psMarkSweep.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "code/codeCache.hpp"
29#include "gc/parallel/parallelScavengeHeap.hpp"
30#include "gc/parallel/psAdaptiveSizePolicy.hpp"
31#include "gc/parallel/psMarkSweep.hpp"
32#include "gc/parallel/psMarkSweepDecorator.hpp"
33#include "gc/parallel/psOldGen.hpp"
34#include "gc/parallel/psScavenge.hpp"
35#include "gc/parallel/psYoungGen.hpp"
36#include "gc/serial/markSweep.hpp"
37#include "gc/shared/gcCause.hpp"
38#include "gc/shared/gcHeapSummary.hpp"
39#include "gc/shared/gcLocker.inline.hpp"
40#include "gc/shared/gcTimer.hpp"
41#include "gc/shared/gcTrace.hpp"
42#include "gc/shared/gcTraceTime.hpp"
43#include "gc/shared/isGCActiveMark.hpp"
44#include "gc/shared/referencePolicy.hpp"
45#include "gc/shared/referenceProcessor.hpp"
46#include "gc/shared/spaceDecorator.hpp"
47#include "oops/oop.inline.hpp"
48#include "runtime/biasedLocking.hpp"
49#include "runtime/fprofiler.hpp"
50#include "runtime/safepoint.hpp"
51#include "runtime/vmThread.hpp"
52#include "services/management.hpp"
53#include "services/memoryService.hpp"
54#include "utilities/events.hpp"
55#include "utilities/stack.inline.hpp"
56
57elapsedTimer        PSMarkSweep::_accumulated_time;
58jlong               PSMarkSweep::_time_of_last_gc   = 0;
59CollectorCounters*  PSMarkSweep::_counters = NULL;
60
61void PSMarkSweep::initialize() {
62  MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
63  _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
64  _counters = new CollectorCounters("PSMarkSweep", 1);
65}
66
67// This method contains all heap specific policy for invoking mark sweep.
68// PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
69// the heap. It will do nothing further. If we need to bail out for policy
70// reasons, scavenge before full gc, or any other specialized behavior, it
71// needs to be added here.
72//
73// Note that this method should only be called from the vm_thread while
74// at a safepoint!
75//
76// Note that the all_soft_refs_clear flag in the collector policy
77// may be true because this method can be called without intervening
78// activity.  For example when the heap space is tight and full measure
79// are being taken to free space.
80
81void PSMarkSweep::invoke(bool maximum_heap_compaction) {
82  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
83  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
84  assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
85
86  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
87  GCCause::Cause gc_cause = heap->gc_cause();
88  PSAdaptiveSizePolicy* policy = heap->size_policy();
89  IsGCActiveMark mark;
90
91  if (ScavengeBeforeFullGC) {
92    PSScavenge::invoke_no_policy();
93  }
94
95  const bool clear_all_soft_refs =
96    heap->collector_policy()->should_clear_all_soft_refs();
97
98  uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
99  UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
100  PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
101}
102
103// This method contains no policy. You should probably
104// be calling invoke() instead.
105bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
106  assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
107  assert(ref_processor() != NULL, "Sanity");
108
109  if (GC_locker::check_active_before_gc()) {
110    return false;
111  }
112
113  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
114  GCCause::Cause gc_cause = heap->gc_cause();
115
116  _gc_timer->register_gc_start();
117  _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
118
119  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
120
121  // The scope of casr should end after code that can change
122  // CollectorPolicy::_should_clear_all_soft_refs.
123  ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
124
125  PSYoungGen* young_gen = heap->young_gen();
126  PSOldGen* old_gen = heap->old_gen();
127
128  // Increment the invocation count
129  heap->increment_total_collections(true /* full */);
130
131  // Save information needed to minimize mangling
132  heap->record_gen_tops_before_GC();
133
134  // We need to track unique mark sweep invocations as well.
