psParallelCompact.cpp revision 10867:5469b15d97f4
1/*
2 * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/symbolTable.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/codeCache.hpp"
30#include "gc/parallel/gcTaskManager.hpp"
31#include "gc/parallel/parallelScavengeHeap.inline.hpp"
32#include "gc/parallel/pcTasks.hpp"
33#include "gc/parallel/psAdaptiveSizePolicy.hpp"
34#include "gc/parallel/psCompactionManager.inline.hpp"
35#include "gc/parallel/psMarkSweep.hpp"
36#include "gc/parallel/psMarkSweepDecorator.hpp"
37#include "gc/parallel/psOldGen.hpp"
38#include "gc/parallel/psParallelCompact.inline.hpp"
39#include "gc/parallel/psPromotionManager.inline.hpp"
40#include "gc/parallel/psScavenge.hpp"
41#include "gc/parallel/psYoungGen.hpp"
42#include "gc/shared/gcCause.hpp"
43#include "gc/shared/gcHeapSummary.hpp"
44#include "gc/shared/gcId.hpp"
45#include "gc/shared/gcLocker.inline.hpp"
46#include "gc/shared/gcTimer.hpp"
47#include "gc/shared/gcTrace.hpp"
48#include "gc/shared/gcTraceTime.inline.hpp"
49#include "gc/shared/isGCActiveMark.hpp"
50#include "gc/shared/referencePolicy.hpp"
51#include "gc/shared/referenceProcessor.hpp"
52#include "gc/shared/spaceDecorator.hpp"
53#include "logging/log.hpp"
54#include "memory/resourceArea.hpp"
55#include "oops/instanceKlass.inline.hpp"
56#include "oops/instanceMirrorKlass.inline.hpp"
57#include "oops/methodData.hpp"
58#include "oops/objArrayKlass.inline.hpp"
59#include "oops/oop.inline.hpp"
60#include "runtime/atomic.inline.hpp"
61#include "runtime/fprofiler.hpp"
62#include "runtime/safepoint.hpp"
63#include "runtime/vmThread.hpp"
64#include "services/management.hpp"
65#include "services/memTracker.hpp"
66#include "services/memoryService.hpp"
67#include "utilities/events.hpp"
68#include "utilities/stack.inline.hpp"
69
70#include <math.h>
71
72// All sizes are in HeapWords.
73const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
74const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
75const size_t ParallelCompactData::RegionSizeBytes =
76  RegionSize << LogHeapWordSize;
77const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
78const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
79const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
80
81const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
82const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
83const size_t ParallelCompactData::BlockSizeBytes  =
84  BlockSize << LogHeapWordSize;
85const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
86const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
87const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
88
89const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
90const size_t ParallelCompactData::Log2BlocksPerRegion =
91  Log2RegionSize - Log2BlockSize;
92
93const ParallelCompactData::RegionData::region_sz_t
94ParallelCompactData::RegionData::dc_shift = 27;
95
96const ParallelCompactData::RegionData::region_sz_t
97ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
98
99const ParallelCompactData::RegionData::region_sz_t
100ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
101
102const ParallelCompactData::RegionData::region_sz_t
103ParallelCompactData::RegionData::los_mask = ~dc_mask;
104
105const ParallelCompactData::RegionData::region_sz_t
106ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
107
108const ParallelCompactData::RegionData::region_sz_t
109ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
110
111SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
112
113ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
114
115double PSParallelCompact::_dwl_mean;
116double PSParallelCompact::_dwl_std_dev;
117double PSParallelCompact::_dwl_first_term;
118double PSParallelCompact::_dwl_adjustment;
119#ifdef  ASSERT
120bool   PSParallelCompact::_dwl_initialized = false;
121#endif  // #ifdef ASSERT
122
123void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
124                       HeapWord* destination)
125{
126  assert(src_region_idx != 0, "invalid src_region_idx");
127  assert(partial_obj_size != 0, "invalid partial_obj_size argument");
128  assert(destination != NULL, "invalid destination argument");
129
130  _src_region_idx = src_region_idx;
131  _partial_obj_size = partial_obj_size;
132  _destination = destination;
133
134  // These fields may not be updated below, so make sure they're clear.
135  assert(_dest_region_addr == NULL, "should have been cleared");
136  assert(_first_src_addr == NULL, "should have been cleared");
137
138  // Determine the number of destination regions for the partial object.
139  HeapWord* const last_word = destination + partial_obj_size - 1;
140  const ParallelCompactData& sd = PSParallelCompact::summary_data();
141  HeapWord* const beg_region_addr = sd.region_align_down(destination);
142  HeapWord* const end_region_addr = sd.region_align_down(last_word);
143
144  if (beg_region_addr == end_region_addr) {
145    // One destination region.
146    _destination_count = 1;
147    if (end_region_addr == destination) {
148      // The destination falls on a region boundary, thus the first word of the
149      // partial object will be the first word copied to the destination region.
150      _dest_region_addr = end_region_addr;
151      _first_src_addr = sd.region_to_addr(src_region_idx);
152    }
153  } else {
154    // Two destination regions.  When copied, the partial object will cross a
155    // destination region boundary, so a word somewhere within the partial
156    // object will be the first word copied to the second destination region.
157    _destination_count = 2;
158    _dest_region_addr = end_region_addr;
159    const size_t ofs = pointer_delta(end_region_addr, destination);
160    assert(ofs < _partial_obj_size, "sanity");
161    _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
162  }
163}
164
165void SplitInfo::clear()
166{
167  _src_region_idx = 0;
168  _partial_obj_size = 0;
169  _destination = NULL;
170  _destination_count = 0;
171  _dest_region_addr = NULL;
172  _first_src_addr = NULL;
173  assert(!is_valid(), "sanity");
174}
175
176#ifdef  ASSERT
177void SplitInfo::verify_clear()
178{
179  assert(_src_region_idx == 0, "not clear");
180  assert(_partial_obj_size == 0, "not clear");
181  assert(_destination == NULL, "not clear");
182  assert(_destination_count == 0, "not clear");
183  assert(_dest_region_addr == NULL, "not clear");
184  assert(_first_src_addr == NULL, "not clear");
185}
186#endif  // #ifdef ASSERT
187
188
189void PSParallelCompact::print_on_error(outputStream* st) {
190  _mark_bitmap.print_on_error(st);
191}
192
193#ifndef PRODUCT
194const char* PSParallelCompact::space_names[] = {
195  "old ", "eden", "from", "to  "
196};
197
198void PSParallelCompact::print_region_ranges() {
199  if (!log_develop_is_enabled(Trace, gc, compaction)) {
200    return;
201  }
202  Log(gc, compaction) log;
203  ResourceMark rm;
204  Universe::print_on(log.trace_stream());
205  log.trace("space  bottom     top        end        new_top");
206  log.trace("------ ---------- ---------- ---------- ----------");
207
208  for (unsigned int id = 0; id < last_space_id; ++id) {
209    const MutableSpace* space = _space_info[id].space();
210    log.trace("%u %s "
211              SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
212              SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
213              id, space_names[id],
214              summary_data().addr_to_region_idx(space->bottom()),
215              summary_data().addr_to_region_idx(space->top()),
216              summary_data().addr_to_region_idx(space->end()),
217              summary_data().addr_to_region_idx(_space_info[id].new_top()));
218  }
219}
220
221void
222print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
223{
224#define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
225#define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
226
227  ParallelCompactData& sd = PSParallelCompact::summary_data();
228  size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
229  log_develop_trace(gc, compaction)(
230      REGION_IDX_FORMAT " " PTR_FORMAT " "
231      REGION_IDX_FORMAT " " PTR_FORMAT " "
232      REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
233      REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
234      i, p2i(c->data_location()), dci, p2i(c->destination()),
235      c->partial_obj_size(), c->live_obj_size(),
236      c->data_size(), c->source_region(), c->destination_count());
237
238#undef  REGION_IDX_FORMAT
239#undef  REGION_DATA_FORMAT
240}
241
242void
243print_generic_summary_data(ParallelCompactData& summary_data,
244                           HeapWord* const beg_addr,
245                           HeapWord* const end_addr)
246{
247  size_t total_words = 0;
248  size_t i = summary_data.addr_to_region_idx(beg_addr);
249  const size_t last = summary_data.addr_to_region_idx(end_addr);
250  HeapWord* pdest = 0;
251
252  while (i <= last) {
253    ParallelCompactData::RegionData* c = summary_data.region(i);
254    if (c->data_size() != 0 || c->destination() != pdest) {
255      print_generic_summary_region(i, c);
256      total_words += c->data_size();
257      pdest = c->destination();
258    }
259    ++i;
260  }
261
262  log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
263}
264
265void
266print_generic_summary_data(ParallelCompactData& summary_data,
267                           SpaceInfo* space_info)
268{
269  if (!log_develop_is_enabled(Trace, gc, compaction)) {
270    return;
271  }
272
273  for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
274    const MutableSpace* space = space_info[id].space();
275    print_generic_summary_data(summary_data, space->bottom(),
276                               MAX2(space->top(), space_info[id].new_top()));
277  }
278}
279
280void
281print_initial_summary_data(ParallelCompactData& summary_data,
282                           const MutableSpace* space) {
283  if (space->top() == space->bottom()) {
284    return;
285  }
286
287  const size_t region_size = ParallelCompactData::RegionSize;
288  typedef ParallelCompactData::RegionData RegionData;
289  HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
290  const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
291  const RegionData* c = summary_data.region(end_region - 1);
292  HeapWord* end_addr = c->destination() + c->data_size();
293  const size_t live_in_space = pointer_delta(end_addr, space->bottom());
294
295  // Print (and count) the full regions at the beginning of the space.
296  size_t full_region_count = 0;
297  size_t i = summary_data.addr_to_region_idx(space->bottom());
298  while (i < end_region && summary_data.region(i)->data_size() == region_size) {
299    ParallelCompactData::RegionData* c = summary_data.region(i);
300    log_develop_trace(gc, compaction)(
301        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
302        i, p2i(c->destination()),
303        c->partial_obj_size(), c->live_obj_size(),
304        c->data_size(), c->source_region(), c->destination_count());
305    ++full_region_count;
306    ++i;
307  }
308
309  size_t live_to_right = live_in_space - full_region_count * region_size;
310
311  double max_reclaimed_ratio = 0.0;
312  size_t max_reclaimed_ratio_region = 0;
313  size_t max_dead_to_right = 0;
314  size_t max_live_to_right = 0;
315
316  // Print the 'reclaimed ratio' for regions while there is something live in
317  // the region or to the right of it.  The remaining regions are empty (and
318  // uninteresting), and computing the ratio will result in division by 0.
319  while (i < end_region && live_to_right > 0) {
320    c = summary_data.region(i);
321    HeapWord* const region_addr = summary_data.region_to_addr(i);
322    const size_t used_to_right = pointer_delta(space->top(), region_addr);
323    const size_t dead_to_right = used_to_right - live_to_right;
324    const double reclaimed_ratio = double(dead_to_right) / live_to_right;
325
326    if (reclaimed_ratio > max_reclaimed_ratio) {
327            max_reclaimed_ratio = reclaimed_ratio;
328            max_reclaimed_ratio_region = i;
329            max_dead_to_right = dead_to_right;
330            max_live_to_right = live_to_right;
331    }
332
333    ParallelCompactData::RegionData* c = summary_data.region(i);
334    log_develop_trace(gc, compaction)(
335        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
336        "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
337        i, p2i(c->destination()),
338        c->partial_obj_size(), c->live_obj_size(),
339        c->data_size(), c->source_region(), c->destination_count(),
340        reclaimed_ratio, dead_to_right, live_to_right);
341
342
343    live_to_right -= c->data_size();
344    ++i;
345  }
346
347  // Any remaining regions are empty.  Print one more if there is one.
348  if (i < end_region) {
349    ParallelCompactData::RegionData* c = summary_data.region(i);
350    log_develop_trace(gc, compaction)(
351        SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
352         i, p2i(c->destination()),
353         c->partial_obj_size(), c->live_obj_size(),
354         c->data_size(), c->source_region(), c->destination_count());
355  }
356
357  log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
358                                    max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
359}
360
361void
362print_initial_summary_data(ParallelCompactData& summary_data,
363                           SpaceInfo* space_info) {
364  if (!log_develop_is_enabled(Trace, gc, compaction)) {
365    return;
366  }
367
368  unsigned int id = PSParallelCompact::old_space_id;
369  const MutableSpace* space;
370  do {
371    space = space_info[id].space();
372    print_initial_summary_data(summary_data, space);
373  } while (++id < PSParallelCompact::eden_space_id);
374
375  do {
376    space = space_info[id].space();
377    print_generic_summary_data(summary_data, space->bottom(), space->top());
378  } while (++id < PSParallelCompact::last_space_id);
379}
380#endif  // #ifndef PRODUCT
381
382#ifdef  ASSERT
383size_t add_obj_count;
384size_t add_obj_size;
385size_t mark_bitmap_count;
386size_t mark_bitmap_size;
387#endif  // #ifdef ASSERT
388
389ParallelCompactData::ParallelCompactData()
390{
391  _region_start = 0;
392
393  _region_vspace = 0;
394  _reserved_byte_size = 0;
395  _region_data = 0;
396  _region_count = 0;
397
398  _block_vspace = 0;
399  _block_data = 0;
400  _block_count = 0;
401}
402
403bool ParallelCompactData::initialize(MemRegion covered_region)
404{
405  _region_start = covered_region.start();
406  const size_t region_size = covered_region.word_size();
407  DEBUG_ONLY(_region_end = _region_start + region_size;)
408
409  assert(region_align_down(_region_start) == _region_start,
410         "region start not aligned");
411  assert((region_size & RegionSizeOffsetMask) == 0,
412         "region size not a multiple of RegionSize");
413
414  bool result = initialize_region_data(region_size) && initialize_block_data();
415  return result;
416}
417
418PSVirtualSpace*
419ParallelCompactData::create_vspace(size_t count, size_t element_size)
420{
421  const size_t raw_bytes = count * element_size;
422  const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
423  const size_t granularity = os::vm_allocation_granularity();
424  _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
425
426  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
427    MAX2(page_sz, granularity);
428  ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
429  os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
430                       rs.size());
431
432  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
433
434  PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
435  if (vspace != 0) {
436    if (vspace->expand_by(_reserved_byte_size)) {
437      return vspace;
438    }
439    delete vspace;
440    // Release memory reserved in the space.
