psMarkSweep.cpp revision 9727:f944761a3ce3
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/symbolTable.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/codeCache.hpp"
30#include "gc/parallel/parallelScavengeHeap.hpp"
31#include "gc/parallel/psAdaptiveSizePolicy.hpp"
32#include "gc/parallel/psMarkSweep.hpp"
33#include "gc/parallel/psMarkSweepDecorator.hpp"
34#include "gc/parallel/psOldGen.hpp"
35#include "gc/parallel/psScavenge.hpp"
36#include "gc/parallel/psYoungGen.hpp"
37#include "gc/serial/markSweep.hpp"
38#include "gc/shared/gcCause.hpp"
39#include "gc/shared/gcHeapSummary.hpp"
40#include "gc/shared/gcId.hpp"
41#include "gc/shared/gcLocker.inline.hpp"
42#include "gc/shared/gcTimer.hpp"
43#include "gc/shared/gcTrace.hpp"
44#include "gc/shared/gcTraceTime.inline.hpp"
45#include "gc/shared/isGCActiveMark.hpp"
46#include "gc/shared/referencePolicy.hpp"
47#include "gc/shared/referenceProcessor.hpp"
48#include "gc/shared/spaceDecorator.hpp"
49#include "logging/log.hpp"
50#include "oops/oop.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/safepoint.hpp"
54#include "runtime/vmThread.hpp"
55#include "services/management.hpp"
56#include "services/memoryService.hpp"
57#include "utilities/events.hpp"
58#include "utilities/stack.inline.hpp"
59
60elapsedTimer        PSMarkSweep::_accumulated_time;
61jlong               PSMarkSweep::_time_of_last_gc   = 0;
62CollectorCounters*  PSMarkSweep::_counters = NULL;
63
64void PSMarkSweep::initialize() {
65  MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
66  set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
67  _counters = new CollectorCounters("PSMarkSweep", 1);
68}
69
70// This method contains all heap specific policy for invoking mark sweep.
71// PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
72// the heap. It will do nothing further. If we need to bail out for policy
73// reasons, scavenge before full gc, or any other specialized behavior, it
74// needs to be added here.
75//
76// Note that this method should only be called from the vm_thread while
77// at a safepoint!
78//
79// Note that the all_soft_refs_clear flag in the collector policy
80// may be true because this method can be called without intervening
81// activity.  For example when the heap space is tight and full measure
82// are being taken to free space.
83
84void PSMarkSweep::invoke(bool maximum_heap_compaction) {
85  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
86  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
87  assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
88
89  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
90  GCCause::Cause gc_cause = heap->gc_cause();
91  PSAdaptiveSizePolicy* policy = heap->size_policy();
92  IsGCActiveMark mark;
93
94  if (ScavengeBeforeFullGC) {
95    PSScavenge::invoke_no_policy();
96  }
97
98  const bool clear_all_soft_refs =
99    heap->collector_policy()->should_clear_all_soft_refs();
100
101  uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
102  UIntXFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
103  PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
104}
105
106// This method contains no policy. You should probably
107// be calling invoke() instead.
108bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
109  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
110  assert(ref_processor() != NULL, "Sanity");
111
112  if (GC_locker::check_active_before_gc()) {
113    return false;
114  }
115
116  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
117  GCCause::Cause gc_cause = heap->gc_cause();
118
119  GCIdMark gc_id_mark;
120  _gc_timer->register_gc_start();
121  _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
122
123  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
124
125  // The scope of casr should end after code that can change
126  // CollectorPolicy::_should_clear_all_soft_refs.
127  ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
128
129  PSYoungGen* young_gen = heap->young_gen();
130  PSOldGen* old_gen = heap->old_gen();
131
132  // Increment the invocation count
133  heap->increment_total_collections(true /* full */);
134
135  // Save information needed to minimize mangling
136  heap->record_gen_tops_before_GC();
137
138  // We need to track unique mark sweep invocations as well.