135  _total_invocations++;
136
137  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
138
139  heap->print_heap_before_gc();
140  heap->trace_heap_before_gc(_gc_tracer);
141
142  // Fill in TLABs
143  heap->accumulate_statistics_all_tlabs();
144  heap->ensure_parsability(true);  // retire TLABs
145
146  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
147    HandleMark hm;  // Discard invalid handles created during verification
148    Universe::verify(" VerifyBeforeGC:");
149  }
150
151  // Verify object start arrays
152  if (VerifyObjectStartArray &&
153      VerifyBeforeGC) {
154    old_gen->verify_object_start_array();
155  }
156
157  heap->pre_full_gc_dump(_gc_timer);
158
159  // Filled in below to track the state of the young gen after the collection.
160  bool eden_empty;
161  bool survivors_empty;
162  bool young_gen_empty;
163
164  {
165    HandleMark hm;
166
167    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
168    GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
169    TraceCollectorStats tcs(counters());
170    TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
171
172    if (TraceOldGenTime) accumulated_time()->start();
173
174    // Let the size policy know we're starting
175    size_policy->major_collection_begin();
176
177    CodeCache::gc_prologue();
178    BiasedLocking::preserve_marks();
179
180    // Capture heap size before collection for printing.
181    size_t prev_used = heap->used();
182
183    // Capture metadata size before collection for sizing.
184    size_t metadata_prev_used = MetaspaceAux::used_bytes();
185
186    // For PrintGCDetails
187    size_t old_gen_prev_used = old_gen->used_in_bytes();
188    size_t young_gen_prev_used = young_gen->used_in_bytes();
189
190    allocate_stacks();
191
192    COMPILER2_PRESENT(DerivedPointerTable::clear());
193
194    ref_processor()->enable_discovery();
195    ref_processor()->setup_policy(clear_all_softrefs);
196
197    mark_sweep_phase1(clear_all_softrefs);
198
199    mark_sweep_phase2();
200
201    // Don't add any more derived pointers during phase3
202    COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
203    COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
204
205    mark_sweep_phase3();
206
207    mark_sweep_phase4();
208
209    restore_marks();
210
211    deallocate_stacks();
212
213    if (ZapUnusedHeapArea) {
214      // Do a complete mangle (top to end) because the usage for
215      // scratch does not maintain a top pointer.
216      young_gen->to_space()->mangle_unused_area_complete();
217    }
218
219    eden_empty = young_gen->eden_space()->is_empty();
220    if (!eden_empty) {
221      eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
222    }
223
224    // Update heap occupancy information which is used as
225    // input to soft ref clearing policy at the next gc.
226    Universe::update_heap_info_at_gc();
227
228    survivors_empty = young_gen->from_space()->is_empty() &&
229                      young_gen->to_space()->is_empty();
230    young_gen_empty = eden_empty && survivors_empty;
231
232    ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
233    MemRegion old_mr = heap->old_gen()->reserved();
234    if (young_gen_empty) {
235      modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
236    } else {
237      modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
238    }
239
240    // Delete metaspaces for unloaded class loaders and clean up loader_data graph
241    ClassLoaderDataGraph::purge();
242    MetaspaceAux::verify_metrics();
243
244    BiasedLocking::restore_marks();
245    CodeCache::gc_epilogue();
246    JvmtiExport::gc_epilogue();
247
248    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
249
250    ref_processor()->enqueue_discovered_references(NULL);
251
252    // Update time of last GC
253    reset_millis_since_last_gc();
254
255    // Let the size policy know we're done
256    size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
257
258    if (UseAdaptiveSizePolicy) {
259
260      if (PrintAdaptiveSizePolicy) {
261        gclog_or_tty->print("AdaptiveSizeStart: ");
262        gclog_or_tty->stamp();
263        gclog_or_tty->print_cr(" collection: %d ",
264                       heap->total_collections());
265        if (Verbose) {
266          gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
267            " young_gen_capacity: " SIZE_FORMAT,
268            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
269        }
270      }
271
272      // Don't check if the size_policy is ready here.  Let
273      // the size_policy check that internally.
274      if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
275          ((gc_cause != GCCause::_java_lang_system_gc) ||
276            UseAdaptiveSizePolicyWithSystemGC)) {
277        // Swap the survivor spaces if from_space is empty. The
278        // resize_young_gen() called below is normally used after
279        // a successful young GC and swapping of survivor spaces;
280        // otherwise, it will fail to resize the young gen with
281        // the current implementation.
