heapRegion.hpp revision 8638:767f36deb0dc
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
26#define SHARE_VM_GC_G1_HEAPREGION_HPP
27
28#include "gc/g1/g1AllocationContext.hpp"
29#include "gc/g1/g1BlockOffsetTable.hpp"
30#include "gc/g1/heapRegionType.hpp"
31#include "gc/g1/survRateGroup.hpp"
32#include "gc/shared/ageTable.hpp"
33#include "gc/shared/spaceDecorator.hpp"
34#include "gc/shared/watermark.hpp"
35#include "utilities/macros.hpp"
36
37// A HeapRegion is the smallest piece of a G1CollectedHeap that
38// can be collected independently.
39
40// NOTE: Although a HeapRegion is a Space, its
41// Space::initDirtyCardClosure method must not be called.
42// The problem is that the existence of this method breaks
43// the independence of barrier sets from remembered sets.
44// The solution is to remove this method from the definition
45// of a Space.
46
47class G1CollectedHeap;
48class HeapRegionRemSet;
49class HeapRegionRemSetIterator;
50class HeapRegion;
51class HeapRegionSetBase;
52class nmethod;
53
54#define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
55#define HR_FORMAT_PARAMS(_hr_) \
56                (_hr_)->hrm_index(), \
57                (_hr_)->get_short_type_str(), \
58                p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
59
60// sentinel value for hrm_index
61#define G1_NO_HRM_INDEX ((uint) -1)
62
63// A dirty card to oop closure for heap regions. It
64// knows how to get the G1 heap and how to use the bitmap
65// in the concurrent marker used by G1 to filter remembered
66// sets.
67
68class HeapRegionDCTOC : public DirtyCardToOopClosure {
69private:
70  HeapRegion* _hr;
71  G1ParPushHeapRSClosure* _rs_scan;
72  G1CollectedHeap* _g1;
73
74  // Walk the given memory region from bottom to (actual) top
75  // looking for objects and applying the oop closure (_cl) to
76  // them. The base implementation of this treats the area as
77  // blocks, where a block may or may not be an object. Sub-
78  // classes should override this to provide more accurate
79  // or possibly more efficient walking.
80  void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
81
82public:
83  HeapRegionDCTOC(G1CollectedHeap* g1,
84                  HeapRegion* hr,
85                  G1ParPushHeapRSClosure* cl,
86                  CardTableModRefBS::PrecisionStyle precision);
87};
88
89// The complicating factor is that BlockOffsetTable diverged
90// significantly, and we need functionality that is only in the G1 version.
91// So I copied that code, which led to an alternate G1 version of
92// OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
93// be reconciled, then G1OffsetTableContigSpace could go away.
94
95// The idea behind time stamps is the following. We want to keep track of
96// the highest address where it's safe to scan objects for each region.
97// This is only relevant for current GC alloc regions so we keep a time stamp
98// per region to determine if the region has been allocated during the current
99// GC or not. If the time stamp is current we report a scan_top value which
100// was saved at the end of the previous GC for retained alloc regions and which is
101// equal to the bottom for all other regions.
102// There is a race between card scanners and allocating gc workers where we must ensure
103// that card scanners do not read the memory allocated by the gc workers.
104// In order to enforce that, we must not return a value of _top which is more recent than the
105// time stamp. This is due to the fact that a region may become a gc alloc region at
106// some point after we've read the timestamp value as being < the current time stamp.
107// The time stamps are re-initialized to zero at cleanup and at Full GCs.
108// The current scheme that uses sequential unsigned ints will fail only if we have 4b
109// evacuation pauses between two cleanups, which is _highly_ unlikely.
110class G1OffsetTableContigSpace: public CompactibleSpace {
111  friend class VMStructs;
112  HeapWord* _top;
113  HeapWord* volatile _scan_top;
114 protected:
115  G1BlockOffsetArrayContigSpace _offsets;
116  Mutex _par_alloc_lock;
117  volatile unsigned _gc_time_stamp;
118  // When we need to retire an allocation region, while other threads
119  // are also concurrently trying to allocate into it, we typically
120  // allocate a dummy object at the end of the region to ensure that
121  // no more allocations can take place in it. However, sometimes we
122  // want to know where the end of the last "real" object we allocated
123  // into the region was and this is what this keeps track.