139  _total_invocations++;
140
141  heap->print_heap_before_gc();
142  heap->trace_heap_before_gc(_gc_tracer);
143
144  // Fill in TLABs
145  heap->accumulate_statistics_all_tlabs();
146  heap->ensure_parsability(true);  // retire TLABs
147
148  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
149    HandleMark hm;  // Discard invalid handles created during verification
150    Universe::verify("Before GC");
151  }
152
153  // Verify object start arrays
154  if (VerifyObjectStartArray &&
155      VerifyBeforeGC) {
156    old_gen->verify_object_start_array();
157  }
158
159  heap->pre_full_gc_dump(_gc_timer);
160
161  // Filled in below to track the state of the young gen after the collection.
162  bool eden_empty;
163  bool survivors_empty;
164  bool young_gen_empty;
165
166  {
167    HandleMark hm;
168
169    GCTraceCPUTime tcpu;
170    GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
171    TraceCollectorStats tcs(counters());
172    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
173
174    if (TraceOldGenTime) accumulated_time()->start();
175
176    // Let the size policy know we're starting
177    size_policy->major_collection_begin();
178
179    CodeCache::gc_prologue();
180    BiasedLocking::preserve_marks();
181
182    // Capture metadata size before collection for sizing.
183    size_t metadata_prev_used = MetaspaceAux::used_bytes();
184
185    size_t old_gen_prev_used = old_gen->used_in_bytes();
186    size_t young_gen_prev_used = young_gen->used_in_bytes();
187
188    allocate_stacks();
189
190#if defined(COMPILER2) || INCLUDE_JVMCI
191    DerivedPointerTable::clear();
192#endif
193
194    ref_processor()->enable_discovery();
195    ref_processor()->setup_policy(clear_all_softrefs);
196
197    mark_sweep_phase1(clear_all_softrefs);
198
199    mark_sweep_phase2();
200
201#if defined(COMPILER2) || INCLUDE_JVMCI
202    // Don't add any more derived pointers during phase3
203    assert(DerivedPointerTable::is_active(), "Sanity");
204    DerivedPointerTable::set_active(false);
205#endif
206
207    mark_sweep_phase3();
208
209    mark_sweep_phase4();
210
211    restore_marks();
212
213    deallocate_stacks();
214
215    if (ZapUnusedHeapArea) {
216      // Do a complete mangle (top to end) because the usage for
217      // scratch does not maintain a top pointer.
218      young_gen->to_space()->mangle_unused_area_complete();
219    }
220
221    eden_empty = young_gen->eden_space()->is_empty();
222    if (!eden_empty) {
223      eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
224    }
225
226    // Update heap occupancy information which is used as
227    // input to soft ref clearing policy at the next gc.
228    Universe::update_heap_info_at_gc();
229
230    survivors_empty = young_gen->from_space()->is_empty() &&
231                      young_gen->to_space()->is_empty();
232    young_gen_empty = eden_empty && survivors_empty;
233
234    ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
235    MemRegion old_mr = heap->old_gen()->reserved();
236    if (young_gen_empty) {
237      modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
238    } else {
239      modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
240    }
241
242    // Delete metaspaces for unloaded class loaders and clean up loader_data graph
243    ClassLoaderDataGraph::purge();
244    MetaspaceAux::verify_metrics();
245
246    BiasedLocking::restore_marks();
247    CodeCache::gc_epilogue();
248    JvmtiExport::gc_epilogue();
249
250#if defined(COMPILER2) || INCLUDE_JVMCI
251    DerivedPointerTable::update_pointers();
252#endif
253
254    ref_processor()->enqueue_discovered_references(NULL);
255
256    // Update time of last GC
257    reset_millis_since_last_gc();
258
259    // Let the size policy know we're done
260    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
261
262    if (UseAdaptiveSizePolicy) {
263
264     log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
265     log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
266                         old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
267
268      // Don't check if the size_policy is ready here.  Let
269      // the size_policy check that internally.
270      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
271          AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
272        // Swap the survivor spaces if from_space is empty. The
273        // resize_young_gen() called below is normally used after
274        // a successful young GC and swapping of survivor spaces;
275        // otherwise, it will fail to resize the young gen with
276        // the current implementation.