441    rs.release();
442  }
443
444  return 0;
445}
446
447bool ParallelCompactData::initialize_region_data(size_t region_size)
448{
449  const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
450  _region_vspace = create_vspace(count, sizeof(RegionData));
451  if (_region_vspace != 0) {
452    _region_data = (RegionData*)_region_vspace->reserved_low_addr();
453    _region_count = count;
454    return true;
455  }
456  return false;
457}
458
459bool ParallelCompactData::initialize_block_data()
460{
461  assert(_region_count != 0, "region data must be initialized first");
462  const size_t count = _region_count << Log2BlocksPerRegion;
463  _block_vspace = create_vspace(count, sizeof(BlockData));
464  if (_block_vspace != 0) {
465    _block_data = (BlockData*)_block_vspace->reserved_low_addr();
466    _block_count = count;
467    return true;
468  }
469  return false;
470}
471
472void ParallelCompactData::clear()
473{
474  memset(_region_data, 0, _region_vspace->committed_size());
475  memset(_block_data, 0, _block_vspace->committed_size());
476}
477
478void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
479  assert(beg_region <= _region_count, "beg_region out of range");
480  assert(end_region <= _region_count, "end_region out of range");
481  assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
482
483  const size_t region_cnt = end_region - beg_region;
484  memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
485
486  const size_t beg_block = beg_region * BlocksPerRegion;
487  const size_t block_cnt = region_cnt * BlocksPerRegion;
488  memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
489}
490
491HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
492{
493  const RegionData* cur_cp = region(region_idx);
494  const RegionData* const end_cp = region(region_count() - 1);
495
496  HeapWord* result = region_to_addr(region_idx);
497  if (cur_cp < end_cp) {
498    do {
499      result += cur_cp->partial_obj_size();
500    } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
501  }
502  return result;
503}
504
505void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
506{
507  const size_t obj_ofs = pointer_delta(addr, _region_start);
508  const size_t beg_region = obj_ofs >> Log2RegionSize;
509  const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
510
511  DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
512  DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
513
514  if (beg_region == end_region) {
515    // All in one region.
516    _region_data[beg_region].add_live_obj(len);
517    return;
518  }
519
520  // First region.
521  const size_t beg_ofs = region_offset(addr);
522  _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
523
524  Klass* klass = ((oop)addr)->klass();
525  // Middle regions--completely spanned by this object.
526  for (size_t region = beg_region + 1; region < end_region; ++region) {
527    _region_data[region].set_partial_obj_size(RegionSize);
528    _region_data[region].set_partial_obj_addr(addr);
529  }
530
531  // Last region.
532  const size_t end_ofs = region_offset(addr + len - 1);
533  _region_data[end_region].set_partial_obj_size(end_ofs + 1);
534  _region_data[end_region].set_partial_obj_addr(addr);
535}
536
537void
538ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
539{
540  assert(region_offset(beg) == 0, "not RegionSize aligned");
541  assert(region_offset(end) == 0, "not RegionSize aligned");
542
543  size_t cur_region = addr_to_region_idx(beg);
544  const size_t end_region = addr_to_region_idx(end);
545  HeapWord* addr = beg;
546  while (cur_region < end_region) {
547    _region_data[cur_region].set_destination(addr);
548    _region_data[cur_region].set_destination_count(0);
549    _region_data[cur_region].set_source_region(cur_region);
550    _region_data[cur_region].set_data_location(addr);
551
552    // Update live_obj_size so the region appears completely full.
553    size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
554    _region_data[cur_region].set_live_obj_size(live_size);
555
556    ++cur_region;
557    addr += RegionSize;
558  }
559}
560
561// Find the point at which a space can be split and, if necessary, record the
562// split point.
563//
564// If the current src region (which overflowed the destination space) doesn't
565// have a partial object, the split point is at the beginning of the current src
566// region (an "easy" split, no extra bookkeeping required).
567//
568// If the current src region has a partial object, the split point is in the
569// region where that partial object starts (call it the split_region).  If
570// split_region has a partial object, then the split point is just after that
571// partial object (a "hard" split where we have to record the split data and
572// zero the partial_obj_size field).  With a "hard" split, we know that the
573// partial_obj ends within split_region because the partial object that caused
574// the overflow starts in split_region.  If split_region doesn't have a partial
575// obj, then the split is at the beginning of split_region (another "easy"
576// split).
577HeapWord*
578ParallelCompactData::summarize_split_space(size_t src_region,
579                                           SplitInfo& split_info,
580                                           HeapWord* destination,
581                                           HeapWord* target_end,
582                                           HeapWord** target_next)
583{
584  assert(destination <= target_end, "sanity");
585  assert(destination + _region_data[src_region].data_size() > target_end,
586    "region should not fit into target space");
587  assert(is_region_aligned(target_end), "sanity");
588
589  size_t split_region = src_region;
590  HeapWord* split_destination = destination;
591  size_t partial_obj_size = _region_data[src_region].partial_obj_size();
592
593  if (destination + partial_obj_size > target_end) {
594    // The split point is just after the partial object (if any) in the
595    // src_region that contains the start of the object that overflowed the
596    // destination space.
597    //
598    // Find the start of the "overflow" object and set split_region to the
599    // region containing it.
600    HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
601    split_region = addr_to_region_idx(overflow_obj);
602
603    // Clear the source_region field of all destination regions whose first word
604    // came from data after the split point (a non-null source_region field
605    // implies a region must be filled).
606    //
607    // An alternative to the simple loop below:  clear during post_compact(),
608    // which uses memcpy instead of individual stores, and is easy to
609    // parallelize.  (The downside is that it clears the entire RegionData
610    // object as opposed to just one field.)
611    //
612    // post_compact() would have to clear the summary data up to the highest
613    // address that was written during the summary phase, which would be
614    //
615    //         max(top, max(new_top, clear_top))
616    //
617    // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
618    // to target_end.
619    const RegionData* const sr = region(split_region);
620    const size_t beg_idx =
621      addr_to_region_idx(region_align_up(sr->destination() +
622                                         sr->partial_obj_size()));
623    const size_t end_idx = addr_to_region_idx(target_end);
624
625    log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
626    for (size_t idx = beg_idx; idx < end_idx; ++idx) {
627      _region_data[idx].set_source_region(0);
628    }
629
630    // Set split_destination and partial_obj_size to reflect the split region.
631    split_destination = sr->destination();
632    partial_obj_size = sr->partial_obj_size();
633  }
634
635  // The split is recorded only if a partial object extends onto the region.
636  if (partial_obj_size != 0) {
637    _region_data[split_region].set_partial_obj_size(0);
638    split_info.record(split_region, partial_obj_size, split_destination);
639  }
640
641  // Setup the continuation addresses.
642  *target_next = split_destination + partial_obj_size;
643  HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
644
645  if (log_develop_is_enabled(Trace, gc, compaction)) {
646    const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
647    log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
648                                      split_type, p2i(source_next), split_region, partial_obj_size);
649    log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
650                                      split_type, p2i(split_destination),
651                                      addr_to_region_idx(split_destination),
652                                      p2i(*target_next));
653
654    if (partial_obj_size != 0) {
655      HeapWord* const po_beg = split_info.destination();
656      HeapWord* const po_end = po_beg + split_info.partial_obj_size();
657      log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
658                                        split_type,
659                                        p2i(po_beg), addr_to_region_idx(po_beg),
660                                        p2i(po_end), addr_to_region_idx(po_end));
661    }
662  }
663
664  return source_next;
665}
666
667bool ParallelCompactData::summarize(SplitInfo& split_info,
668                                    HeapWord* source_beg, HeapWord* source_end,
669                                    HeapWord** source_next,
670                                    HeapWord* target_beg, HeapWord* target_end,
671                                    HeapWord** target_next)
672{
673  HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
674  log_develop_trace(gc, compaction)(
675      "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
676      "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
677      p2i(source_beg), p2i(source_end), p2i(source_next_val),
678      p2i(target_beg), p2i(target_end), p2i(*target_next));
679
680  size_t cur_region = addr_to_region_idx(source_beg);
681  const size_t end_region = addr_to_region_idx(region_align_up(source_end));
682
683  HeapWord *dest_addr = target_beg;
684  while (cur_region < end_region) {
685    // The destination must be set even if the region has no data.
686    _region_data[cur_region].set_destination(dest_addr);
687
688    size_t words = _region_data[cur_region].data_size();
689    if (words > 0) {
690      // If cur_region does not fit entirely into the target space, find a point
691      // at which the source space can be 'split' so that part is copied to the
692      // target space and the rest is copied elsewhere.
693      if (dest_addr + words > target_end) {
694        assert(source_next != NULL, "source_next is NULL when splitting");
695        *source_next = summarize_split_space(cur_region, split_info, dest_addr,
696                                             target_end, target_next);
697        return false;
698      }
699
700      // Compute the destination_count for cur_region, and if necessary, update
701      // source_region for a destination region.  The source_region field is
702      // updated if cur_region is the first (left-most) region to be copied to a
703      // destination region.
704      //
705      // The destination_count calculation is a bit subtle.  A region that has
706      // data that compacts into itself does not count itself as a destination.
707      // This maintains the invariant that a zero count means the region is
708      // available and can be claimed and then filled.
709      uint destination_count = 0;
710      if (split_info.is_split(cur_region)) {
711        // The current region has been split:  the partial object will be copied
712        // to one destination space and the remaining data will be copied to
713        // another destination space.  Adjust the initial destination_count and,
714        // if necessary, set the source_region field if the partial object will
715        // cross a destination region boundary.
716        destination_count = split_info.destination_count();
717        if (destination_count == 2) {
718          size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
719          _region_data[dest_idx].set_source_region(cur_region);
720        }
721      }
722
723      HeapWord* const last_addr = dest_addr + words - 1;
724      const size_t dest_region_1 = addr_to_region_idx(dest_addr);
725      const size_t dest_region_2 = addr_to_region_idx(last_addr);
726
727      // Initially assume that the destination regions will be the same and
728      // adjust the value below if necessary.  Under this assumption, if
729      // cur_region == dest_region_2, then cur_region will be compacted
730      // completely into itself.
731      destination_count += cur_region == dest_region_2 ? 0 : 1;
732      if (dest_region_1 != dest_region_2) {
733        // Destination regions differ; adjust destination_count.
734        destination_count += 1;
735        // Data from cur_region will be copied to the start of dest_region_2.
736        _region_data[dest_region_2].set_source_region(cur_region);
737      } else if (region_offset(dest_addr) == 0) {
738        // Data from cur_region will be copied to the start of the destination
739        // region.
740        _region_data[dest_region_1].set_source_region(cur_region);
741      }
742
743      _region_data[cur_region].set_destination_count(destination_count);
744      _region_data[cur_region].set_data_location(region_to_addr(cur_region));
745      dest_addr += words;
746    }
747
748    ++cur_region;
749  }
750
751  *target_next = dest_addr;
752  return true;
753}
754
755HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
756  assert(addr != NULL, "Should detect NULL oop earlier");
757  assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
758  assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
759
760  // Region covering the object.
761  RegionData* const region_ptr = addr_to_region_ptr(addr);
762  HeapWord* result = region_ptr->destination();
763
764  // If the entire Region is live, the new location is region->destination + the
765  // offset of the object within in the Region.
766
767  // Run some performance tests to determine if this special case pays off.  It
768  // is worth it for pointers into the dense prefix.  If the optimization to
769  // avoid pointer updates in regions that only point to the dense prefix is
770  // ever implemented, this should be revisited.
771  if (region_ptr->data_size() == RegionSize) {
772    result += region_offset(addr);
773    return result;
774  }
775
776  // Otherwise, the new location is region->destination + block offset + the
777  // number of live words in the Block that are (a) to the left of addr and (b)
778  // due to objects that start in the Block.
779
780  // Fill in the block table if necessary.  This is unsynchronized, so multiple
781  // threads may fill the block table for a region (harmless, since it is
782  // idempotent).