124  HeapWord* _pre_dummy_top;
125
126 public:
127  G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
128                           MemRegion mr);
129
130  void set_top(HeapWord* value) { _top = value; }
131  HeapWord* top() const { return _top; }
132
133 protected:
134  // Reset the G1OffsetTableContigSpace.
135  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
136
137  HeapWord** top_addr() { return &_top; }
138  // Allocation helpers (return NULL if full).
139  inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
140  inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
141
142 public:
143  void reset_after_compaction() { set_top(compaction_top()); }
144
145  size_t used() const { return byte_size(bottom(), top()); }
146  size_t free() const { return byte_size(top(), end()); }
147  bool is_free_block(const HeapWord* p) const { return p >= top(); }
148
149  MemRegion used_region() const { return MemRegion(bottom(), top()); }
150
151  void object_iterate(ObjectClosure* blk);
152  void safe_object_iterate(ObjectClosure* blk);
153
154  void set_bottom(HeapWord* value);
155  void set_end(HeapWord* value);
156
157  void mangle_unused_area() PRODUCT_RETURN;
158  void mangle_unused_area_complete() PRODUCT_RETURN;
159
160  HeapWord* scan_top() const;
161  void record_timestamp();
162  void reset_gc_time_stamp() { _gc_time_stamp = 0; }
163  unsigned get_gc_time_stamp() { return _gc_time_stamp; }
164  void record_retained_region();
165
166  // See the comment above in the declaration of _pre_dummy_top for an
167  // explanation of what it is.
168  void set_pre_dummy_top(HeapWord* pre_dummy_top) {
169    assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
170    _pre_dummy_top = pre_dummy_top;
171  }
172  HeapWord* pre_dummy_top() {
173    return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
174  }
175  void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
176
177  virtual void clear(bool mangle_space);
178
179  HeapWord* block_start(const void* p);
180  HeapWord* block_start_const(const void* p) const;
181
182  // Add offset table update.
183  virtual HeapWord* allocate(size_t word_size);
184  HeapWord* par_allocate(size_t word_size);
185
186  HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
187
188  // MarkSweep support phase3
189  virtual HeapWord* initialize_threshold();
190  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
191
192  virtual void print() const;
193
194  void reset_bot() {
195    _offsets.reset_bot();
196  }
197
198  void print_bot_on(outputStream* out) {
199    _offsets.print_on(out);
200  }
201};
202
203class HeapRegion: public G1OffsetTableContigSpace {
204  friend class VMStructs;
205  // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
206  template <typename SpaceType>
207  friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
208 private:
209
210  // The remembered set for this region.
211  // (Might want to make this "inline" later, to avoid some alloc failure
212  // issues.)
213  HeapRegionRemSet* _rem_set;
214
215  G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
216
217  // Auxiliary functions for scan_and_forward support.
218  // See comments for CompactibleSpace for more information.
219  inline HeapWord* scan_limit() const {
220    return top();
221  }
222
223  inline bool scanned_block_is_obj(const HeapWord* addr) const {
224    return true; // Always true, since scan_limit is top
225  }
226
227  inline size_t scanned_block_size(const HeapWord* addr) const {
228    return HeapRegion::block_size(addr); // Avoid virtual call
229  }
230
231 protected:
232  // The index of this region in the heap region sequence.
233  uint  _hrm_index;
234
235  AllocationContext_t _allocation_context;
236
237  HeapRegionType _type;
238
239  // For a humongous region, region in which it starts.
240  HeapRegion* _humongous_start_region;
241
242  // True iff an attempt to evacuate an object in the region failed.
243  bool _evacuation_failed;
244
245  // A heap region may be a member one of a number of special subsets, each
246  // represented as linked lists through the field below.  Currently, there
247  // is only one set:
248  //   The collection set.