277        if (young_gen->from_space()->is_empty()) {
278          young_gen->from_space()->clear(SpaceDecorator::Mangle);
279          young_gen->swap_spaces();
280        }
281
282        // Calculate optimal free space amounts
283        assert(young_gen->max_size() >
284          young_gen->from_space()->capacity_in_bytes() +
285          young_gen->to_space()->capacity_in_bytes(),
286          "Sizes of space in young gen are out-of-bounds");
287
288        size_t young_live = young_gen->used_in_bytes();
289        size_t eden_live = young_gen->eden_space()->used_in_bytes();
290        size_t old_live = old_gen->used_in_bytes();
291        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
292        size_t max_old_gen_size = old_gen->max_gen_size();
293        size_t max_eden_size = young_gen->max_size() -
294          young_gen->from_space()->capacity_in_bytes() -
295          young_gen->to_space()->capacity_in_bytes();
296
297        // Used for diagnostics
298        size_policy->clear_generation_free_space_flags();
299
300        size_policy->compute_generations_free_space(young_live,
301                                                    eden_live,
302                                                    old_live,
303                                                    cur_eden,
304                                                    max_old_gen_size,
305                                                    max_eden_size,
306                                                    true /* full gc*/);
307
308        size_policy->check_gc_overhead_limit(young_live,
309                                             eden_live,
310                                             max_old_gen_size,
311                                             max_eden_size,
312                                             true /* full gc*/,
313                                             gc_cause,
314                                             heap->collector_policy());
315
316        size_policy->decay_supplemental_growth(true /* full gc*/);
317
318        heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
319
320        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
321                               size_policy->calculated_survivor_size_in_bytes());
322      }
323      log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
324    }
325
326    if (UsePerfData) {
327      heap->gc_policy_counters()->update_counters();
328      heap->gc_policy_counters()->update_old_capacity(
329        old_gen->capacity_in_bytes());
330      heap->gc_policy_counters()->update_young_capacity(
331        young_gen->capacity_in_bytes());
332    }
333
334    heap->resize_all_tlabs();
335
336    // We collected the heap, recalculate the metaspace capacity
337    MetaspaceGC::compute_new_size();
338
339    if (TraceOldGenTime) accumulated_time()->stop();
340
341    young_gen->print_used_change(young_gen_prev_used);
342    old_gen->print_used_change(old_gen_prev_used);
343    MetaspaceAux::print_metaspace_change(metadata_prev_used);
344
345    // Track memory usage and detect low memory
346    MemoryService::track_memory_usage();
347    heap->update_counters();
348  }
349
350  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
351    HandleMark hm;  // Discard invalid handles created during verification
352    Universe::verify("After GC");
353  }
354
355  // Re-verify object start arrays
356  if (VerifyObjectStartArray &&
357      VerifyAfterGC) {
358    old_gen->verify_object_start_array();
359  }
360
361  if (ZapUnusedHeapArea) {
362    old_gen->object_space()->check_mangled_unused_area_complete();
363  }
364
365  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
366
367  heap->print_heap_after_gc();
368  heap->trace_heap_after_gc(_gc_tracer);
369
370  heap->post_full_gc_dump(_gc_timer);
371
372#ifdef TRACESPINNING
373  ParallelTaskTerminator::print_termination_counts();
374#endif
375
376  AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
377
378  _gc_timer->register_gc_end();
379
380  _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
381
382  return true;
383}
384
385bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
386                                             PSYoungGen* young_gen,
387                                             PSOldGen* old_gen) {
388  MutableSpace* const eden_space = young_gen->eden_space();
389  assert(!eden_space->is_empty(), "eden must be non-empty");
390  assert(young_gen->virtual_space()->alignment() ==
391         old_gen->virtual_space()->alignment(), "alignments do not match");
392
393  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
394    return false;
395  }
396
397  // Both generations must be completely committed.
398  if (young_gen->virtual_space()->uncommitted_size() != 0) {
399    return false;
400  }
401  if (old_gen->virtual_space()->uncommitted_size() != 0) {
402    return false;
403  }
404
405  // Figure out how much to take from eden.  Include the average amount promoted
406  // in the total; otherwise the next young gen GC will simply bail out to a
407  // full GC.
