heapRegionRemSet.hpp revision 9244:825cee2cd7a6
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
26#define SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
27
28#include "gc/g1/g1CodeCacheRemSet.hpp"
29#include "gc/g1/sparsePRT.hpp"
30
31// Remembered set for a heap region.  Represent a set of "cards" that
32// contain pointers into the owner heap region.  Cards are defined somewhat
33// abstractly, in terms of what the "BlockOffsetTable" in use can parse.
34
35class G1CollectedHeap;
36class G1BlockOffsetSharedArray;
37class HeapRegion;
38class HeapRegionRemSetIterator;
39class PerRegionTable;
40class SparsePRT;
41class nmethod;
42
43// Essentially a wrapper around SparsePRTCleanupTask. See
44// sparsePRT.hpp for more details.
45class HRRSCleanupTask : public SparsePRTCleanupTask {
46};
47
48// The FromCardCache remembers the most recently processed card on the heap on
49// a per-region and per-thread basis.
50class FromCardCache : public AllStatic {
51 private:
52  // Array of card indices. Indexed by thread X and heap region to minimize
53  // thread contention.
54  static int** _cache;
55  static uint _max_regions;
56  static size_t _static_mem_size;
57
58 public:
59  enum {
60    InvalidCard = -1 // Card value of an invalid card, i.e. a card index not otherwise used.
61  };
62
63  static void clear(uint region_idx);
64
65  // Returns true if the given card is in the cache at the given location, or
66  // replaces the card at that location and returns false.
67  static bool contains_or_replace(uint worker_id, uint region_idx, int card) {
68    int card_in_cache = at(worker_id, region_idx);
69    if (card_in_cache == card) {
70      return true;
71    } else {
72      set(worker_id, region_idx, card);
73      return false;
74    }
75  }
76
77  static int at(uint worker_id, uint region_idx) {
78    return _cache[worker_id][region_idx];
79  }
80
81  static void set(uint worker_id, uint region_idx, int val) {
82    _cache[worker_id][region_idx] = val;
83  }
84
85  static void initialize(uint n_par_rs, uint max_num_regions);
86
87  static void invalidate(uint start_idx, size_t num_regions);
88
89  static void print(outputStream* out = gclog_or_tty) PRODUCT_RETURN;
90
91  static size_t static_mem_size() {
92    return _static_mem_size;
93  }
94};
95
96// The "_coarse_map" is a bitmap with one bit for each region, where set
97// bits indicate that the corresponding region may contain some pointer
98// into the owning region.
99
100// The "_fine_grain_entries" array is an open hash table of PerRegionTables
101// (PRTs), indicating regions for which we're keeping the RS as a set of
102// cards.  The strategy is to cap the size of the fine-grain table,
103// deleting an entry and setting the corresponding coarse-grained bit when
104// we would overflow this cap.
105
106// We use a mixture of locking and lock-free techniques here.  We allow
107// threads to locate PRTs without locking, but threads attempting to alter
108// a bucket list obtain a lock.  This means that any failing attempt to
109// find a PRT must be retried with the lock.  It might seem dangerous that
110// a read can find a PRT that is concurrently deleted.  This is all right,
111// because:
112//
113//   1) We only actually free PRT's at safe points (though we reuse them at
114//      other times).
115//   2) We find PRT's in an attempt to add entries.  If a PRT is deleted,
116//      it's _coarse_map bit is set, so the that we were attempting to add
117//      is represented.  If a deleted PRT is re-used, a thread adding a bit,
118//      thinking the PRT is for a different region, does no harm.
119
120class OtherRegionsTable VALUE_OBJ_CLASS_SPEC {
121  friend class HeapRegionRemSetIterator;
122
123  G1CollectedHeap* _g1h;
124  Mutex*           _m;
125  HeapRegion*      _hr;
126
127  // These are protected by "_m".
128  BitMap      _coarse_map;
129  size_t      _n_coarse_entries;
130  static jint _n_coarsenings;
131
132  PerRegionTable** _fine_grain_regions;
133  size_t           _n_fine_entries;
134
135  // The fine grain remembered sets are doubly linked together using
136  // their 'next' and 'prev' fields.