249  HeapRegion* _next_in_special_set;
250
251  // next region in the young "generation" region set
252  HeapRegion* _next_young_region;
253
254  // Next region whose cards need cleaning
255  HeapRegion* _next_dirty_cards_region;
256
257  // Fields used by the HeapRegionSetBase class and subclasses.
258  HeapRegion* _next;
259  HeapRegion* _prev;
260#ifdef ASSERT
261  HeapRegionSetBase* _containing_set;
262#endif // ASSERT
263
264  // We use concurrent marking to determine the amount of live data
265  // in each heap region.
266  size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
267  size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
268
269  // The calculated GC efficiency of the region.
270  double _gc_efficiency;
271
272  int  _young_index_in_cset;
273  SurvRateGroup* _surv_rate_group;
274  int  _age_index;
275
276  // The start of the unmarked area. The unmarked area extends from this
277  // word until the top and/or end of the region, and is the part
278  // of the region for which no marking was done, i.e. objects may
279  // have been allocated in this part since the last mark phase.
280  // "prev" is the top at the start of the last completed marking.
281  // "next" is the top at the start of the in-progress marking (if any.)
282  HeapWord* _prev_top_at_mark_start;
283  HeapWord* _next_top_at_mark_start;
284  // If a collection pause is in progress, this is the top at the start
285  // of that pause.
286
287  void init_top_at_mark_start() {
288    assert(_prev_marked_bytes == 0 &&
289           _next_marked_bytes == 0,
290           "Must be called after zero_marked_bytes.");
291    HeapWord* bot = bottom();
292    _prev_top_at_mark_start = bot;
293    _next_top_at_mark_start = bot;
294  }
295
296  // Cached attributes used in the collection set policy information
297
298  // The RSet length that was added to the total value
299  // for the collection set.
300  size_t _recorded_rs_length;
301
302  // The predicted elapsed time that was added to total value
303  // for the collection set.
304  double _predicted_elapsed_time_ms;
305
306  // The predicted number of bytes to copy that was added to
307  // the total value for the collection set.
308  size_t _predicted_bytes_to_copy;
309
310 public:
311  HeapRegion(uint hrm_index,
312             G1BlockOffsetSharedArray* sharedOffsetArray,
313             MemRegion mr);
314
315  // Initializing the HeapRegion not only resets the data structure, but also
316  // resets the BOT for that heap region.
317  // The default values for clear_space means that we will do the clearing if
318  // there's clearing to be done ourselves. We also always mangle the space.
319  virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
320
321  static int    LogOfHRGrainBytes;
322  static int    LogOfHRGrainWords;
323
324  static size_t GrainBytes;
325  static size_t GrainWords;
326  static size_t CardsPerRegion;
327
328  static size_t align_up_to_region_byte_size(size_t sz) {
329    return (sz + (size_t) GrainBytes - 1) &
330                                      ~((1 << (size_t) LogOfHRGrainBytes) - 1);
331  }
332
333  static size_t max_region_size();
334  static size_t min_region_size_in_words();
335
336  // It sets up the heap region size (GrainBytes / GrainWords), as
337  // well as other related fields that are based on the heap region
338  // size (LogOfHRGrainBytes / LogOfHRGrainWords /
339  // CardsPerRegion). All those fields are considered constant
340  // throughout the JVM's execution, therefore they should only be set
341  // up once during initialization time.
342  static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
343
344  // All allocated blocks are occupied by objects in a HeapRegion
345  bool block_is_obj(const HeapWord* p) const;
346
347  // Returns the object size for all valid block starts
348  // and the amount of unallocated words if called on top()
349  size_t block_size(const HeapWord* p) const;
350
351  // Override for scan_and_forward support.
352  void prepare_for_compaction(CompactPoint* cp);
353
354  inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
355  inline HeapWord* allocate_no_bot_updates(size_t word_size);
356
357  // If this region is a member of a HeapRegionManager, the index in that
358  // sequence, otherwise -1.
359  uint hrm_index() const { return _hrm_index; }
360
361  // The number of bytes marked live in the region in the last marking phase.
362  size_t marked_bytes()    { return _prev_marked_bytes; }
363  size_t live_bytes() {
364    return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
365  }
366
367  // The number of bytes counted in the next marking.