408  const size_t alignment = old_gen->virtual_space()->alignment();
409  const size_t eden_used = eden_space->used_in_bytes();
410  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
411  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
412  const size_t eden_capacity = eden_space->capacity_in_bytes();
413
414  if (absorb_size >= eden_capacity) {
415    return false; // Must leave some space in eden.
416  }
417
418  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
419  if (new_young_size < young_gen->min_gen_size()) {
420    return false; // Respect young gen minimum size.
421  }
422
423  log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
424                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
425                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
426                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
427                        absorb_size / K,
428                        eden_capacity / K, (eden_capacity - absorb_size) / K,
429                        young_gen->from_space()->used_in_bytes() / K,
430                        young_gen->to_space()->used_in_bytes() / K,
431                        young_gen->capacity_in_bytes() / K, new_young_size / K);
432
433  // Fill the unused part of the old gen.
434  MutableSpace* const old_space = old_gen->object_space();
435  HeapWord* const unused_start = old_space->top();
436  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
437
438  if (unused_words > 0) {
439    if (unused_words < CollectedHeap::min_fill_size()) {
440      return false;  // If the old gen cannot be filled, must give up.
441    }
442    CollectedHeap::fill_with_objects(unused_start, unused_words);
443  }
444
445  // Take the live data from eden and set both top and end in the old gen to
446  // eden top.  (Need to set end because reset_after_change() mangles the region
447  // from end to virtual_space->high() in debug builds).
448  HeapWord* const new_top = eden_space->top();
449  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
450                                        absorb_size);
451  young_gen->reset_after_change();
452  old_space->set_top(new_top);
453  old_space->set_end(new_top);
454  old_gen->reset_after_change();
455
456  // Update the object start array for the filler object and the data from eden.
457  ObjectStartArray* const start_array = old_gen->start_array();
458  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
459    start_array->allocate_block(p);
460  }
461
462  // Could update the promoted average here, but it is not typically updated at
463  // full GCs and the value to use is unclear.  Something like
464  //
465  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
466
467  size_policy->set_bytes_absorbed_from_eden(absorb_size);
468  return true;
469}
470
471void PSMarkSweep::allocate_stacks() {
472  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
473  PSYoungGen* young_gen = heap->young_gen();
474
475  MutableSpace* to_space = young_gen->to_space();
476  _preserved_marks = (PreservedMark*)to_space->top();
477  _preserved_count = 0;
478
479  // We want to calculate the size in bytes first.
480  _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
481  // Now divide by the size of a PreservedMark
482  _preserved_count_max /= sizeof(PreservedMark);
483}
484
485
486void PSMarkSweep::deallocate_stacks() {
487  _preserved_mark_stack.clear(true);
488  _preserved_oop_stack.clear(true);
489  _marking_stack.clear();
490  _objarray_stack.clear(true);
491}
492
493void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
494  // Recursively traverse all live objects and mark them
495  GCTraceTime(Trace, gc) tm("Phase 1: Mark live objects", _gc_timer);
496
497  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
498
499  // Need to clear claim bits before the tracing starts.
500  ClassLoaderDataGraph::clear_claimed_marks();
501
502  // General strong roots.
503  {
504    ParallelScavengeHeap::ParStrongRootsScope psrs;
505    Universe::oops_do(mark_and_push_closure());
506    JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
507    CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
508    MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
509    Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
510    ObjectSynchronizer::oops_do(mark_and_push_closure());
511    FlatProfiler::oops_do(mark_and_push_closure());
512    Management::oops_do(mark_and_push_closure());
513    JvmtiExport::oops_do(mark_and_push_closure());
514    SystemDictionary::always_strong_oops_do(mark_and_push_closure());
515    ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
516    // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
517    //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
518  }
519
520  // Flush marking stack.
521  follow_stack();
522
523  // Process reference objects found during marking
524  {
525    ref_processor()->setup_policy(clear_all_softrefs);
526    const ReferenceProcessorStats& stats =
527      ref_processor()->process_discovered_references(
528        is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer);
529    gc_tracer()->report_gc_reference_stats(stats);
530  }
531
532  // This is the point where the entire marking should have completed.
533  assert(_marking_stack.is_empty(), "Marking should have completed");
534
535  // Unload classes and purge the SystemDictionary.