282        if (young_gen->from_space()->is_empty()) {
283          young_gen->from_space()->clear(SpaceDecorator::Mangle);
284          young_gen->swap_spaces();
285        }
286
287        // Calculate optimal free space amounts
288        assert(young_gen->max_size() >
289          young_gen->from_space()->capacity_in_bytes() +
290          young_gen->to_space()->capacity_in_bytes(),
291          "Sizes of space in young gen are out-of-bounds");
292
293        size_t young_live = young_gen->used_in_bytes();
294        size_t eden_live = young_gen->eden_space()->used_in_bytes();
295        size_t old_live = old_gen->used_in_bytes();
296        size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
297        size_t max_old_gen_size = old_gen->max_gen_size();
298        size_t max_eden_size = young_gen->max_size() -
299          young_gen->from_space()->capacity_in_bytes() -
300          young_gen->to_space()->capacity_in_bytes();
301
302        // Used for diagnostics
303        size_policy->clear_generation_free_space_flags();
304
305        size_policy->compute_generations_free_space(young_live,
306                                                    eden_live,
307                                                    old_live,
308                                                    cur_eden,
309                                                    max_old_gen_size,
310                                                    max_eden_size,
311                                                    true /* full gc*/);
312
313        size_policy->check_gc_overhead_limit(young_live,
314                                             eden_live,
315                                             max_old_gen_size,
316                                             max_eden_size,
317                                             true /* full gc*/,
318                                             gc_cause,
319                                             heap->collector_policy());
320
321        size_policy->decay_supplemental_growth(true /* full gc*/);
322
323        heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
324
325        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
326                               size_policy->calculated_survivor_size_in_bytes());
327      }
328      if (PrintAdaptiveSizePolicy) {
329        gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
330                       heap->total_collections());
331      }
332    }
333
334    if (UsePerfData) {
335      heap->gc_policy_counters()->update_counters();
336      heap->gc_policy_counters()->update_old_capacity(
337        old_gen->capacity_in_bytes());
338      heap->gc_policy_counters()->update_young_capacity(
339        young_gen->capacity_in_bytes());
340    }
341
342    heap->resize_all_tlabs();
343
344    // We collected the heap, recalculate the metaspace capacity
345    MetaspaceGC::compute_new_size();
346
347    if (TraceOldGenTime) accumulated_time()->stop();
348
349    if (PrintGC) {
350      if (PrintGCDetails) {
351        // Don't print a GC timestamp here.  This is after the GC so
352        // would be confusing.
353        young_gen->print_used_change(young_gen_prev_used);
354        old_gen->print_used_change(old_gen_prev_used);
355      }
356      heap->print_heap_change(prev_used);
357      if (PrintGCDetails) {
358        MetaspaceAux::print_metaspace_change(metadata_prev_used);
359      }
360    }
361
362    // Track memory usage and detect low memory
363    MemoryService::track_memory_usage();
364    heap->update_counters();
365  }
366
367  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
368    HandleMark hm;  // Discard invalid handles created during verification
369    Universe::verify(" VerifyAfterGC:");
370  }
371
372  // Re-verify object start arrays
373  if (VerifyObjectStartArray &&
374      VerifyAfterGC) {
375    old_gen->verify_object_start_array();
376  }
377
378  if (ZapUnusedHeapArea) {
379    old_gen->object_space()->check_mangled_unused_area_complete();
380  }
381
382  NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
383
384  heap->print_heap_after_gc();
385  heap->trace_heap_after_gc(_gc_tracer);
386
387  heap->post_full_gc_dump(_gc_timer);
388
389#ifdef TRACESPINNING
390  ParallelTaskTerminator::print_termination_counts();
391#endif
392
393  _gc_timer->register_gc_end();
394
395  _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
396
397  return true;
398}
399
400bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
401                                             PSYoungGen* young_gen,
402                                             PSOldGen* old_gen) {
403  MutableSpace* const eden_space = young_gen->eden_space();
404  assert(!eden_space->is_empty(), "eden must be non-empty");
405  assert(young_gen->virtual_space()->alignment() ==
406         old_gen->virtual_space()->alignment(), "alignments do not match");
407
408  if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
409    return false;
410  }
411
412  // Both generations must be completely committed.
