  if (sp->is_empty()) {
2971    return;
2972  }
2973
2974  ParallelCompactData& sd = PSParallelCompact::summary_data();
2975  ParMarkBitMap* const bitmap = mark_bitmap();
2976  HeapWord* const dp_addr = dense_prefix(space_id);
2977  HeapWord* beg_addr = sp->bottom();
2978  HeapWord* end_addr = sp->top();
2979
2980  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2981
2982  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2983  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2984  if (beg_region < dp_region) {
2985    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2986  }
2987
2988  // The destination of the first live object that starts in the region is one
2989  // past the end of the partial object entering the region (if any).
2990  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2991  HeapWord* const new_top = _space_info[space_id].new_top();
2992  assert(new_top >= dest_addr, "bad new_top value");
2993  const size_t words = pointer_delta(new_top, dest_addr);
2994
2995  if (words > 0) {
2996    ObjectStartArray* start_array = _space_info[space_id].start_array();
2997    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2998
2999    ParMarkBitMap::IterationStatus status;
3000    status = bitmap->iterate(&closure, dest_addr, end_addr);
3001    assert(status == ParMarkBitMap::full, "iteration not complete");
3002    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3003           "live objects skipped because closure is full");
3004  }
3005}
3006
3007jlong PSParallelCompact::millis_since_last_gc() {
3008  // We need a monotonically non-decreasing time in ms but
3009  // os::javaTimeMillis() does not guarantee monotonicity.
3010  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3011  jlong ret_val = now - _time_of_last_gc;
3012  // XXX See note in genCollectedHeap::millis_since_last_gc().
3013  if (ret_val < 0) {
3014    NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3015    return 0;
3016  }
3017  return ret_val;
3018}
3019
3020void PSParallelCompact::reset_millis_since_last_gc() {
3021  // We need a monotonically non-decreasing time in ms but
3022  // os::javaTimeMillis() does not guarantee monotonicity.
3023  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3024}
3025
3026ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3027{
3028  if (source() != destination()) {
3029    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3030    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3031  }
3032  update_state(words_remaining());
3033  assert(is_full(), "sanity");
3034  return ParMarkBitMap::full;
3035}
3036
3037void MoveAndUpdateClosure::copy_partial_obj()
3038{
3039  size_t words = words_remaining();
3040
3041  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3042  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3043  if (end_addr < range_end) {
3044    words = bitmap()->obj_size(source(), end_addr);
3045  }
3046
3047  // This test is necessary; if omitted, the pointer updates to a partial object
3048  // that crosses the dense prefix boundary could be overwritten.
3049  if (source() != destination()) {
3050    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3051    Copy::aligned_conjoint_words(source(), destination(), words);
3052  }
3053  update_state(words);
3054}
3055
3056void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3057  PSParallelCompact::AdjustPointerClosure closure(cm);
3058  oop_oop_iterate_oop_maps<true>(obj, &closure);
3059}
3060
3061void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3062  InstanceKlass::oop_pc_update_pointers(obj, cm);
3063
3064  PSParallelCompact::AdjustPointerClosure closure(cm);
3065  oop_oop_iterate_statics<true>(obj, &closure);
3066}
3067
3068void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3069  InstanceKlass::oop_pc_update_pointers(obj, cm);
3070}
3071
3072#ifdef ASSERT
3073template <class T> static void trace_reference_gc(const char *s, oop obj,
3074                                                  T* referent_addr,
3075                                                  T* next_addr,
3076                                                  T* discovered_addr) {
3077  log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3078  log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3079                             p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3080  log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3081                             p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3082  log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3083                             p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3084}
3085#endif
3086
3087template <class T>
3088static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3089  T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3090  PSParallelCompact::adjust_pointer(referent_addr, cm);
3091  T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3092  PSParallelCompact::adjust_pointer(next_addr, cm);
3093  T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3094  PSParallelCompact::adjust_pointer(discovered_addr, cm);
3095  debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3096                                referent_addr, next_addr, discovered_addr);)
3097}
3098
3099void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3100  InstanceKlass::oop_pc_update_pointers(obj, cm);
3101
3102  if (UseCompressedOops) {
3103    oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3104  } else {
3105    oop_pc_update_pointers_specialized<oop>(obj, cm);
3106  }
3107}
3108
3109void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3110  assert(obj->is_objArray(), "obj must be obj array");
3111  PSParallelCompact::AdjustPointerClosure closure(cm);
3112  oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3113}
3114
3115void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3116  assert(obj->is_typeArray(),"must be a type array");
3117}
3118
3119ParMarkBitMapClosure::IterationStatus
3120MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3121  assert(destination() != NULL, "sanity");
3122  assert(bitmap()->obj_size(addr) == words, "bad size");
3123
3124  _source = addr;
3125  assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3126         destination(), "wrong destination");
3127
3128  if (words > words_remaining()) {
3129    return ParMarkBitMap::would_overflow;
3130  }
3131
3132  // The start_array must be updated even if the object is not moving.
3133  if (_start_array != NULL) {
3134    _start_array->allocate_block(destination());
3135  }
3136
3137  if (destination() != source()) {
3138    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3139    Copy::aligned_conjoint_words(source(), destination(), words);
3140  }
3141
3142  oop moved_oop = (oop) destination();
3143  compaction_manager()->update_contents(moved_oop);
3144  assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3145
3146  update_state(words);
3147  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3148  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3149}
3150
3151UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3152                                     ParCompactionManager* cm,
3153                                     PSParallelCompact::SpaceId space_id) :
3154  ParMarkBitMapClosure(mbm, cm),
3155  _space_id(space_id),
3156  _start_array(PSParallelCompact::start_array(space_id))
3157{
3158}
3159
3160// Updates the references in the object to their new values.
3161ParMarkBitMapClosure::IterationStatus
3162UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3163  do_addr(addr);
3164  return ParMarkBitMap::incomplete;
3165}
3166
3167FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3168  ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3169  _start_array(PSParallelCompact::start_array(space_id))
3170{
3171  assert(space_id == PSParallelCompact::old_space_id,
3172         "cannot use FillClosure in the young gen");
3173}
3174
3175ParMarkBitMapClosure::IterationStatus
3176FillClosure::do_addr(HeapWord* addr, size_t size) {
3177  CollectedHeap::fill_with_objects(addr, size);
3178  HeapWord* const end = addr + size;
3179  do {
3180    _start_array->allocate_block(addr);
3181    addr += oop(addr)->size();
3182  } while (addr < end);
3183  return ParMarkBitMap::incomplete;
3184}
3185