783  if (!region_ptr->blocks_filled()) {
784    PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
785    region_ptr->set_blocks_filled();
786  }
787
788  HeapWord* const search_start = block_align_down(addr);
789  const size_t block_offset = addr_to_block_ptr(addr)->offset();
790
791  const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
792  const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
793  result += block_offset + live;
794  DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
795  return result;
796}
797
798#ifdef ASSERT
799void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
800{
801  const size_t* const beg = (const size_t*)vspace->committed_low_addr();
802  const size_t* const end = (const size_t*)vspace->committed_high_addr();
803  for (const size_t* p = beg; p < end; ++p) {
804    assert(*p == 0, "not zero");
805  }
806}
807
808void ParallelCompactData::verify_clear()
809{
810  verify_clear(_region_vspace);
811  verify_clear(_block_vspace);
812}
813#endif  // #ifdef ASSERT
814
815STWGCTimer          PSParallelCompact::_gc_timer;
816ParallelOldTracer   PSParallelCompact::_gc_tracer;
817elapsedTimer        PSParallelCompact::_accumulated_time;
818unsigned int        PSParallelCompact::_total_invocations = 0;
819unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
820jlong               PSParallelCompact::_time_of_last_gc = 0;
821CollectorCounters*  PSParallelCompact::_counters = NULL;
822ParMarkBitMap       PSParallelCompact::_mark_bitmap;
823ParallelCompactData PSParallelCompact::_summary_data;
824
825PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
826
827bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
828
829void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
830  PSParallelCompact::AdjustPointerClosure closure(_cm);
831  klass->oops_do(&closure);
832}
833
834void PSParallelCompact::post_initialize() {
835  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
836  MemRegion mr = heap->reserved_region();
837  _ref_processor =
838    new ReferenceProcessor(mr,            // span
839                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
840                           ParallelGCThreads, // mt processing degree
841                           true,              // mt discovery
842                           ParallelGCThreads, // mt discovery degree
843                           true,              // atomic_discovery
844                           &_is_alive_closure); // non-header is alive closure
845  _counters = new CollectorCounters("PSParallelCompact", 1);
846
847  // Initialize static fields in ParCompactionManager.
848  ParCompactionManager::initialize(mark_bitmap());
849}
850
851bool PSParallelCompact::initialize() {
852  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
853  MemRegion mr = heap->reserved_region();
854
855  // Was the old gen get allocated successfully?
856  if (!heap->old_gen()->is_allocated()) {
857    return false;
858  }
859
860  initialize_space_info();
861  initialize_dead_wood_limiter();
862
863  if (!_mark_bitmap.initialize(mr)) {
864    vm_shutdown_during_initialization(
865      err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
866      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
867      _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
868    return false;
869  }
870
871  if (!_summary_data.initialize(mr)) {
872    vm_shutdown_during_initialization(
873      err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
874      "garbage collection for the requested " SIZE_FORMAT "KB heap.",
875      _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
876    return false;
877  }
878
879  return true;
880}
881
882void PSParallelCompact::initialize_space_info()
883{
884  memset(&_space_info, 0, sizeof(_space_info));
885
886  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
887  PSYoungGen* young_gen = heap->young_gen();
888
889  _space_info[old_space_id].set_space(heap->old_gen()->object_space());
890  _space_info[eden_space_id].set_space(young_gen->eden_space());
891  _space_info[from_space_id].set_space(young_gen->from_space());
892  _space_info[to_space_id].set_space(young_gen->to_space());
893
894  _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
895}
896
897void PSParallelCompact::initialize_dead_wood_limiter()
898{
899  const size_t max = 100;
900  _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
901  _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
902  _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
903  DEBUG_ONLY(_dwl_initialized = true;)
904  _dwl_adjustment = normal_distribution(1.0);
905}
906
907void
908PSParallelCompact::clear_data_covering_space(SpaceId id)
909{
910  // At this point, top is the value before GC, new_top() is the value that will
911  // be set at the end of GC.  The marking bitmap is cleared to top; nothing
912  // should be marked above top.  The summary data is cleared to the larger of
913  // top & new_top.
914  MutableSpace* const space = _space_info[id].space();
915  HeapWord* const bot = space->bottom();
916  HeapWord* const top = space->top();
917  HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
918
919  const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
920  const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
921  _mark_bitmap.clear_range(beg_bit, end_bit);
922
923  const size_t beg_region = _summary_data.addr_to_region_idx(bot);
924  const size_t end_region =
925    _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
926  _summary_data.clear_range(beg_region, end_region);
927
928  // Clear the data used to 'split' regions.
929  SplitInfo& split_info = _space_info[id].split_info();
930  if (split_info.is_valid()) {
931    split_info.clear();
932  }
933  DEBUG_ONLY(split_info.verify_clear();)
934}
935
936void PSParallelCompact::pre_compact()
937{
938  // Update the from & to space pointers in space_info, since they are swapped
939  // at each young gen gc.  Do the update unconditionally (even though a
940  // promotion failure does not swap spaces) because an unknown number of young
941  // collections will have swapped the spaces an unknown number of times.
942  GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
943  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
944  _space_info[from_space_id].set_space(heap->young_gen()->from_space());
945  _space_info[to_space_id].set_space(heap->young_gen()->to_space());
946
947  DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
948  DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
949
950  // Increment the invocation count
951  heap->increment_total_collections(true);
952
953  // We need to track unique mark sweep invocations as well.
954  _total_invocations++;
955
956  heap->print_heap_before_gc();
957  heap->trace_heap_before_gc(&_gc_tracer);
958
959  // Fill in TLABs
960  heap->accumulate_statistics_all_tlabs();
961  heap->ensure_parsability(true);  // retire TLABs
962
963  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
964    HandleMark hm;  // Discard invalid handles created during verification
965    Universe::verify("Before GC");
966  }
967
968  // Verify object start arrays
969  if (VerifyObjectStartArray &&
970      VerifyBeforeGC) {
971    heap->old_gen()->verify_object_start_array();
972  }
973
974  DEBUG_ONLY(mark_bitmap()->verify_clear();)
975  DEBUG_ONLY(summary_data().verify_clear();)
976
977  // Have worker threads release resources the next time they run a task.
978  gc_task_manager()->release_all_resources();
979
980  ParCompactionManager::reset_all_bitmap_query_caches();
981}
982
983void PSParallelCompact::post_compact()
984{
985  GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
986
987  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
988    // Clear the marking bitmap, summary data and split info.
989    clear_data_covering_space(SpaceId(id));
990    // Update top().  Must be done after clearing the bitmap and summary data.
991    _space_info[id].publish_new_top();
992  }
993
994  MutableSpace* const eden_space = _space_info[eden_space_id].space();
995  MutableSpace* const from_space = _space_info[from_space_id].space();
996  MutableSpace* const to_space   = _space_info[to_space_id].space();
997
998  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
999  bool eden_empty = eden_space->is_empty();
1000  if (!eden_empty) {
1001    eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1002                                            heap->young_gen(), heap->old_gen());
1003  }
1004
1005  // Update heap occupancy information which is used as input to the soft ref
1006  // clearing policy at the next gc.
1007  Universe::update_heap_info_at_gc();
1008
1009  bool young_gen_empty = eden_empty && from_space->is_empty() &&
1010    to_space->is_empty();
1011
1012  ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1013  MemRegion old_mr = heap->old_gen()->reserved();
1014  if (young_gen_empty) {
1015    modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1016  } else {
1017    modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1018  }
1019
1020  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1021  ClassLoaderDataGraph::purge();
1022  MetaspaceAux::verify_metrics();
1023
1024  CodeCache::gc_epilogue();
1025  JvmtiExport::gc_epilogue();
1026
1027#if defined(COMPILER2) || INCLUDE_JVMCI
1028  DerivedPointerTable::update_pointers();
1029#endif
1030
1031  ref_processor()->enqueue_discovered_references(NULL);
1032
1033  if (ZapUnusedHeapArea) {
1034    heap->gen_mangle_unused_area();
1035  }
1036
1037  // Update time of last GC
1038  reset_millis_since_last_gc();
1039}
1040
1041HeapWord*
1042PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1043                                                    bool maximum_compaction)
1044{
1045  const size_t region_size = ParallelCompactData::RegionSize;
1046  const ParallelCompactData& sd = summary_data();
1047
1048  const MutableSpace* const space = _space_info[id].space();
1049  HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1050  const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1051  const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1052
1053  // Skip full regions at the beginning of the space--they are necessarily part
1054  // of the dense prefix.
1055  size_t full_count = 0;
1056  const RegionData* cp;
1057  for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1058    ++full_count;
1059  }
1060
1061  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1062  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1063  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1064  if (maximum_compaction || cp == end_cp || interval_ended) {
1065    _maximum_compaction_gc_num = total_invocations();
1066    return sd.region_to_addr(cp);
1067  }
1068
1069  HeapWord* const new_top = _space_info[id].new_top();
1070  const size_t space_live = pointer_delta(new_top, space->bottom());
1071  const size_t space_used = space->used_in_words();
1072  const size_t space_capacity = space->capacity_in_words();
1073
1074  const double cur_density = double(space_live) / space_capacity;
1075  const double deadwood_density =
1076    (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1077  const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1078
1079  if (TraceParallelOldGCDensePrefix) {
1080    tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1081                  cur_density, deadwood_density, deadwood_goal);
1082    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1083                  "space_cap=" SIZE_FORMAT,
1084                  space_live, space_used,
1085                  space_capacity);
1086  }
1087
1088  // XXX - Use binary search?
1089  HeapWord* dense_prefix = sd.region_to_addr(cp);
1090  const RegionData* full_cp = cp;
1091  const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1092  while (cp < end_cp) {
1093    HeapWord* region_destination = cp->destination();
1094    const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1095    if (TraceParallelOldGCDensePrefix && Verbose) {
1096      tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1097                    "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1098                    sd.region(cp), p2i(region_destination),
1099                    p2i(dense_prefix), cur_deadwood);
1100    }
1101
1102    if (cur_deadwood >= deadwood_goal) {
1103      // Found the region that has the correct amount of deadwood to the left.
1104      // This typically occurs after crossing a fairly sparse set of regions, so
1105      // iterate backwards over those sparse regions, looking for the region
1106      // that has the lowest density of live objects 'to the right.'
1107      size_t space_to_left = sd.region(cp) * region_size;
1108      size_t live_to_left = space_to_left - cur_deadwood;
1109      size_t space_to_right = space_capacity - space_to_left;
1110      size_t live_to_right = space_live - live_to_left;
1111      double density_to_right = double(live_to_right) / space_to_right;
1112      while (cp > full_cp) {
1113        --cp;
1114        const size_t prev_region_live_to_right = live_to_right -
1115          cp->data_size();
1116        const size_t prev_region_space_to_right = space_to_right + region_size;
1117        double prev_region_density_to_right =
1118          double(prev_region_live_to_right) / prev_region_space_to_right;
1119        if (density_to_right <= prev_region_density_to_right) {
1120          return dense_prefix;
1121        }
1122        if (TraceParallelOldGCDensePrefix && Verbose) {
1123          tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1124                        "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1125                        prev_region_density_to_right);
1126        }
1127        dense_prefix -= region_size;
1128        live_to_right = prev_region_live_to_right;
1129        space_to_right = prev_region_space_to_right;
1130        density_to_right = prev_region_density_to_right;
1131      }
1132      return dense_prefix;
1133    }
1134
1135    dense_prefix += region_size;
1136    ++cp;
1137  }
1138
1139  return dense_prefix;
1140}
1141
1142#ifndef PRODUCT
1143void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1144                                                 const SpaceId id,
1145                                                 const bool maximum_compaction,
1146                                                 HeapWord* const addr)
1147{
1148  const size_t region_idx = summary_data().addr_to_region_idx(addr);
1149  RegionData* const cp = summary_data().region(region_idx);
1150  const MutableSpace* const space = _space_info[id].space();
1151  HeapWord* const new_top = _space_info[id].new_top();
1152
1153  const size_t space_live = pointer_delta(new_top, space->bottom());
1154  const size_t dead_to_left = pointer_delta(addr, cp->destination());
1155  const size_t space_cap = space->capacity_in_words();
1156  const double dead_to_left_pct = double(dead_to_left) / space_cap;
1157  const size_t live_to_right = new_top - cp->destination();
1158  const size_t dead_to_right = space->top() - addr - live_to_right;
1159
1160  tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1161                "spl=" SIZE_FORMAT " "
1162                "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1163                "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1164                " ratio=%10.8f",
1165                algorithm, p2i(addr), region_idx,
1166                space_live,
1167                dead_to_left, dead_to_left_pct,
1168                dead_to_right, live_to_right,
1169                double(dead_to_right) / live_to_right);
1170}
1171#endif  // #ifndef PRODUCT
1172
1173// Return a fraction indicating how much of the generation can be treated as
1174// "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1175// based on the density of live objects in the generation to determine a limit,
1176// which is then adjusted so the return value is min_percent when the density is
1177// 1.
1178//
1179// The following table shows some return values for a different values of the
1180// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1181// min_percent is 1.