413  if (young_gen->virtual_space()->uncommitted_size() != 0) {
414    return false;
415  }
416  if (old_gen->virtual_space()->uncommitted_size() != 0) {
417    return false;
418  }
419
420  // Figure out how much to take from eden.  Include the average amount promoted
421  // in the total; otherwise the next young gen GC will simply bail out to a
422  // full GC.
423  const size_t alignment = old_gen->virtual_space()->alignment();
424  const size_t eden_used = eden_space->used_in_bytes();
425  const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
426  const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
427  const size_t eden_capacity = eden_space->capacity_in_bytes();
428
429  if (absorb_size >= eden_capacity) {
430    return false; // Must leave some space in eden.
431  }
432
433  const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
434  if (new_young_size < young_gen->min_gen_size()) {
435    return false; // Respect young gen minimum size.
436  }
437
438  if (TraceAdaptiveGCBoundary && Verbose) {
439    gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
440                        "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
441                        "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
442                        "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
443                        absorb_size / K,
444                        eden_capacity / K, (eden_capacity - absorb_size) / K,
445                        young_gen->from_space()->used_in_bytes() / K,
446                        young_gen->to_space()->used_in_bytes() / K,
447                        young_gen->capacity_in_bytes() / K, new_young_size / K);
448  }
449
450  // Fill the unused part of the old gen.
451  MutableSpace* const old_space = old_gen->object_space();
452  HeapWord* const unused_start = old_space->top();
453  size_t const unused_words = pointer_delta(old_space->end(), unused_start);
454
455  if (unused_words > 0) {
456    if (unused_words < CollectedHeap::min_fill_size()) {
457      return false;  // If the old gen cannot be filled, must give up.
458    }
459    CollectedHeap::fill_with_objects(unused_start, unused_words);
460  }
461
462  // Take the live data from eden and set both top and end in the old gen to
463  // eden top.  (Need to set end because reset_after_change() mangles the region
464  // from end to virtual_space->high() in debug builds).
465  HeapWord* const new_top = eden_space->top();
466  old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
467                                        absorb_size);
468  young_gen->reset_after_change();
469  old_space->set_top(new_top);
470  old_space->set_end(new_top);
471  old_gen->reset_after_change();
472
473  // Update the object start array for the filler object and the data from eden.
474  ObjectStartArray* const start_array = old_gen->start_array();
475  for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
476    start_array->allocate_block(p);
477  }
478
479  // Could update the promoted average here, but it is not typically updated at
480  // full GCs and the value to use is unclear.  Something like
481  //
482  // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
483
484  size_policy->set_bytes_absorbed_from_eden(absorb_size);
485  return true;
486}
487
488void PSMarkSweep::allocate_stacks() {
489  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
490  PSYoungGen* young_gen = heap->young_gen();
491
492  MutableSpace* to_space = young_gen->to_space();
493  _preserved_marks = (PreservedMark*)to_space->top();
494  _preserved_count = 0;
495
496  // We want to calculate the size in bytes first.
497  _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
498  // Now divide by the size of a PreservedMark
499  _preserved_count_max /= sizeof(PreservedMark);
500}
501
502
503void PSMarkSweep::deallocate_stacks() {
504  _preserved_mark_stack.clear(true);
505  _preserved_oop_stack.clear(true);
506  _marking_stack.clear();
507  _objarray_stack.clear(true);
508}
509
510void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
511  // Recursively traverse all live objects and mark them
512  GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
513
514  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
515
516  // Need to clear claim bits before the tracing starts.
517  ClassLoaderDataGraph::clear_claimed_marks();
518
519  // General strong roots.
520  {
521    ParallelScavengeHeap::ParStrongRootsScope psrs;
522    Universe::oops_do(mark_and_push_closure());
523    JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
524    CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
525    MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
526    Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
527    ObjectSynchronizer::oops_do(mark_and_push_closure());
528    FlatProfiler::oops_do(mark_and_push_closure());
529    Management::oops_do(mark_and_push_closure());
530    JvmtiExport::oops_do(mark_and_push_closure());
531    SystemDictionary::always_strong_oops_do(mark_and_push_closure());
532    ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
533    // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
534    //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
535  }
536
537  // Flush marking stack.