137  // This allows fast bulk freeing of all the fine grain remembered
138  // set entries, and fast finding of all of them without iterating
139  // over the _fine_grain_regions table.
140  PerRegionTable * _first_all_fine_prts;
141  PerRegionTable * _last_all_fine_prts;
142
143  // Used to sample a subset of the fine grain PRTs to determine which
144  // PRT to evict and coarsen.
145  size_t        _fine_eviction_start;
146  static size_t _fine_eviction_stride;
147  static size_t _fine_eviction_sample_size;
148
149  SparsePRT   _sparse_table;
150
151  // These are static after init.
152  static size_t _max_fine_entries;
153  static size_t _mod_max_fine_entries_mask;
154
155  // Requires "prt" to be the first element of the bucket list appropriate
156  // for "hr".  If this list contains an entry for "hr", return it,
157  // otherwise return "NULL".
158  PerRegionTable* find_region_table(size_t ind, HeapRegion* hr) const;
159
160  // Find, delete, and return a candidate PerRegionTable, if any exists,
161  // adding the deleted region to the coarse bitmap.  Requires the caller
162  // to hold _m, and the fine-grain table to be full.
163  PerRegionTable* delete_region_table();
164
165  // link/add the given fine grain remembered set into the "all" list
166  void link_to_all(PerRegionTable * prt);
167  // unlink/remove the given fine grain remembered set into the "all" list
168  void unlink_from_all(PerRegionTable * prt);
169
170  bool contains_reference_locked(OopOrNarrowOopStar from) const;
171
172  // Clear the from_card_cache entries for this region.
173  void clear_fcc();
174public:
175  // Create a new remembered set for the given heap region. The given mutex should
176  // be used to ensure consistency.
177  OtherRegionsTable(HeapRegion* hr, Mutex* m);
178
179  // For now.  Could "expand" some tables in the future, so that this made
180  // sense.
181  void add_reference(OopOrNarrowOopStar from, uint tid);
182
183  // Returns whether the remembered set contains the given reference.
184  bool contains_reference(OopOrNarrowOopStar from) const;
185
186  // Returns whether this remembered set (and all sub-sets) have an occupancy
187  // that is less or equal than the given occupancy.
188  bool occupancy_less_or_equal_than(size_t limit) const;
189
190  // Removes any entries shown by the given bitmaps to contain only dead
191  // objects. Not thread safe.
192  // Set bits in the bitmaps indicate that the given region or card is live.
193  void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);
194
195  // Returns whether this remembered set (and all sub-sets) does not contain any entry.
196  bool is_empty() const;
197
198  // Returns the number of cards contained in this remembered set.
199  size_t occupied() const;
200  size_t occ_fine() const;
201  size_t occ_coarse() const;
202  size_t occ_sparse() const;
203
204  static jint n_coarsenings() { return _n_coarsenings; }
205
206  // Returns size of the actual remembered set containers in bytes.
207  size_t mem_size() const;
208  // Returns the size of static data in bytes.
209  static size_t static_mem_size();
210  // Returns the size of the free list content in bytes.
211  static size_t fl_mem_size();
212
213  // Clear the entire contents of this remembered set.
214  void clear();
215
216  void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
217};
218
219class HeapRegionRemSet : public CHeapObj<mtGC> {
220  friend class VMStructs;
221  friend class HeapRegionRemSetIterator;
222
223public:
224  enum Event {
225    Event_EvacStart, Event_EvacEnd, Event_RSUpdateEnd, Event_illegal
226  };
227
228private:
229  G1BlockOffsetSharedArray* _bosa;
230
231  // A set of code blobs (nmethods) whose code contains pointers into
232  // the region that owns this RSet.
233  G1CodeRootSet _code_roots;
234
235  Mutex _m;
236
237  OtherRegionsTable _other_regions;
238
239  enum ParIterState { Unclaimed, Claimed, Complete };
240  volatile ParIterState _iter_state;
241  volatile size_t _iter_claimed;
242
243  // Unused unless G1RecordHRRSOops is true.