1182//
1183//                          fraction allowed as dead wood
1184//         -----------------------------------------------------------------
1185// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1186// ------- ---------- ---------- ---------- ---------- ---------- ----------
1187// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1188// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1189// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1190// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1191// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1192// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1193// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1194// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1195// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1196// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1197// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1198// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1199// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1200// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1201// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1202// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1203// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1204// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1205// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1206// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1207// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1208
1209double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1210{
1211  assert(_dwl_initialized, "uninitialized");
1212
1213  // The raw limit is the value of the normal distribution at x = density.
1214  const double raw_limit = normal_distribution(density);
1215
1216  // Adjust the raw limit so it becomes the minimum when the density is 1.
1217  //
1218  // First subtract the adjustment value (which is simply the precomputed value
1219  // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1220  // Then add the minimum value, so the minimum is returned when the density is
1221  // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1222  const double min = double(min_percent) / 100.0;
1223  const double limit = raw_limit - _dwl_adjustment + min;
1224  return MAX2(limit, 0.0);
1225}
1226
1227ParallelCompactData::RegionData*
1228PSParallelCompact::first_dead_space_region(const RegionData* beg,
1229                                           const RegionData* end)
1230{
1231  const size_t region_size = ParallelCompactData::RegionSize;
1232  ParallelCompactData& sd = summary_data();
1233  size_t left = sd.region(beg);
1234  size_t right = end > beg ? sd.region(end) - 1 : left;
1235
1236  // Binary search.
1237  while (left < right) {
1238    // Equivalent to (left + right) / 2, but does not overflow.
1239    const size_t middle = left + (right - left) / 2;
1240    RegionData* const middle_ptr = sd.region(middle);
1241    HeapWord* const dest = middle_ptr->destination();
1242    HeapWord* const addr = sd.region_to_addr(middle);
1243    assert(dest != NULL, "sanity");
1244    assert(dest <= addr, "must move left");
1245
1246    if (middle > left && dest < addr) {
1247      right = middle - 1;
1248    } else if (middle < right && middle_ptr->data_size() == region_size) {
1249      left = middle + 1;
1250    } else {
1251      return middle_ptr;
1252    }
1253  }
1254  return sd.region(left);
1255}
1256
1257ParallelCompactData::RegionData*
1258PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1259                                          const RegionData* end,
1260                                          size_t dead_words)
1261{
1262  ParallelCompactData& sd = summary_data();
1263  size_t left = sd.region(beg);
1264  size_t right = end > beg ? sd.region(end) - 1 : left;
1265
1266  // Binary search.
1267  while (left < right) {
1268    // Equivalent to (left + right) / 2, but does not overflow.
1269    const size_t middle = left + (right - left) / 2;
1270    RegionData* const middle_ptr = sd.region(middle);
1271    HeapWord* const dest = middle_ptr->destination();
1272    HeapWord* const addr = sd.region_to_addr(middle);
1273    assert(dest != NULL, "sanity");
1274    assert(dest <= addr, "must move left");
1275
1276    const size_t dead_to_left = pointer_delta(addr, dest);
1277    if (middle > left && dead_to_left > dead_words) {
1278      right = middle - 1;
1279    } else if (middle < right && dead_to_left < dead_words) {
1280      left = middle + 1;
1281    } else {
1282      return middle_ptr;
1283    }
1284  }
1285  return sd.region(left);
1286}
1287
1288// The result is valid during the summary phase, after the initial summarization
1289// of each space into itself, and before final summarization.
1290inline double
1291PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1292                                   HeapWord* const bottom,
1293                                   HeapWord* const top,
1294                                   HeapWord* const new_top)
1295{
1296  ParallelCompactData& sd = summary_data();
1297
1298  assert(cp != NULL, "sanity");
1299  assert(bottom != NULL, "sanity");
1300  assert(top != NULL, "sanity");
1301  assert(new_top != NULL, "sanity");
1302  assert(top >= new_top, "summary data problem?");
1303  assert(new_top > bottom, "space is empty; should not be here");
1304  assert(new_top >= cp->destination(), "sanity");
1305  assert(top >= sd.region_to_addr(cp), "sanity");
1306
1307  HeapWord* const destination = cp->destination();
1308  const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1309  const size_t compacted_region_live = pointer_delta(new_top, destination);
1310  const size_t compacted_region_used = pointer_delta(top,
1311                                                     sd.region_to_addr(cp));
1312  const size_t reclaimable = compacted_region_used - compacted_region_live;
1313
1314  const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1315  return double(reclaimable) / divisor;
1316}
1317
1318// Return the address of the end of the dense prefix, a.k.a. the start of the
1319// compacted region.  The address is always on a region boundary.
1320//
1321// Completely full regions at the left are skipped, since no compaction can
1322// occur in those regions.  Then the maximum amount of dead wood to allow is
1323// computed, based on the density (amount live / capacity) of the generation;
1324// the region with approximately that amount of dead space to the left is
1325// identified as the limit region.  Regions between the last completely full
1326// region and the limit region are scanned and the one that has the best
1327// (maximum) reclaimed_ratio() is selected.
1328HeapWord*
1329PSParallelCompact::compute_dense_prefix(const SpaceId id,
1330                                        bool maximum_compaction)
1331{
1332  const size_t region_size = ParallelCompactData::RegionSize;
1333  const ParallelCompactData& sd = summary_data();
1334
1335  const MutableSpace* const space = _space_info[id].space();
1336  HeapWord* const top = space->top();
1337  HeapWord* const top_aligned_up = sd.region_align_up(top);
1338  HeapWord* const new_top = _space_info[id].new_top();
1339  HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1340  HeapWord* const bottom = space->bottom();
1341  const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1342  const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1343  const RegionData* const new_top_cp =
1344    sd.addr_to_region_ptr(new_top_aligned_up);
1345
1346  // Skip full regions at the beginning of the space--they are necessarily part
1347  // of the dense prefix.
1348  const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1349  assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1350         space->is_empty(), "no dead space allowed to the left");
1351  assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1352         "region must have dead space");
1353
1354  // The gc number is saved whenever a maximum compaction is done, and used to
1355  // determine when the maximum compaction interval has expired.  This avoids
1356  // successive max compactions for different reasons.
1357  assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1358  const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1359  const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1360    total_invocations() == HeapFirstMaximumCompactionCount;
1361  if (maximum_compaction || full_cp == top_cp || interval_ended) {
1362    _maximum_compaction_gc_num = total_invocations();
1363    return sd.region_to_addr(full_cp);
1364  }
1365
1366  const size_t space_live = pointer_delta(new_top, bottom);
1367  const size_t space_used = space->used_in_words();
1368  const size_t space_capacity = space->capacity_in_words();
1369
1370  const double density = double(space_live) / double(space_capacity);
1371  const size_t min_percent_free = MarkSweepDeadRatio;
1372  const double limiter = dead_wood_limiter(density, min_percent_free);
1373  const size_t dead_wood_max = space_used - space_live;
1374  const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1375                                      dead_wood_max);
1376
1377  if (TraceParallelOldGCDensePrefix) {
1378    tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1379                  "space_cap=" SIZE_FORMAT,
1380                  space_live, space_used,
1381                  space_capacity);
1382    tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1383                  "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1384                  density, min_percent_free, limiter,
1385                  dead_wood_max, dead_wood_limit);
1386  }
1387
1388  // Locate the region with the desired amount of dead space to the left.
1389  const RegionData* const limit_cp =
1390    dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1391
1392  // Scan from the first region with dead space to the limit region and find the
1393  // one with the best (largest) reclaimed ratio.
1394  double best_ratio = 0.0;
1395  const RegionData* best_cp = full_cp;
1396  for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1397    double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1398    if (tmp_ratio > best_ratio) {
1399      best_cp = cp;
1400      best_ratio = tmp_ratio;
1401    }
1402  }
1403
1404  return sd.region_to_addr(best_cp);
1405}
1406
1407void PSParallelCompact::summarize_spaces_quick()
1408{
1409  for (unsigned int i = 0; i < last_space_id; ++i) {
1410    const MutableSpace* space = _space_info[i].space();
1411    HeapWord** nta = _space_info[i].new_top_addr();
1412    bool result = _summary_data.summarize(_space_info[i].split_info(),
1413                                          space->bottom(), space->top(), NULL,
1414                                          space->bottom(), space->end(), nta);
1415    assert(result, "space must fit into itself");
1416    _space_info[i].set_dense_prefix(space->bottom());
1417  }
1418}
1419
1420void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1421{
1422  HeapWord* const dense_prefix_end = dense_prefix(id);
1423  const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1424  const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1425  if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1426    // Only enough dead space is filled so that any remaining dead space to the
1427    // left is larger than the minimum filler object.  (The remainder is filled
1428    // during the copy/update phase.)
1429    //
1430    // The size of the dead space to the right of the boundary is not a
1431    // concern, since compaction will be able to use whatever space is
1432    // available.
1433    //
1434    // Here '||' is the boundary, 'x' represents a don't care bit and a box
1435    // surrounds the space to be filled with an object.
1436    //
1437    // In the 32-bit VM, each bit represents two 32-bit words:
1438    //                              +---+
1439    // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1440    //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1441    //                              +---+
1442    //
1443    // In the 64-bit VM, each bit represents one 64-bit word:
1444    //                              +------------+
1445    // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1446    //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1447    //                              +------------+
1448    //                          +-------+
1449    // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1450    //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1451    //                          +-------+
1452    //                      +-----------+
1453    // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1454    //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1455    //                      +-----------+
1456    //                          +-------+
1457    // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1458    //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1459    //                          +-------+
1460
1461    // Initially assume case a, c or e will apply.
1462    size_t obj_len = CollectedHeap::min_fill_size();
1463    HeapWord* obj_beg = dense_prefix_end - obj_len;
1464
1465#ifdef  _LP64
1466    if (MinObjAlignment > 1) { // object alignment > heap word size
1467      // Cases a, c or e.
1468    } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1469      // Case b above.
1470      obj_beg = dense_prefix_end - 1;
1471    } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1472               _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1473      // Case d above.
1474      obj_beg = dense_prefix_end - 3;
1475      obj_len = 3;
1476    }
1477#endif  // #ifdef _LP64
1478
1479    CollectedHeap::fill_with_object(obj_beg, obj_len);
1480    _mark_bitmap.mark_obj(obj_beg, obj_len);
1481    _summary_data.add_obj(obj_beg, obj_len);
1482    assert(start_array(id) != NULL, "sanity");
1483    start_array(id)->allocate_block(obj_beg);
1484  }
1485}
1486
1487void
1488PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1489{
1490  assert(id < last_space_id, "id out of range");
1491  assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1492         "should have been reset in summarize_spaces_quick()");
1493
1494  const MutableSpace* space = _space_info[id].space();
1495  if (_space_info[id].new_top() != space->bottom()) {
1496    HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1497    _space_info[id].set_dense_prefix(dense_prefix_end);
1498
1499#ifndef PRODUCT
1500    if (TraceParallelOldGCDensePrefix) {
1501      print_dense_prefix_stats("ratio", id, maximum_compaction,
1502                               dense_prefix_end);
1503      HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1504      print_dense_prefix_stats("density", id, maximum_compaction, addr);
1505    }
1506#endif  // #ifndef PRODUCT
1507
1508    // Recompute the summary data, taking into account the dense prefix.  If
1509    // every last byte will be reclaimed, then the existing summary data which
1510    // compacts everything can be left in place.
1511    if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1512      // If dead space crosses the dense prefix boundary, it is (at least
1513      // partially) filled with a dummy object, marked live and added to the
1514      // summary data.  This simplifies the copy/update phase and must be done
1515      // before the final locations of objects are determined, to prevent
1516      // leaving a fragment of dead space that is too small to fill.
1517      fill_dense_prefix_end(id);
1518
1519      // Compute the destination of each Region, and thus each object.
1520      _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1521      _summary_data.summarize(_space_info[id].split_info(),
1522                              dense_prefix_end, space->top(), NULL,
1523                              dense_prefix_end, space->end(),
1524                              _space_info[id].new_top_addr());
1525    }
1526  }
1527
1528  if (log_develop_is_enabled(Trace, gc, compaction)) {
1529    const size_t region_size = ParallelCompactData::RegionSize;
1530    HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1531    const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1532    const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1533    HeapWord* const new_top = _space_info[id].new_top();
1534    const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1535    const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1536    log_develop_trace(gc, compaction)(
1537        "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1538        "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1539        "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1540        id, space->capacity_in_words(), p2i(dense_prefix_end),
1541        dp_region, dp_words / region_size,
1542        cr_words / region_size, p2i(new_top));
1543  }
1544}
1545
1546#ifndef PRODUCT
1547void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1548                                          HeapWord* dst_beg, HeapWord* dst_end,
1549                                          SpaceId src_space_id,
1550                                          HeapWord* src_beg, HeapWord* src_end)
1551{
1552  log_develop_trace(gc, compaction)(
1553      "Summarizing %d [%s] into %d [%s]:  "
1554      "src=" PTR_FORMAT "-" PTR_FORMAT " "
1555      SIZE_FORMAT "-" SIZE_FORMAT " "
1556      "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1557      SIZE_FORMAT "-" SIZE_FORMAT,
1558      src_space_id, space_names[src_space_id],
1559      dst_space_id, space_names[dst_space_id],
1560      p2i(src_beg), p2i(src_end),
1561      _summary_data.addr_to_region_idx(src_beg),
1562      _summary_data.addr_to_region_idx(src_end),
1563      p2i(dst_beg), p2i(dst_end),
1564      _summary_data.addr_to_region_idx(dst_beg),
1565      _summary_data.addr_to_region_idx(dst_end));
1566}
1567#endif  // #ifndef PRODUCT
1568
1569void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1570                                      bool maximum_compaction)
1571{
1572  GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1573
1574#ifdef  ASSERT
1575  if (TraceParallelOldGCMarkingPhase) {
1576    tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1577                  "add_obj_bytes=" SIZE_FORMAT,
1578                  add_obj_count, add_obj_size * HeapWordSize);
1579    tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1580                  "mark_bitmap_bytes=" SIZE_FORMAT,
1581                  mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1582  }
1583#endif  // #ifdef ASSERT
1584
1585  // Quick summarization of each space into itself, to see how much is live.