368  size_t next_marked_bytes() { return _next_marked_bytes; }
369  // The number of bytes live wrt the next marking.
370  size_t next_live_bytes() {
371    return
372      (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
373  }
374
375  // A lower bound on the amount of garbage bytes in the region.
376  size_t garbage_bytes() {
377    size_t used_at_mark_start_bytes =
378      (prev_top_at_mark_start() - bottom()) * HeapWordSize;
379    assert(used_at_mark_start_bytes >= marked_bytes(),
380           "Can't mark more than we have.");
381    return used_at_mark_start_bytes - marked_bytes();
382  }
383
384  // Return the amount of bytes we'll reclaim if we collect this
385  // region. This includes not only the known garbage bytes in the
386  // region but also any unallocated space in it, i.e., [top, end),
387  // since it will also be reclaimed if we collect the region.
388  size_t reclaimable_bytes() {
389    size_t known_live_bytes = live_bytes();
390    assert(known_live_bytes <= capacity(), "sanity");
391    return capacity() - known_live_bytes;
392  }
393
394  // An upper bound on the number of live bytes in the region.
395  size_t max_live_bytes() { return used() - garbage_bytes(); }
396
397  void add_to_marked_bytes(size_t incr_bytes) {
398    _next_marked_bytes = _next_marked_bytes + incr_bytes;
399    assert(_next_marked_bytes <= used(), "invariant" );
400  }
401
402  void zero_marked_bytes()      {
403    _prev_marked_bytes = _next_marked_bytes = 0;
404  }
405
406  const char* get_type_str() const { return _type.get_str(); }
407  const char* get_short_type_str() const { return _type.get_short_str(); }
408
409  bool is_free() const { return _type.is_free(); }
410
411  bool is_young()    const { return _type.is_young();    }
412  bool is_eden()     const { return _type.is_eden();     }
413  bool is_survivor() const { return _type.is_survivor(); }
414
415  bool is_humongous() const { return _type.is_humongous(); }
416  bool is_starts_humongous() const { return _type.is_starts_humongous(); }
417  bool is_continues_humongous() const { return _type.is_continues_humongous();   }
418
419  bool is_old() const { return _type.is_old(); }
420
421  // A pinned region contains objects which are not moved by garbage collections.
422  // Humongous regions and archive regions are pinned.
423  bool is_pinned() const { return _type.is_pinned(); }
424
425  // An archive region is a pinned region, also tagged as old, which
426  // should not be marked during mark/sweep. This allows the address
427  // space to be shared by JVM instances.
428  bool is_archive() const { return _type.is_archive(); }
429
430  // For a humongous region, region in which it starts.
431  HeapRegion* humongous_start_region() const {
432    return _humongous_start_region;
433  }
434
435  // Return the number of distinct regions that are covered by this region:
436  // 1 if the region is not humongous, >= 1 if the region is humongous.
437  uint region_num() const {
438    if (!is_humongous()) {
439      return 1U;
440    } else {
441      assert(is_starts_humongous(), "doesn't make sense on HC regions");
442      assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
443      return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
444    }
445  }
446
447  // Return the index + 1 of the last HC regions that's associated
448  // with this HS region.
449  uint last_hc_index() const {
450    assert(is_starts_humongous(), "don't call this otherwise");
451    return hrm_index() + region_num();
452  }
453
454  // Same as Space::is_in_reserved, but will use the original size of the region.
455  // The original size is different only for start humongous regions. They get
456  // their _end set up to be the end of the last continues region of the
457  // corresponding humongous object.
458  bool is_in_reserved_raw(const void* p) const {
459    return _bottom <= p && p < orig_end();
460  }
461
462  // Makes the current region be a "starts humongous" region, i.e.,
463  // the first region in a series of one or more contiguous regions
464  // that will contain a single "humongous" object. The two parameters
465  // are as follows:
466  //
467  // new_top : The new value of the top field of this region which
468  // points to the end of the humongous object that's being
469  // allocated. If there is more than one region in the series, top
470  // will lie beyond this region's original end field and on the last
471  // region in the series.