244
245  static const int MaxRecorded = 1000000;
246  static OopOrNarrowOopStar* _recorded_oops;
247  static HeapWord**          _recorded_cards;
248  static HeapRegion**        _recorded_regions;
249  static int                 _n_recorded;
250
251  static const int MaxRecordedEvents = 1000;
252  static Event*       _recorded_events;
253  static int*         _recorded_event_index;
254  static int          _n_recorded_events;
255
256  static void print_event(outputStream* str, Event evnt);
257
258public:
259  HeapRegionRemSet(G1BlockOffsetSharedArray* bosa, HeapRegion* hr);
260
261  static uint num_par_rem_sets();
262  static void setup_remset_size();
263
264  bool is_empty() const {
265    return (strong_code_roots_list_length() == 0) && _other_regions.is_empty();
266  }
267
268  bool occupancy_less_or_equal_than(size_t occ) const {
269    return (strong_code_roots_list_length() == 0) && _other_regions.occupancy_less_or_equal_than(occ);
270  }
271
272  size_t occupied() {
273    MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
274    return occupied_locked();
275  }
276  size_t occupied_locked() {
277    return _other_regions.occupied();
278  }
279  size_t occ_fine() const {
280    return _other_regions.occ_fine();
281  }
282  size_t occ_coarse() const {
283    return _other_regions.occ_coarse();
284  }
285  size_t occ_sparse() const {
286    return _other_regions.occ_sparse();
287  }
288
289  static jint n_coarsenings() { return OtherRegionsTable::n_coarsenings(); }
290
291  // Used in the sequential case.
292  void add_reference(OopOrNarrowOopStar from) {
293    _other_regions.add_reference(from, 0);
294  }
295
296  // Used in the parallel case.
297  void add_reference(OopOrNarrowOopStar from, uint tid) {
298    _other_regions.add_reference(from, tid);
299  }
300
301  // Removes any entries in the remembered set shown by the given bitmaps to
302  // contain only dead objects. Not thread safe.
303  // One bits in the bitmaps indicate that the given region or card is live.
304  void scrub(CardTableModRefBS* ctbs, BitMap* region_bm, BitMap* card_bm);
305
306  // The region is being reclaimed; clear its remset, and any mention of
307  // entries for this region in other remsets.
308  void clear();
309  void clear_locked();
310
311  // Attempt to claim the region.  Returns true iff this call caused an
312  // atomic transition from Unclaimed to Claimed.
313  bool claim_iter();
314  // Sets the iteration state to "complete".
315  void set_iter_complete();
316  // Returns "true" iff the region's iteration is complete.
317  bool iter_is_complete();
318
319  // Support for claiming blocks of cards during iteration
320  size_t iter_claimed() const { return _iter_claimed; }
321  // Claim the next block of cards
322  size_t iter_claimed_next(size_t step) {
323    return Atomic::add(step, &_iter_claimed) - step;
324  }
325
326  void reset_for_par_iteration();
327
328  bool verify_ready_for_par_iteration() {
329    return (_iter_state == Unclaimed) && (_iter_claimed == 0);
330  }
331
332  // The actual # of bytes this hr_remset takes up.
333  // Note also includes the strong code root set.
334  size_t mem_size() {
335    MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
336    return _other_regions.mem_size()
337      // This correction is necessary because the above includes the second
338      // part.
339      + (sizeof(HeapRegionRemSet) - sizeof(OtherRegionsTable))
340      + strong_code_roots_mem_size();
341  }
342
343  // Returns the memory occupancy of all static data structures associated
344  // with remembered sets.
345  static size_t static_mem_size() {
346    return OtherRegionsTable::static_mem_size() + G1CodeRootSet::static_mem_size();
347  }
348
349  // Returns the memory occupancy of all free_list data structures associated
350  // with remembered sets.
351  static size_t fl_mem_size() {
352    return OtherRegionsTable::fl_mem_size();
353  }
354
355  bool contains_reference(OopOrNarrowOopStar from) const {
356    return _other_regions.contains_reference(from);
357  }
358
359  // Routines for managing the list of code roots that point into
360  // the heap region that owns this RSet.