1586  summarize_spaces_quick();
1587
1588  log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1589  NOT_PRODUCT(print_region_ranges());
1590  NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1591
1592  // The amount of live data that will end up in old space (assuming it fits).
1593  size_t old_space_total_live = 0;
1594  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1595    old_space_total_live += pointer_delta(_space_info[id].new_top(),
1596                                          _space_info[id].space()->bottom());
1597  }
1598
1599  MutableSpace* const old_space = _space_info[old_space_id].space();
1600  const size_t old_capacity = old_space->capacity_in_words();
1601  if (old_space_total_live > old_capacity) {
1602    // XXX - should also try to expand
1603    maximum_compaction = true;
1604  }
1605
1606  // Old generations.
1607  summarize_space(old_space_id, maximum_compaction);
1608
1609  // Summarize the remaining spaces in the young gen.  The initial target space
1610  // is the old gen.  If a space does not fit entirely into the target, then the
1611  // remainder is compacted into the space itself and that space becomes the new
1612  // target.
1613  SpaceId dst_space_id = old_space_id;
1614  HeapWord* dst_space_end = old_space->end();
1615  HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1616  for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1617    const MutableSpace* space = _space_info[id].space();
1618    const size_t live = pointer_delta(_space_info[id].new_top(),
1619                                      space->bottom());
1620    const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1621
1622    NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1623                                  SpaceId(id), space->bottom(), space->top());)
1624    if (live > 0 && live <= available) {
1625      // All the live data will fit.
1626      bool done = _summary_data.summarize(_space_info[id].split_info(),
1627                                          space->bottom(), space->top(),
1628                                          NULL,
1629                                          *new_top_addr, dst_space_end,
1630                                          new_top_addr);
1631      assert(done, "space must fit into old gen");
1632
1633      // Reset the new_top value for the space.
1634      _space_info[id].set_new_top(space->bottom());
1635    } else if (live > 0) {
1636      // Attempt to fit part of the source space into the target space.
1637      HeapWord* next_src_addr = NULL;
1638      bool done = _summary_data.summarize(_space_info[id].split_info(),
1639                                          space->bottom(), space->top(),
1640                                          &next_src_addr,
1641                                          *new_top_addr, dst_space_end,
1642                                          new_top_addr);
1643      assert(!done, "space should not fit into old gen");
1644      assert(next_src_addr != NULL, "sanity");
1645
1646      // The source space becomes the new target, so the remainder is compacted
1647      // within the space itself.
1648      dst_space_id = SpaceId(id);
1649      dst_space_end = space->end();
1650      new_top_addr = _space_info[id].new_top_addr();
1651      NOT_PRODUCT(summary_phase_msg(dst_space_id,
1652                                    space->bottom(), dst_space_end,
1653                                    SpaceId(id), next_src_addr, space->top());)
1654      done = _summary_data.summarize(_space_info[id].split_info(),
1655                                     next_src_addr, space->top(),
1656                                     NULL,
1657                                     space->bottom(), dst_space_end,
1658                                     new_top_addr);
1659      assert(done, "space must fit when compacted into itself");
1660      assert(*new_top_addr <= space->top(), "usage should not grow");
1661    }
1662  }
1663
1664  log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1665  NOT_PRODUCT(print_region_ranges());
1666  NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1667}
1668
1669// This method should contain all heap-specific policy for invoking a full
1670// collection.  invoke_no_policy() will only attempt to compact the heap; it
1671// will do nothing further.  If we need to bail out for policy reasons, scavenge
1672// before full gc, or any other specialized behavior, it needs to be added here.
1673//
1674// Note that this method should only be called from the vm_thread while at a
1675// safepoint.
1676//
1677// Note that the all_soft_refs_clear flag in the collector policy
1678// may be true because this method can be called without intervening
1679// activity.  For example when the heap space is tight and full measure
1680// are being taken to free space.
1681void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1682  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1683  assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1684         "should be in vm thread");
1685
1686  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1687  GCCause::Cause gc_cause = heap->gc_cause();
1688  assert(!heap->is_gc_active(), "not reentrant");
1689
1690  PSAdaptiveSizePolicy* policy = heap->size_policy();
1691  IsGCActiveMark mark;
1692
1693  if (ScavengeBeforeFullGC) {
1694    PSScavenge::invoke_no_policy();
1695  }
1696
1697  const bool clear_all_soft_refs =
1698    heap->collector_policy()->should_clear_all_soft_refs();
1699
1700  PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1701                                      maximum_heap_compaction);
1702}
1703
1704// This method contains no policy. You should probably
1705// be calling invoke() instead.
1706bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1707  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1708  assert(ref_processor() != NULL, "Sanity");
1709
1710  if (GCLocker::check_active_before_gc()) {
1711    return false;
1712  }
1713
1714  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1715
1716  GCIdMark gc_id_mark;
1717  _gc_timer.register_gc_start();
1718  _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1719
1720  TimeStamp marking_start;
1721  TimeStamp compaction_start;
1722  TimeStamp collection_exit;
1723
1724  GCCause::Cause gc_cause = heap->gc_cause();
1725  PSYoungGen* young_gen = heap->young_gen();
1726  PSOldGen* old_gen = heap->old_gen();
1727  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1728
1729  // The scope of casr should end after code that can change
1730  // CollectorPolicy::_should_clear_all_soft_refs.
1731  ClearedAllSoftRefs casr(maximum_heap_compaction,
1732                          heap->collector_policy());
1733
1734  if (ZapUnusedHeapArea) {
1735    // Save information needed to minimize mangling
1736    heap->record_gen_tops_before_GC();
1737  }
1738
1739  // Make sure data structures are sane, make the heap parsable, and do other
1740  // miscellaneous bookkeeping.
1741  pre_compact();
1742
1743  PreGCValues pre_gc_values(heap);
1744
1745  // Get the compaction manager reserved for the VM thread.
1746  ParCompactionManager* const vmthread_cm =
1747    ParCompactionManager::manager_array(gc_task_manager()->workers());
1748
1749  {
1750    ResourceMark rm;
1751    HandleMark hm;
1752
1753    // Set the number of GC threads to be used in this collection
1754    gc_task_manager()->set_active_gang();
1755    gc_task_manager()->task_idle_workers();
1756
1757    GCTraceCPUTime tcpu;
1758    GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1759
1760    heap->pre_full_gc_dump(&_gc_timer);
1761
1762    TraceCollectorStats tcs(counters());
1763    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1764
1765    if (TraceOldGenTime) accumulated_time()->start();
1766
1767    // Let the size policy know we're starting
1768    size_policy->major_collection_begin();
1769
1770    CodeCache::gc_prologue();
1771
1772#if defined(COMPILER2) || INCLUDE_JVMCI
1773    DerivedPointerTable::clear();
1774#endif
1775
1776    ref_processor()->enable_discovery();
1777    ref_processor()->setup_policy(maximum_heap_compaction);
1778
1779    bool marked_for_unloading = false;
1780
1781    marking_start.update();
1782    marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1783
1784    bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1785      && GCCause::is_user_requested_gc(gc_cause);
1786    summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1787
1788#if defined(COMPILER2) || INCLUDE_JVMCI
1789    assert(DerivedPointerTable::is_active(), "Sanity");
1790    DerivedPointerTable::set_active(false);
1791#endif
1792
1793    // adjust_roots() updates Universe::_intArrayKlassObj which is
1794    // needed by the compaction for filling holes in the dense prefix.
1795    adjust_roots(vmthread_cm);
1796
1797    compaction_start.update();
1798    compact();
1799
1800    // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1801    // done before resizing.
1802    post_compact();
1803
1804    // Let the size policy know we're done
1805    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1806
1807    if (UseAdaptiveSizePolicy) {
1808      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1809      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1810                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1811
1812      // Don't check if the size_policy is ready here.  Let
1813      // the size_policy check that internally.
1814      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1815          AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1816        // Swap the survivor spaces if from_space is empty. The
1817        // resize_young_gen() called below is normally used after
1818        // a successful young GC and swapping of survivor spaces;
1819        // otherwise, it will fail to resize the young gen with
1820        // the current implementation.
1821        if (young_gen->from_space()->is_empty()) {
1822          young_gen->from_space()->clear(SpaceDecorator::Mangle);
1823          young_gen->swap_spaces();
1824        }
1825
1826        // Calculate optimal free space amounts
1827        assert(young_gen->max_size() >
1828          young_gen->from_space()->capacity_in_bytes() +
1829          young_gen->to_space()->capacity_in_bytes(),
1830          "Sizes of space in young gen are out-of-bounds");
1831
1832        size_t young_live = young_gen->used_in_bytes();
1833        size_t eden_live = young_gen->eden_space()->used_in_bytes();
1834        size_t old_live = old_gen->used_in_bytes();
1835        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1836        size_t max_old_gen_size = old_gen->max_gen_size();
1837        size_t max_eden_size = young_gen->max_size() -
1838          young_gen->from_space()->capacity_in_bytes() -
1839          young_gen->to_space()->capacity_in_bytes();
1840
1841        // Used for diagnostics
1842        size_policy->clear_generation_free_space_flags();
1843
1844        size_policy->compute_generations_free_space(young_live,
1845                                                    eden_live,
1846                                                    old_live,
1847                                                    cur_eden,
1848                                                    max_old_gen_size,
1849                                                    max_eden_size,
1850                                                    true /* full gc*/);
1851
1852        size_policy->check_gc_overhead_limit(young_live,
1853                                             eden_live,
1854                                             max_old_gen_size,
1855                                             max_eden_size,
1856                                             true /* full gc*/,
1857                                             gc_cause,
1858                                             heap->collector_policy());
1859
1860        size_policy->decay_supplemental_growth(true /* full gc*/);
1861
1862        heap->resize_old_gen(
1863          size_policy->calculated_old_free_size_in_bytes());
1864
1865        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1866                               size_policy->calculated_survivor_size_in_bytes());
1867      }
1868
1869      log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1870    }
1871
1872    if (UsePerfData) {
1873      PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1874      counters->update_counters();
1875      counters->update_old_capacity(old_gen->capacity_in_bytes());
1876      counters->update_young_capacity(young_gen->capacity_in_bytes());
1877    }
1878
1879    heap->resize_all_tlabs();
1880
1881    // Resize the metaspace capacity after a collection
1882    MetaspaceGC::compute_new_size();
1883
1884    if (TraceOldGenTime) {
1885      accumulated_time()->stop();
1886    }
1887
1888    young_gen->print_used_change(pre_gc_values.young_gen_used());
1889    old_gen->print_used_change(pre_gc_values.old_gen_used());
1890    MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1891
1892    // Track memory usage and detect low memory
1893    MemoryService::track_memory_usage();
1894    heap->update_counters();
1895    gc_task_manager()->release_idle_workers();
1896
1897    heap->post_full_gc_dump(&_gc_timer);
1898  }
1899
1900#ifdef ASSERT
1901  for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1902    ParCompactionManager* const cm =
1903      ParCompactionManager::manager_array(int(i));
1904    assert(cm->marking_stack()->is_empty(),       "should be empty");
1905    assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
1906  }
1907#endif // ASSERT
1908
1909  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1910    HandleMark hm;  // Discard invalid handles created during verification
1911    Universe::verify("After GC");
1912  }
1913
1914  // Re-verify object start arrays
1915  if (VerifyObjectStartArray &&
1916      VerifyAfterGC) {
1917    old_gen->verify_object_start_array();
1918  }
1919
1920  if (ZapUnusedHeapArea) {
1921    old_gen->object_space()->check_mangled_unused_area_complete();
1922  }
1923
1924  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1925
1926  collection_exit.update();
1927
1928  heap->print_heap_after_gc();
1929  heap->trace_heap_after_gc(&_gc_tracer);
1930
1931  log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1932                         marking_start.ticks(), compaction_start.ticks(),
1933                         collection_exit.ticks());
1934  gc_task_manager()->print_task_time_stamps();
1935
1936#ifdef TRACESPINNING
1937  ParallelTaskTerminator::print_termination_counts();
1938#endif
1939
1940  AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1941
1942  _gc_timer.register_gc_end();
1943
1944  _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1945  _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1946
1947  return true;
1948}
1949
1950bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1951                                             PSYoungGen* young_gen,
1952                                             PSOldGen* old_gen) {
1953  MutableSpace* const eden_space = young_gen->eden_space();
1954  assert(!eden_space->is_empty(), "eden must be non-empty");
1955  assert(young_gen->virtual_space()->alignment() ==
1956         old_gen->virtual_space()->alignment(), "alignments do not match");
1957
1958  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1959    return false;
1960  }
1961
1962  // Both generations must be completely committed.