536  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
537
538  // Unload nmethods.
539  CodeCache::do_unloading(is_alive_closure(), purged_class);
540
541  // Prune dead klasses from subklass/sibling/implementor lists.
542  Klass::clean_weak_klass_links(is_alive_closure());
543
544  // Delete entries for dead interned strings.
545  StringTable::unlink(is_alive_closure());
546
547  // Clean up unreferenced symbols in symbol table.
548  SymbolTable::unlink();
549  _gc_tracer->report_object_count_after_gc(is_alive_closure());
550}
551
552
553void PSMarkSweep::mark_sweep_phase2() {
554  GCTraceTime(Trace, gc) tm("Phase 2: Compute new object addresses", _gc_timer);
555
556  // Now all live objects are marked, compute the new object addresses.
557
558  // It is not required that we traverse spaces in the same order in
559  // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
560  // tracking expects us to do so. See comment under phase4.
561
562  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
563  PSOldGen* old_gen = heap->old_gen();
564
565  // Begin compacting into the old gen
566  PSMarkSweepDecorator::set_destination_decorator_tenured();
567
568  // This will also compact the young gen spaces.
569  old_gen->precompact();
570}
571
572// This should be moved to the shared markSweep code!
573class PSAlwaysTrueClosure: public BoolObjectClosure {
574public:
575  bool do_object_b(oop p) { return true; }
576};
577static PSAlwaysTrueClosure always_true;
578
579void PSMarkSweep::mark_sweep_phase3() {
580  // Adjust the pointers to reflect the new locations
581  GCTraceTime(Trace, gc) tm("Phase 3: Adjust pointers", _gc_timer);
582
583  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
584  PSYoungGen* young_gen = heap->young_gen();
585  PSOldGen* old_gen = heap->old_gen();
586
587  // Need to clear claim bits before the tracing starts.
588  ClassLoaderDataGraph::clear_claimed_marks();
589
590  // General strong roots.
591  Universe::oops_do(adjust_pointer_closure());
592  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
593  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
594  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
595  ObjectSynchronizer::oops_do(adjust_pointer_closure());
596  FlatProfiler::oops_do(adjust_pointer_closure());
597  Management::oops_do(adjust_pointer_closure());
598  JvmtiExport::oops_do(adjust_pointer_closure());
599  SystemDictionary::oops_do(adjust_pointer_closure());
600  ClassLoaderDataGraph::cld_do(adjust_cld_closure());
601
602  // Now adjust pointers in remaining weak roots.  (All of which should
603  // have been cleared if they pointed to non-surviving objects.)
604  // Global (weak) JNI handles
605  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
606
607  CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
608  CodeCache::blobs_do(&adjust_from_blobs);
609  StringTable::oops_do(adjust_pointer_closure());
610  ref_processor()->weak_oops_do(adjust_pointer_closure());
611  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
612
613  adjust_marks();
614
615  young_gen->adjust_pointers();
616  old_gen->adjust_pointers();
617}
618
619void PSMarkSweep::mark_sweep_phase4() {
620  EventMark m("4 compact heap");
621  GCTraceTime(Trace, gc) tm("Phase 4: Move objects", _gc_timer);
622
623  // All pointers are now adjusted, move objects accordingly
624
625  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
626  PSYoungGen* young_gen = heap->young_gen();
627  PSOldGen* old_gen = heap->old_gen();
628
629  old_gen->compact();
630  young_gen->compact();
631}
632
633jlong PSMarkSweep::millis_since_last_gc() {
634  // We need a monotonically non-decreasing time in ms but
635  // os::javaTimeMillis() does not guarantee monotonicity.
636  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
637  jlong ret_val = now - _time_of_last_gc;
638  // XXX See note in genCollectedHeap::millis_since_last_gc().
639  if (ret_val < 0) {
640    NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
641    return 0;
642  }
643  return ret_val;
644}
645
646void PSMarkSweep::reset_millis_since_last_gc() {
647  // We need a monotonically non-decreasing time in ms but
648  // os::javaTimeMillis() does not guarantee monotonicity.
649  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
650}
651