361  void add_strong_code_root(nmethod* nm);
362  void add_strong_code_root_locked(nmethod* nm);
363  void remove_strong_code_root(nmethod* nm);
364
365  // Applies blk->do_code_blob() to each of the entries in
366  // the strong code roots list
367  void strong_code_roots_do(CodeBlobClosure* blk) const;
368
369  void clean_strong_code_roots(HeapRegion* hr);
370
371  // Returns the number of elements in the strong code roots list
372  size_t strong_code_roots_list_length() const {
373    return _code_roots.length();
374  }
375
376  // Returns true if the strong code roots contains the given
377  // nmethod.
378  bool strong_code_roots_list_contains(nmethod* nm) {
379    return _code_roots.contains(nm);
380  }
381
382  // Returns the amount of memory, in bytes, currently
383  // consumed by the strong code roots.
384  size_t strong_code_roots_mem_size();
385
386  void print() PRODUCT_RETURN;
387
388  // Called during a stop-world phase to perform any deferred cleanups.
389  static void cleanup();
390
391  // Declare the heap size (in # of regions) to the HeapRegionRemSet(s).
392  // (Uses it to initialize from_card_cache).
393  static void init_heap(uint max_regions) {
394    FromCardCache::initialize(num_par_rem_sets(), max_regions);
395  }
396
397  static void invalidate_from_card_cache(uint start_idx, size_t num_regions) {
398    FromCardCache::invalidate(start_idx, num_regions);
399  }
400
401#ifndef PRODUCT
402  static void print_from_card_cache() {
403    FromCardCache::print();
404  }
405#endif
406
407  static void record(HeapRegion* hr, OopOrNarrowOopStar f);
408  static void print_recorded();
409  static void record_event(Event evnt);
410
411  // These are wrappers for the similarly-named methods on
412  // SparsePRT. Look at sparsePRT.hpp for more details.
413  static void reset_for_cleanup_tasks();
414  void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
415  static void finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task);
416
417  // Run unit tests.
418#ifndef PRODUCT
419  static void test_prt();
420  static void test();
421#endif
422};
423
424class HeapRegionRemSetIterator : public StackObj {
425 private:
426  // The region RSet over which we are iterating.
427  HeapRegionRemSet* _hrrs;
428
429  // Local caching of HRRS fields.
430  const BitMap*             _coarse_map;
431
432  G1BlockOffsetSharedArray* _bosa;
433  G1CollectedHeap*          _g1h;
434
435  // The number of cards yielded since initialization.
436  size_t _n_yielded_fine;
437  size_t _n_yielded_coarse;
438  size_t _n_yielded_sparse;
439
440  // Indicates what granularity of table that we are currently iterating over.
441  // We start iterating over the sparse table, progress to the fine grain
442  // table, and then finish with the coarse table.
443  enum IterState {
444    Sparse,
445    Fine,
446    Coarse
447  };
448  IterState _is;
449
450  // For both Coarse and Fine remembered set iteration this contains the
451  // first card number of the heap region we currently iterate over.
452  size_t _cur_region_card_offset;
453
454  // Current region index for the Coarse remembered set iteration.
455  int    _coarse_cur_region_index;
456  size_t _coarse_cur_region_cur_card;
457
458  bool coarse_has_next(size_t& card_index);
459
460  // The PRT we are currently iterating over.
461  PerRegionTable* _fine_cur_prt;
462  // Card offset within the current PRT.
463  size_t _cur_card_in_prt;
464
465  // Update internal variables when switching to the given PRT.
466  void switch_to_prt(PerRegionTable* prt);
467  bool fine_has_next();
468  bool fine_has_next(size_t& card_index);
469
470  // The Sparse remembered set iterator.
471  SparsePRTIter _sparse_iter;
472
473 public:
474  HeapRegionRemSetIterator(HeapRegionRemSet* hrrs);
475
476  // If there remains one or more cards to be yielded, returns true and
477  // sets "card_index" to one of those cards (which is then considered
478  // yielded.)   Otherwise, returns false (and leaves "card_index"
479  // undefined.)
480  bool has_next(size_t& card_index);
481
482  size_t n_yielded_fine() { return _n_yielded_fine; }
483  size_t n_yielded_coarse() { return _n_yielded_coarse; }
484  size_t n_yielded_sparse() { return _n_yielded_sparse; }
485  size_t n_yielded() {
486    return n_yielded_fine() + n_yielded_coarse() + n_yielded_sparse();
487  }
488};
489
490#endif // SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
491