1963  if (young_gen->virtual_space()->uncommitted_size() != 0) {
1964    return false;
1965  }
1966  if (old_gen->virtual_space()->uncommitted_size() != 0) {
1967    return false;
1968  }
1969
1970  // Figure out how much to take from eden.  Include the average amount promoted
1971  // in the total; otherwise the next young gen GC will simply bail out to a
1972  // full GC.
1973  const size_t alignment = old_gen->virtual_space()->alignment();
1974  const size_t eden_used = eden_space->used_in_bytes();
1975  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1976  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
1977  const size_t eden_capacity = eden_space->capacity_in_bytes();
1978
1979  if (absorb_size >= eden_capacity) {
1980    return false; // Must leave some space in eden.
1981  }
1982
1983  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
1984  if (new_young_size < young_gen->min_gen_size()) {
1985    return false; // Respect young gen minimum size.
1986  }
1987
1988  log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
1989                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
1990                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
1991                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
1992                        absorb_size / K,
1993                        eden_capacity / K, (eden_capacity - absorb_size) / K,
1994                        young_gen->from_space()->used_in_bytes() / K,
1995                        young_gen->to_space()->used_in_bytes() / K,
1996                        young_gen->capacity_in_bytes() / K, new_young_size / K);
1997
1998  // Fill the unused part of the old gen.
1999  MutableSpace* const old_space = old_gen->object_space();
2000  HeapWord* const unused_start = old_space->top();
2001  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2002
2003  if (unused_words > 0) {
2004    if (unused_words < CollectedHeap::min_fill_size()) {
2005      return false;  // If the old gen cannot be filled, must give up.
2006    }
2007    CollectedHeap::fill_with_objects(unused_start, unused_words);
2008  }
2009
2010  // Take the live data from eden and set both top and end in the old gen to
2011  // eden top.  (Need to set end because reset_after_change() mangles the region
2012  // from end to virtual_space->high() in debug builds).
2013  HeapWord* const new_top = eden_space->top();
2014  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2015                                        absorb_size);
2016  young_gen->reset_after_change();
2017  old_space->set_top(new_top);
2018  old_space->set_end(new_top);
2019  old_gen->reset_after_change();
2020
2021  // Update the object start array for the filler object and the data from eden.
2022  ObjectStartArray* const start_array = old_gen->start_array();
2023  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2024    start_array->allocate_block(p);
2025  }
2026
2027  // Could update the promoted average here, but it is not typically updated at
2028  // full GCs and the value to use is unclear.  Something like
2029  //
2030  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2031
2032  size_policy->set_bytes_absorbed_from_eden(absorb_size);
2033  return true;
2034}
2035
2036GCTaskManager* const PSParallelCompact::gc_task_manager() {
2037  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2038    "shouldn't return NULL");
2039  return ParallelScavengeHeap::gc_task_manager();
2040}
2041
2042void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2043                                      bool maximum_heap_compaction,
2044                                      ParallelOldTracer *gc_tracer) {
2045  // Recursively traverse all live objects and mark them
2046  GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2047
2048  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2049  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2050  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2051  TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2052  ParallelTaskTerminator terminator(active_gc_threads, qset);
2053
2054  ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2055  ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2056
2057  // Need new claim bits before marking starts.
2058  ClassLoaderDataGraph::clear_claimed_marks();
2059
2060  {
2061    GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2062
2063    ParallelScavengeHeap::ParStrongRootsScope psrs;
2064
2065    GCTaskQueue* q = GCTaskQueue::create();
2066
2067    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2068    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2069    // We scan the thread roots in parallel
2070    Threads::create_thread_roots_marking_tasks(q);
2071    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2072    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2073    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2074    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2075    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2076    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2077    q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2078
2079    if (active_gc_threads > 1) {
2080      for (uint j = 0; j < active_gc_threads; j++) {
2081        q->enqueue(new StealMarkingTask(&terminator));
2082      }
2083    }
2084
2085    gc_task_manager()->execute_and_wait(q);
2086  }
2087
2088  // Process reference objects found during marking
2089  {
2090    GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2091
2092    ReferenceProcessorStats stats;
2093    if (ref_processor()->processing_is_mt()) {
2094      RefProcTaskExecutor task_executor;
2095      stats = ref_processor()->process_discovered_references(
2096        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2097        &task_executor, &_gc_timer);
2098    } else {
2099      stats = ref_processor()->process_discovered_references(
2100        is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2101        &_gc_timer);
2102    }
2103
2104    gc_tracer->report_gc_reference_stats(stats);
2105  }
2106
2107  // This is the point where the entire marking should have completed.
2108  assert(cm->marking_stacks_empty(), "Marking should have completed");
2109
2110  {
2111    GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2112
2113    // Follow system dictionary roots and unload classes.
2114    bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2115
2116    // Unload nmethods.
2117    CodeCache::do_unloading(is_alive_closure(), purged_class);
2118
2119    // Prune dead klasses from subklass/sibling/implementor lists.
2120    Klass::clean_weak_klass_links(is_alive_closure());
2121  }
2122
2123  {
2124    GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2125    // Delete entries for dead interned strings.
2126    StringTable::unlink(is_alive_closure());
2127  }
2128
2129  {
2130    GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2131    // Clean up unreferenced symbols in symbol table.
2132    SymbolTable::unlink();
2133  }
2134
2135  _gc_tracer.report_object_count_after_gc(is_alive_closure());
2136}
2137
2138void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2139  // Adjust the pointers to reflect the new locations
2140  GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2141
2142  // Need new claim bits when tracing through and adjusting pointers.
2143  ClassLoaderDataGraph::clear_claimed_marks();
2144
2145  PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2146  PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2147
2148  // General strong roots.
2149  Universe::oops_do(&oop_closure);
2150  JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2151  CLDToOopClosure adjust_from_cld(&oop_closure);
2152  Threads::oops_do(&oop_closure, &adjust_from_cld, NULL);
2153  ObjectSynchronizer::oops_do(&oop_closure);
2154  FlatProfiler::oops_do(&oop_closure);
2155  Management::oops_do(&oop_closure);
2156  JvmtiExport::oops_do(&oop_closure);
2157  SystemDictionary::oops_do(&oop_closure);
2158  ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2159
2160  // Now adjust pointers in remaining weak roots.  (All of which should
2161  // have been cleared if they pointed to non-surviving objects.)
2162  // Global (weak) JNI handles
2163  JNIHandles::weak_oops_do(&oop_closure);
2164
2165  CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2166  CodeCache::blobs_do(&adjust_from_blobs);
2167  StringTable::oops_do(&oop_closure);
2168  ref_processor()->weak_oops_do(&oop_closure);
2169  // Roots were visited so references into the young gen in roots
2170  // may have been scanned.  Process them also.
2171  // Should the reference processor have a span that excludes
2172  // young gen objects?
2173  PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2174}
2175
2176// Helper class to print 8 region numbers per line and then print the total at the end.
2177class FillableRegionLogger : public StackObj {
2178private:
2179  Log(gc, compaction) log;
2180  static const int LineLength = 8;
2181  size_t _regions[LineLength];
2182  int _next_index;
2183  bool _enabled;
2184  size_t _total_regions;
2185public:
2186  FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2187  ~FillableRegionLogger() {
2188    log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2189  }
2190
2191  void print_line() {
2192    if (!_enabled || _next_index == 0) {
2193      return;
2194    }
2195    FormatBuffer<> line("Fillable: ");
2196    for (int i = 0; i < _next_index; i++) {
2197      line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2198    }
2199    log.trace("%s", line.buffer());
2200    _next_index = 0;
2201  }
2202
2203  void handle(size_t region) {
2204    if (!_enabled) {
2205      return;
2206    }
2207    _regions[_next_index++] = region;
2208    if (_next_index == LineLength) {
2209      print_line();
2210    }
2211    _total_regions++;
2212  }
2213};
2214
2215void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2216                                                      uint parallel_gc_threads)
2217{
2218  GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2219
2220  // Find the threads that are active
2221  unsigned int which = 0;
2222
2223  const uint task_count = MAX2(parallel_gc_threads, 1U);
2224  for (uint j = 0; j < task_count; j++) {
2225    q->enqueue(new DrainStacksCompactionTask(j));
2226    ParCompactionManager::verify_region_list_empty(j);
2227    // Set the region stacks variables to "no" region stack values
2228    // so that they will be recognized and needing a region stack
2229    // in the stealing tasks if they do not get one by executing
2230    // a draining stack.
2231    ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2232    cm->set_region_stack(NULL);
2233    cm->set_region_stack_index((uint)max_uintx);
2234  }
2235  ParCompactionManager::reset_recycled_stack_index();
2236
2237  // Find all regions that are available (can be filled immediately) and
2238  // distribute them to the thread stacks.  The iteration is done in reverse
2239  // order (high to low) so the regions will be removed in ascending order.
2240
2241  const ParallelCompactData& sd = PSParallelCompact::summary_data();
2242
2243  // A region index which corresponds to the tasks created above.
2244  // "which" must be 0 <= which < task_count
2245
2246  which = 0;
2247  // id + 1 is used to test termination so unsigned  can
2248  // be used with an old_space_id == 0.
2249  FillableRegionLogger region_logger;
2250  for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2251    SpaceInfo* const space_info = _space_info + id;
2252    MutableSpace* const space = space_info->space();
2253    HeapWord* const new_top = space_info->new_top();
2254
2255    const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2256    const size_t end_region =
2257      sd.addr_to_region_idx(sd.region_align_up(new_top));
2258
2259    for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2260      if (sd.region(cur)->claim_unsafe()) {
2261        ParCompactionManager::region_list_push(which, cur);
2262        region_logger.handle(cur);
2263        // Assign regions to tasks in round-robin fashion.
2264        if (++which == task_count) {
2265          assert(which <= parallel_gc_threads,
2266            "Inconsistent number of workers");
2267          which = 0;
2268        }
2269      }
2270    }
2271    region_logger.print_line();
2272  }
2273}
2274
2275#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2276
2277void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2278                                                    uint parallel_gc_threads) {
2279  GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2280
2281  ParallelCompactData& sd = PSParallelCompact::summary_data();
2282
2283  // Iterate over all the spaces adding tasks for updating
2284  // regions in the dense prefix.  Assume that 1 gc thread
2285  // will work on opening the gaps and the remaining gc threads
2286  // will work on the dense prefix.
2287  unsigned int space_id;
2288  for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2289    HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2290    const MutableSpace* const space = _space_info[space_id].space();
2291
2292    if (dense_prefix_end == space->bottom()) {
2293      // There is no dense prefix for this space.
2294      continue;
2295    }
2296
2297    // The dense prefix is before this region.
2298    size_t region_index_end_dense_prefix =
2299        sd.addr_to_region_idx(dense_prefix_end);
2300    RegionData* const dense_prefix_cp =
2301      sd.region(region_index_end_dense_prefix);
2302    assert(dense_prefix_end == space->end() ||
2303           dense_prefix_cp->available() ||
2304           dense_prefix_cp->claimed(),
2305           "The region after the dense prefix should always be ready to fill");
2306
2307    size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2308
2309    // Is there dense prefix work?
2310    size_t total_dense_prefix_regions =
2311      region_index_end_dense_prefix - region_index_start;
2312    // How many regions of the dense prefix should be given to
2313    // each thread?
2314    if (total_dense_prefix_regions > 0) {
2315      uint tasks_for_dense_prefix = 1;
2316      if (total_dense_prefix_regions <=
2317          (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2318        // Don't over partition.  This assumes that
2319        // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2320        // so there are not many regions to process.
2321        tasks_for_dense_prefix = parallel_gc_threads;
2322      } else {
2323        // Over partition
2324        tasks_for_dense_prefix = parallel_gc_threads *
2325          PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2326      }
2327      size_t regions_per_thread = total_dense_prefix_regions /
2328        tasks_for_dense_prefix;
2329      // Give each thread at least 1 region.
2330      if (regions_per_thread == 0) {
2331        regions_per_thread = 1;
2332      }
2333
2334      for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2335        if (region_index_start >= region_index_end_dense_prefix) {
2336          break;
2337        }
2338        // region_index_end is not processed
2339        size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2340                                       region_index_end_dense_prefix);
2341        q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2342                                             region_index_start,
2343                                             region_index_end));
2344        region_index_start = region_index_end;
2345      }
2346    }
2347    // This gets any part of the dense prefix that did not
2348    // fit evenly.
2349    if (region_index_start < region_index_end_dense_prefix) {
2350      q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2351                                           region_index_start,
2352                                           region_index_end_dense_prefix));
2353    }
2354  }
2355}
2356
2357void PSParallelCompact::enqueue_region_stealing_tasks(
2358                                     GCTaskQueue* q,
2359                                     ParallelTaskTerminator* terminator_ptr,
2360                                     uint parallel_gc_threads) {
2361  GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2362
2363  // Once a thread has drained it's stack, it should try to steal regions from
2364  // other threads.