538  follow_stack();
539
540  // Process reference objects found during marking
541  {
542    ref_processor()->setup_policy(clear_all_softrefs);
543    const ReferenceProcessorStats& stats =
544      ref_processor()->process_discovered_references(
545        is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
546    gc_tracer()->report_gc_reference_stats(stats);
547  }
548
549  // This is the point where the entire marking should have completed.
550  assert(_marking_stack.is_empty(), "Marking should have completed");
551
552  // Unload classes and purge the SystemDictionary.
553  bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
554
555  // Unload nmethods.
556  CodeCache::do_unloading(is_alive_closure(), purged_class);
557
558  // Prune dead klasses from subklass/sibling/implementor lists.
559  Klass::clean_weak_klass_links(is_alive_closure());
560
561  // Delete entries for dead interned strings.
562  StringTable::unlink(is_alive_closure());
563
564  // Clean up unreferenced symbols in symbol table.
565  SymbolTable::unlink();
566  _gc_tracer->report_object_count_after_gc(is_alive_closure());
567}
568
569
570void PSMarkSweep::mark_sweep_phase2() {
571  GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
572
573  // Now all live objects are marked, compute the new object addresses.
574
575  // It is not required that we traverse spaces in the same order in
576  // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
577  // tracking expects us to do so. See comment under phase4.
578
579  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
580  PSOldGen* old_gen = heap->old_gen();
581
582  // Begin compacting into the old gen
583  PSMarkSweepDecorator::set_destination_decorator_tenured();
584
585  // This will also compact the young gen spaces.
586  old_gen->precompact();
587}
588
589// This should be moved to the shared markSweep code!
590class PSAlwaysTrueClosure: public BoolObjectClosure {
591public:
592  bool do_object_b(oop p) { return true; }
593};
594static PSAlwaysTrueClosure always_true;
595
596void PSMarkSweep::mark_sweep_phase3() {
597  // Adjust the pointers to reflect the new locations
598  GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
599
600  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
601  PSYoungGen* young_gen = heap->young_gen();
602  PSOldGen* old_gen = heap->old_gen();
603
604  // Need to clear claim bits before the tracing starts.
605  ClassLoaderDataGraph::clear_claimed_marks();
606
607  // General strong roots.
608  Universe::oops_do(adjust_pointer_closure());
609  JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
610  CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
611  Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
612  ObjectSynchronizer::oops_do(adjust_pointer_closure());
613  FlatProfiler::oops_do(adjust_pointer_closure());
614  Management::oops_do(adjust_pointer_closure());
615  JvmtiExport::oops_do(adjust_pointer_closure());
616  SystemDictionary::oops_do(adjust_pointer_closure());
617  ClassLoaderDataGraph::cld_do(adjust_cld_closure());
618
619  // Now adjust pointers in remaining weak roots.  (All of which should
620  // have been cleared if they pointed to non-surviving objects.)
621  // Global (weak) JNI handles
622  JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
623
624  CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
625  CodeCache::blobs_do(&adjust_from_blobs);
626  StringTable::oops_do(adjust_pointer_closure());
627  ref_processor()->weak_oops_do(adjust_pointer_closure());
628  PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
629
630  adjust_marks();
631
632  young_gen->adjust_pointers();
633  old_gen->adjust_pointers();
634}
635
636void PSMarkSweep::mark_sweep_phase4() {
637  EventMark m("4 compact heap");
638  GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
639
640  // All pointers are now adjusted, move objects accordingly
641
642  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
643  PSYoungGen* young_gen = heap->young_gen();
644  PSOldGen* old_gen = heap->old_gen();
645
646  old_gen->compact();
647  young_gen->compact();
648}
649
650jlong PSMarkSweep::millis_since_last_gc() {
651  // We need a monotonically non-decreasing time in ms but
652  // os::javaTimeMillis() does not guarantee monotonicity.
653  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
654  jlong ret_val = now - _time_of_last_gc;
655  // XXX See note in genCollectedHeap::millis_since_last_gc().
656  if (ret_val < 0) {
657    NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
658    return 0;
659  }
660  return ret_val;
661}
662
663void PSMarkSweep::reset_millis_since_last_gc() {
664  // We need a monotonically non-decreasing time in ms but
665  // os::javaTimeMillis() does not guarantee monotonicity.
666  _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
667}
668