2365  if (parallel_gc_threads > 1) {
2366    for (uint j = 0; j < parallel_gc_threads; j++) {
2367      q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2368    }
2369  }
2370}
2371
2372#ifdef ASSERT
2373// Write a histogram of the number of times the block table was filled for a
2374// region.
2375void PSParallelCompact::write_block_fill_histogram()
2376{
2377  if (!log_develop_is_enabled(Trace, gc, compaction)) {
2378    return;
2379  }
2380
2381  Log(gc, compaction) log;
2382  ResourceMark rm;
2383  outputStream* out = log.trace_stream();
2384
2385  typedef ParallelCompactData::RegionData rd_t;
2386  ParallelCompactData& sd = summary_data();
2387
2388  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2389    MutableSpace* const spc = _space_info[id].space();
2390    if (spc->bottom() != spc->top()) {
2391      const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2392      HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2393      const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2394
2395      size_t histo[5] = { 0, 0, 0, 0, 0 };
2396      const size_t histo_len = sizeof(histo) / sizeof(size_t);
2397      const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2398
2399      for (const rd_t* cur = beg; cur < end; ++cur) {
2400        ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2401      }
2402      out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2403      for (size_t i = 0; i < histo_len; ++i) {
2404        out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2405                   histo[i], 100.0 * histo[i] / region_cnt);
2406      }
2407      out->cr();
2408    }
2409  }
2410}
2411#endif // #ifdef ASSERT
2412
2413void PSParallelCompact::compact() {
2414  GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2415
2416  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2417  PSOldGen* old_gen = heap->old_gen();
2418  old_gen->start_array()->reset();
2419  uint parallel_gc_threads = heap->gc_task_manager()->workers();
2420  uint active_gc_threads = heap->gc_task_manager()->active_workers();
2421  TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2422  ParallelTaskTerminator terminator(active_gc_threads, qset);
2423
2424  GCTaskQueue* q = GCTaskQueue::create();
2425  enqueue_region_draining_tasks(q, active_gc_threads);
2426  enqueue_dense_prefix_tasks(q, active_gc_threads);
2427  enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2428
2429  {
2430    GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2431
2432    gc_task_manager()->execute_and_wait(q);
2433
2434#ifdef  ASSERT
2435    // Verify that all regions have been processed before the deferred updates.
2436    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2437      verify_complete(SpaceId(id));
2438    }
2439#endif
2440  }
2441
2442  {
2443    // Update the deferred objects, if any.  Any compaction manager can be used.
2444    GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2445    ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2446    for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2447      update_deferred_objects(cm, SpaceId(id));
2448    }
2449  }
2450
2451  DEBUG_ONLY(write_block_fill_histogram());
2452}
2453
2454#ifdef  ASSERT
2455void PSParallelCompact::verify_complete(SpaceId space_id) {
2456  // All Regions between space bottom() to new_top() should be marked as filled
2457  // and all Regions between new_top() and top() should be available (i.e.,
2458  // should have been emptied).
2459  ParallelCompactData& sd = summary_data();
2460  SpaceInfo si = _space_info[space_id];
2461  HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2462  HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2463  const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2464  const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2465  const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2466
2467  bool issued_a_warning = false;
2468
2469  size_t cur_region;
2470  for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2471    const RegionData* const c = sd.region(cur_region);
2472    if (!c->completed()) {
2473      log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2474                      cur_region, c->destination_count());
2475      issued_a_warning = true;
2476    }
2477  }
2478
2479  for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2480    const RegionData* const c = sd.region(cur_region);
2481    if (!c->available()) {
2482      log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2483                      cur_region, c->destination_count());
2484      issued_a_warning = true;
2485    }
2486  }
2487
2488  if (issued_a_warning) {
2489    print_region_ranges();
2490  }
2491}
2492#endif  // #ifdef ASSERT
2493
2494inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2495  _start_array->allocate_block(addr);
2496  compaction_manager()->update_contents(oop(addr));
2497}
2498
2499// Update interior oops in the ranges of regions [beg_region, end_region).
2500void
2501PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2502                                                       SpaceId space_id,
2503                                                       size_t beg_region,
2504                                                       size_t end_region) {
2505  ParallelCompactData& sd = summary_data();
2506  ParMarkBitMap* const mbm = mark_bitmap();
2507
2508  HeapWord* beg_addr = sd.region_to_addr(beg_region);
2509  HeapWord* const end_addr = sd.region_to_addr(end_region);
2510  assert(beg_region <= end_region, "bad region range");
2511  assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2512
2513#ifdef  ASSERT
2514  // Claim the regions to avoid triggering an assert when they are marked as
2515  // filled.
2516  for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2517    assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2518  }
2519#endif  // #ifdef ASSERT
2520
2521  if (beg_addr != space(space_id)->bottom()) {
2522    // Find the first live object or block of dead space that *starts* in this
2523    // range of regions.  If a partial object crosses onto the region, skip it;
2524    // it will be marked for 'deferred update' when the object head is
2525    // processed.  If dead space crosses onto the region, it is also skipped; it
2526    // will be filled when the prior region is processed.  If neither of those
2527    // apply, the first word in the region is the start of a live object or dead
2528    // space.
2529    assert(beg_addr > space(space_id)->bottom(), "sanity");
2530    const RegionData* const cp = sd.region(beg_region);
2531    if (cp->partial_obj_size() != 0) {
2532      beg_addr = sd.partial_obj_end(beg_region);
2533    } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2534      beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2535    }
2536  }
2537
2538  if (beg_addr < end_addr) {
2539    // A live object or block of dead space starts in this range of Regions.
2540     HeapWord* const dense_prefix_end = dense_prefix(space_id);
2541
2542    // Create closures and iterate.
2543    UpdateOnlyClosure update_closure(mbm, cm, space_id);
2544    FillClosure fill_closure(cm, space_id);
2545    ParMarkBitMap::IterationStatus status;
2546    status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2547                          dense_prefix_end);
2548    if (status == ParMarkBitMap::incomplete) {
2549      update_closure.do_addr(update_closure.source());
2550    }
2551  }
2552
2553  // Mark the regions as filled.
2554  RegionData* const beg_cp = sd.region(beg_region);
2555  RegionData* const end_cp = sd.region(end_region);
2556  for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2557    cp->set_completed();
2558  }
2559}
2560
2561// Return the SpaceId for the space containing addr.  If addr is not in the
2562// heap, last_space_id is returned.  In debug mode it expects the address to be
2563// in the heap and asserts such.
2564PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2565  assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2566
2567  for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2568    if (_space_info[id].space()->contains(addr)) {
2569      return SpaceId(id);
2570    }
2571  }
2572
2573  assert(false, "no space contains the addr");
2574  return last_space_id;
2575}
2576
2577void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2578                                                SpaceId id) {
2579  assert(id < last_space_id, "bad space id");
2580
2581  ParallelCompactData& sd = summary_data();
2582  const SpaceInfo* const space_info = _space_info + id;
2583  ObjectStartArray* const start_array = space_info->start_array();
2584
2585  const MutableSpace* const space = space_info->space();
2586  assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2587  HeapWord* const beg_addr = space_info->dense_prefix();
2588  HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2589
2590  const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2591  const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2592  const RegionData* cur_region;
2593  for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2594    HeapWord* const addr = cur_region->deferred_obj_addr();
2595    if (addr != NULL) {
2596      if (start_array != NULL) {
2597        start_array->allocate_block(addr);
2598      }
2599      cm->update_contents(oop(addr));
2600      assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2601    }
2602  }
2603}
2604
2605// Skip over count live words starting from beg, and return the address of the
2606// next live word.  Unless marked, the word corresponding to beg is assumed to
2607// be dead.  Callers must either ensure beg does not correspond to the middle of
2608// an object, or account for those live words in some other way.  Callers must
2609// also ensure that there are enough live words in the range [beg, end) to skip.
2610HeapWord*
2611PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2612{
2613  assert(count > 0, "sanity");
2614
2615  ParMarkBitMap* m = mark_bitmap();
2616  idx_t bits_to_skip = m->words_to_bits(count);
2617  idx_t cur_beg = m->addr_to_bit(beg);
2618  const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2619
2620  do {
2621    cur_beg = m->find_obj_beg(cur_beg, search_end);
2622    idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2623    const size_t obj_bits = cur_end - cur_beg + 1;
2624    if (obj_bits > bits_to_skip) {
2625      return m->bit_to_addr(cur_beg + bits_to_skip);
2626    }
2627    bits_to_skip -= obj_bits;
2628    cur_beg = cur_end + 1;
2629  } while (bits_to_skip > 0);
2630
2631  // Skipping the desired number of words landed just past the end of an object.
2632  // Find the start of the next object.
2633  cur_beg = m->find_obj_beg(cur_beg, search_end);
2634  assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2635  return m->bit_to_addr(cur_beg);
2636}
2637
2638HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2639                                            SpaceId src_space_id,
2640                                            size_t src_region_idx)
2641{
2642  assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2643
2644  const SplitInfo& split_info = _space_info[src_space_id].split_info();
2645  if (split_info.dest_region_addr() == dest_addr) {
2646    // The partial object ending at the split point contains the first word to
2647    // be copied to dest_addr.
2648    return split_info.first_src_addr();
2649  }
2650
2651  const ParallelCompactData& sd = summary_data();
2652  ParMarkBitMap* const bitmap = mark_bitmap();
2653  const size_t RegionSize = ParallelCompactData::RegionSize;
2654
2655  assert(sd.is_region_aligned(dest_addr), "not aligned");
2656  const RegionData* const src_region_ptr = sd.region(src_region_idx);
2657  const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2658  HeapWord* const src_region_destination = src_region_ptr->destination();
2659
2660  assert(dest_addr >= src_region_destination, "wrong src region");
2661  assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2662
2663  HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2664  HeapWord* const src_region_end = src_region_beg + RegionSize;
2665
2666  HeapWord* addr = src_region_beg;
2667  if (dest_addr == src_region_destination) {
2668    // Return the first live word in the source region.
2669    if (partial_obj_size == 0) {
2670      addr = bitmap->find_obj_beg(addr, src_region_end);
2671      assert(addr < src_region_end, "no objects start in src region");
2672    }
2673    return addr;
2674  }
2675
2676  // Must skip some live data.
2677  size_t words_to_skip = dest_addr - src_region_destination;
2678  assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2679
2680  if (partial_obj_size >= words_to_skip) {
2681    // All the live words to skip are part of the partial object.
2682    addr += words_to_skip;
2683    if (partial_obj_size == words_to_skip) {
2684      // Find the first live word past the partial object.
2685      addr = bitmap->find_obj_beg(addr, src_region_end);
2686      assert(addr < src_region_end, "wrong src region");
2687    }
2688    return addr;
2689  }
2690
2691  // Skip over the partial object (if any).
2692  if (partial_obj_size != 0) {
2693    words_to_skip -= partial_obj_size;
2694    addr += partial_obj_size;
2695  }
2696
2697  // Skip over live words due to objects that start in the region.
2698  addr = skip_live_words(addr, src_region_end, words_to_skip);
2699  assert(addr < src_region_end, "wrong src region");
2700  return addr;
2701}
2702
2703void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2704                                                     SpaceId src_space_id,
2705                                                     size_t beg_region,
2706                                                     HeapWord* end_addr)
2707{
2708  ParallelCompactData& sd = summary_data();
2709
2710#ifdef ASSERT
2711  MutableSpace* const src_space = _space_info[src_space_id].space();
2712  HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2713  assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2714         "src_space_id does not match beg_addr");
2715  assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2716         "src_space_id does not match end_addr");
2717#endif // #ifdef ASSERT
2718
2719  RegionData* const beg = sd.region(beg_region);
2720  RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2721
2722  // Regions up to new_top() are enqueued if they become available.
2723  HeapWord* const new_top = _space_info[src_space_id].new_top();
2724  RegionData* const enqueue_end =
2725    sd.addr_to_region_ptr(sd.region_align_up(new_top));
2726
2727  for (RegionData* cur = beg; cur < end; ++cur) {
2728    assert(cur->data_size() > 0, "region must have live data");
2729    cur->decrement_destination_count();
2730    if (cur < enqueue_end && cur->available() && cur->claim()) {
2731      cm->push_region(sd.region(cur));
2732    }
2733  }
2734}
2735
2736size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2737                                          SpaceId& src_space_id,
2738                                          HeapWord*& src_space_top,
2739                                          HeapWord* end_addr)
2740{
2741  typedef ParallelCompactData::RegionData RegionData;
2742
2743  ParallelCompactData& sd = PSParallelCompact::summary_data();
2744  const size_t region_size = ParallelCompactData::RegionSize;
2745
2746  size_t src_region_idx = 0;
2747
2748  // Skip empty regions (if any) up to the top of the space.
2749  HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2750  RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2751  HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2752  const RegionData* const top_region_ptr =
2753    sd.addr_to_region_ptr(top_aligned_up);
2754  while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2755    ++src_region_ptr;
2756  }
2757
2758  if (src_region_ptr < top_region_ptr) {
2759    // The next source region is in the current space.  Update src_region_idx
2760    // and the source address to match src_region_ptr.
2761    src_region_idx = sd.region(src_region_ptr);
2762    HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2763    if (src_region_addr > closure.source()) {
2764      closure.set_source(src_region_addr);
2765    }
2766    return src_region_idx;
2767  }
2768
2769  // Switch to a new source space and find the first non-empty region.
2770  unsigned int space_id = src_space_id + 1;
2771  assert(space_id < last_space_id, "not enough spaces");
2772
2773  HeapWord* const destination = closure.destination();
2774
2775  do {
2776    MutableSpace* space = _space_info[space_id].space();
2777    HeapWord* const bottom = space->bottom();
2778    const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2779
2780    // Iterate over the spaces that do not compact into themselves.
2781    if (bottom_cp->destination() != bottom) {
2782      HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2783      const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2784
2785      for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2786        if (src_cp->live_obj_size() > 0) {
2787          // Found it.
2788          assert(src_cp->destination() == destination,
2789                 "first live obj in the space must match the destination");
2790          assert(src_cp->partial_obj_size() == 0,
2791                 "a space cannot begin with a partial obj");
2792
2793          src_space_id = SpaceId(space_id);
2794          src_space_top = space->top();
2795          const size_t src_region_idx = sd.region(src_cp);
2796          closure.set_source(sd.region_to_addr(src_region_idx));
2797          return src_region_idx;
2798        } else {
2799          assert(src_cp->data_size() == 0, "sanity");
2800        }
2801      }
2802    }
2803  } while (++space_id < last_space_id);
2804
2805  assert(false, "no source region was found");
2806  return 0;
2807}
2808
2809void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2810{
2811  typedef ParMarkBitMap::IterationStatus IterationStatus;
2812  const size_t RegionSize = ParallelCompactData::RegionSize;
2813  ParMarkBitMap* const bitmap = mark_bitmap();
2814  ParallelCompactData& sd = summary_data();
2815  RegionData* const region_ptr = sd.region(region_idx);
2816
2817  // Get the items needed to construct the closure.
2818  HeapWord* dest_addr = sd.region_to_addr(region_idx);
2819  SpaceId dest_space_id = space_id(dest_addr);
2820  ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2821  HeapWord* new_top = _space_info[dest_space_id].new_top();
2822  assert(dest_addr < new_top, "sanity");
2823  const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2824
2825  // Get the source region and related info.
2826  size_t src_region_idx = region_ptr->source_region();
2827  SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2828  HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2829
2830  MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2831  closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2832
2833  // Adjust src_region_idx to prepare for decrementing destination counts (the
2834  // destination count is not decremented when a region is copied to itself).
2835  if (src_region_idx == region_idx) {
2836    src_region_idx += 1;
2837  }
2838
2839  if (bitmap->is_unmarked(closure.source())) {
2840    // The first source word is in the middle of an object; copy the remainder
2841    // of the object or as much as will fit.  The fact that pointer updates were
2842    // deferred will be noted when the object header is processed.
2843    HeapWord* const old_src_addr = closure.source();
2844    closure.copy_partial_obj();
2845    if (closure.is_full()) {
2846      decrement_destination_counts(cm, src_space_id, src_region_idx,
2847                                   closure.source());
2848      region_ptr->set_deferred_obj_addr(NULL);
2849      region_ptr->set_completed();
2850      return;
2851    }
2852
2853    HeapWord* const end_addr = sd.region_align_down(closure.source());
2854    if (sd.region_align_down(old_src_addr) != end_addr) {
2855      // The partial object was copied from more than one source region.
2856      decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2857
2858      // Move to the next source region, possibly switching spaces as well.  All
2859      // args except end_addr may be modified.
2860      src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2861                                       end_addr);
2862    }
2863  }
2864
2865  do {
2866    HeapWord* const cur_addr = closure.source();
2867    HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2868                                    src_space_top);
2869    IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2870
2871    if (status == ParMarkBitMap::incomplete) {
2872      // The last obj that starts in the source region does not end in the
2873      // region.
2874      assert(closure.source() < end_addr, "sanity");
2875      HeapWord* const obj_beg = closure.source();
2876      HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2877                                       src_space_top);
2878      HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2879      if (obj_end < range_end) {
2880        // The end was found; the entire object will fit.
2881        status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2882        assert(status != ParMarkBitMap::would_overflow, "sanity");
2883      } else {
2884        // The end was not found; the object will not fit.
2885        assert(range_end < src_space_top, "obj cannot cross space boundary");
2886        status = ParMarkBitMap::would_overflow;
2887      }
2888    }
2889
2890    if (status == ParMarkBitMap::would_overflow) {
2891      // The last object did not fit.  Note that interior oop updates were
2892      // deferred, then copy enough of the object to fill the region.
2893      region_ptr->set_deferred_obj_addr(closure.destination());
2894      status = closure.copy_until_full(); // copies from closure.source()
2895
2896      decrement_destination_counts(cm, src_space_id, src_region_idx,
2897                                   closure.source());
2898      region_ptr->set_completed();
2899      return;
2900    }
2901
2902    if (status == ParMarkBitMap::full) {
2903      decrement_destination_counts(cm, src_space_id, src_region_idx,
2904                                   closure.source());
2905      region_ptr->set_deferred_obj_addr(NULL);
2906      region_ptr->set_completed();
2907      return;
2908    }
2909
2910    decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2911
2912    // Move to the next source region, possibly switching spaces as well.  All
2913    // args except end_addr may be modified.
2914    src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2915                                     end_addr);
2916  } while (true);
2917}
2918
2919void PSParallelCompact::fill_blocks(size_t region_idx)
2920{
2921  // Fill in the block table elements for the specified region.  Each block
2922  // table element holds the number of live words in the region that are to the
2923  // left of the first object that starts in the block.  Thus only blocks in
2924  // which an object starts need to be filled.
2925  //
2926  // The algorithm scans the section of the bitmap that corresponds to the
2927  // region, keeping a running total of the live words.  When an object start is
2928  // found, if it's the first to start in the block that contains it, the
2929  // current total is written to the block table element.
2930  const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2931  const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2932  const size_t RegionSize = ParallelCompactData::RegionSize;
2933
2934  ParallelCompactData& sd = summary_data();
2935  const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2936  if (partial_obj_size >= RegionSize) {
2937    return; // No objects start in this region.
2938  }
2939
2940  // Ensure the first loop iteration decides that the block has changed.
2941  size_t cur_block = sd.block_count();
2942
2943  const ParMarkBitMap* const bitmap = mark_bitmap();
2944
2945  const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2946  assert((size_t)1 << Log2BitsPerBlock ==
2947         bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2948
2949  size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2950  const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2951  size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2952  beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2953  while (beg_bit < range_end) {
2954    const size_t new_block = beg_bit >> Log2BitsPerBlock;
2955    if (new_block != cur_block) {
2956      cur_block = new_block;
2957      sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2958    }
2959
2960    const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2961    if (end_bit < range_end - 1) {
2962      live_bits += end_bit - beg_bit + 1;
2963      beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2964    } else {
2965      return;
2966    }
2967  }
2968}
2969
2970void
2971PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2972  const MutableSpace* sp = space(space_id);
2973  if (sp->is_empty()) {
2974    return;
2975  }
2976
2977  ParallelCompactData& sd = PSParallelCompact::summary_data();
2978  ParMarkBitMap* const bitmap = mark_bitmap();
2979  HeapWord* const dp_addr = dense_prefix(space_id);
2980  HeapWord* beg_addr = sp->bottom();
2981  HeapWord* end_addr = sp->top();
2982
2983  assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2984
2985  const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2986  const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2987  if (beg_region < dp_region) {
2988    update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2989  }
2990
2991  // The destination of the first live object that starts in the region is one
2992  // past the end of the partial object entering the region (if any).
2993  HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2994  HeapWord* const new_top = _space_info[space_id].new_top();
2995  assert(new_top >= dest_addr, "bad new_top value");
2996  const size_t words = pointer_delta(new_top, dest_addr);
2997
2998  if (words > 0) {
2999    ObjectStartArray* start_array = _space_info[space_id].start_array();
3000    MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3001
3002    ParMarkBitMap::IterationStatus status;
3003    status = bitmap->iterate(&closure, dest_addr, end_addr);
3004    assert(status == ParMarkBitMap::full, "iteration not complete");
3005    assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3006           "live objects skipped because closure is full");
3007  }
3008}
3009
3010jlong PSParallelCompact::millis_since_last_gc() {
3011  // We need a monotonically non-decreasing time in ms but
3012  // os::javaTimeMillis() does not guarantee monotonicity.
3013  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3014  jlong ret_val = now - _time_of_last_gc;
3015  // XXX See note in genCollectedHeap::millis_since_last_gc().
3016  if (ret_val < 0) {
3017    NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3018    return 0;
3019  }
3020  return ret_val;
3021}
3022
3023void PSParallelCompact::reset_millis_since_last_gc() {
3024  // We need a monotonically non-decreasing time in ms but
3025  // os::javaTimeMillis() does not guarantee monotonicity.
3026  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3027}
3028
3029ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3030{
3031  if (source() != destination()) {
3032    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3033    Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3034  }
3035  update_state(words_remaining());
3036  assert(is_full(), "sanity");
3037  return ParMarkBitMap::full;
3038}
3039
3040void MoveAndUpdateClosure::copy_partial_obj()
3041{
3042  size_t words = words_remaining();
3043
3044  HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3045  HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3046  if (end_addr < range_end) {
3047    words = bitmap()->obj_size(source(), end_addr);
3048  }
3049
3050  // This test is necessary; if omitted, the pointer updates to a partial object
3051  // that crosses the dense prefix boundary could be overwritten.
3052  if (source() != destination()) {
3053    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3054    Copy::aligned_conjoint_words(source(), destination(), words);
3055  }
3056  update_state(words);
3057}
3058
3059void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3060  PSParallelCompact::AdjustPointerClosure closure(cm);
3061  oop_oop_iterate_oop_maps<true>(obj, &closure);
3062}
3063
3064void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3065  InstanceKlass::oop_pc_update_pointers(obj, cm);
3066
3067  PSParallelCompact::AdjustPointerClosure closure(cm);
3068  oop_oop_iterate_statics<true>(obj, &closure);
3069}
3070
3071void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3072  InstanceKlass::oop_pc_update_pointers(obj, cm);
3073}
3074
3075#ifdef ASSERT
3076template <class T> static void trace_reference_gc(const char *s, oop obj,
3077                                                  T* referent_addr,
3078                                                  T* next_addr,
3079                                                  T* discovered_addr) {
3080  log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3081  log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3082                             p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3083  log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3084                             p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3085  log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3086                             p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3087}
3088#endif
3089
3090template <class T>
3091static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3092  T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3093  PSParallelCompact::adjust_pointer(referent_addr, cm);
3094  T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3095  PSParallelCompact::adjust_pointer(next_addr, cm);
3096  T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3097  PSParallelCompact::adjust_pointer(discovered_addr, cm);
3098  debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3099                                referent_addr, next_addr, discovered_addr);)
3100}
3101
3102void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3103  InstanceKlass::oop_pc_update_pointers(obj, cm);
3104
3105  if (UseCompressedOops) {
3106    oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3107  } else {
3108    oop_pc_update_pointers_specialized<oop>(obj, cm);
3109  }
3110}
3111
3112void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3113  assert(obj->is_objArray(), "obj must be obj array");
3114  PSParallelCompact::AdjustPointerClosure closure(cm);
3115  oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3116}
3117
3118void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3119  assert(obj->is_typeArray(),"must be a type array");
3120}
3121
3122ParMarkBitMapClosure::IterationStatus
3123MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3124  assert(destination() != NULL, "sanity");
3125  assert(bitmap()->obj_size(addr) == words, "bad size");
3126
3127  _source = addr;
3128  assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3129         destination(), "wrong destination");
3130
3131  if (words > words_remaining()) {
3132    return ParMarkBitMap::would_overflow;
3133  }
3134
3135  // The start_array must be updated even if the object is not moving.
3136  if (_start_array != NULL) {
3137    _start_array->allocate_block(destination());
3138  }
3139
3140  if (destination() != source()) {
3141    DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3142    Copy::aligned_conjoint_words(source(), destination(), words);
3143  }
3144
3145  oop moved_oop = (oop) destination();
3146  compaction_manager()->update_contents(moved_oop);
3147  assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3148
3149  update_state(words);
3150  assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3151  return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3152}
3153
3154UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3155                                     ParCompactionManager* cm,
3156                                     PSParallelCompact::SpaceId space_id) :
3157  ParMarkBitMapClosure(mbm, cm),
3158  _space_id(space_id),
3159  _start_array(PSParallelCompact::start_array(space_id))
3160{
3161}
3162
3163// Updates the references in the object to their new values.
3164ParMarkBitMapClosure::IterationStatus
3165UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3166  do_addr(addr);
3167  return ParMarkBitMap::incomplete;
3168}
3169
3170ParMarkBitMapClosure::IterationStatus
3171FillClosure::do_addr(HeapWord* addr, size_t size) {
3172  CollectedHeap::fill_with_objects(addr, size);
3173  HeapWord* const end = addr + size;
3174  do {
3175    _start_array->allocate_block(addr);
3176    addr += oop(addr)->size();
3177  } while (addr < end);
3178  return ParMarkBitMap::incomplete;
3179}
3180