472  //
473  // new_end : The new value of the end field of this region which
474  // points to the end of the last region in the series. If there is
475  // one region in the series (namely: this one) end will be the same
476  // as the original end of this region.
477  //
478  // Updating top and end as described above makes this region look as
479  // if it spans the entire space taken up by all the regions in the
480  // series and an single allocation moved its top to new_top. This
481  // ensures that the space (capacity / allocated) taken up by all
482  // humongous regions can be calculated by just looking at the
483  // "starts humongous" regions and by ignoring the "continues
484  // humongous" regions.
485  void set_starts_humongous(HeapWord* new_top, HeapWord* new_end);
486
487  // Makes the current region be a "continues humongous'
488  // region. first_hr is the "start humongous" region of the series
489  // which this region will be part of.
490  void set_continues_humongous(HeapRegion* first_hr);
491
492  // Unsets the humongous-related fields on the region.
493  void clear_humongous();
494
495  // If the region has a remembered set, return a pointer to it.
496  HeapRegionRemSet* rem_set() const {
497    return _rem_set;
498  }
499
500  bool in_collection_set() const;
501
502  HeapRegion* next_in_collection_set() {
503    assert(in_collection_set(), "should only invoke on member of CS.");
504    assert(_next_in_special_set == NULL ||
505           _next_in_special_set->in_collection_set(),
506           "Malformed CS.");
507    return _next_in_special_set;
508  }
509  void set_next_in_collection_set(HeapRegion* r) {
510    assert(in_collection_set(), "should only invoke on member of CS.");
511    assert(r == NULL || r->in_collection_set(), "Malformed CS.");
512    _next_in_special_set = r;
513  }
514
515  void set_allocation_context(AllocationContext_t context) {
516    _allocation_context = context;
517  }
518
519  AllocationContext_t  allocation_context() const {
520    return _allocation_context;
521  }
522
523  // Methods used by the HeapRegionSetBase class and subclasses.
524
525  // Getter and setter for the next and prev fields used to link regions into
526  // linked lists.
527  HeapRegion* next()              { return _next; }
528  HeapRegion* prev()              { return _prev; }
529
530  void set_next(HeapRegion* next) { _next = next; }
531  void set_prev(HeapRegion* prev) { _prev = prev; }
532
533  // Every region added to a set is tagged with a reference to that
534  // set. This is used for doing consistency checking to make sure that
535  // the contents of a set are as they should be and it's only
536  // available in non-product builds.
537#ifdef ASSERT
538  void set_containing_set(HeapRegionSetBase* containing_set) {
539    assert((containing_set == NULL && _containing_set != NULL) ||
540           (containing_set != NULL && _containing_set == NULL),
541           err_msg("containing_set: " PTR_FORMAT " "
542                   "_containing_set: " PTR_FORMAT,
543                   p2i(containing_set), p2i(_containing_set)));
544
545    _containing_set = containing_set;
546  }
547
548  HeapRegionSetBase* containing_set() { return _containing_set; }
549#else // ASSERT
550  void set_containing_set(HeapRegionSetBase* containing_set) { }
551
552  // containing_set() is only used in asserts so there's no reason
553  // to provide a dummy version of it.
554#endif // ASSERT
555
556  HeapRegion* get_next_young_region() { return _next_young_region; }
557  void set_next_young_region(HeapRegion* hr) {
558    _next_young_region = hr;
559  }
560
561  HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
562  HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
563  void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
564  bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
565
566  // For the start region of a humongous sequence, it's original end().
567  HeapWord* orig_end() const { return _bottom + GrainWords; }
568
569  // Reset HR stuff to default values.
570  void hr_clear(bool par, bool clear_space, bool locked = false);
571  void par_clear();
572
573  // Get the start of the unmarked area in this region.
574  HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
575  HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
576
577  // Note the start or end of marking. This tells the heap region
578  // that the collector is about to start or has finished (concurrently)
579  // marking the heap.
580
581  // Notify the region that concurrent marking is starting. Initialize
582  // all fields related to the next marking info.
583  inline void note_start_of_marking();
584
585  // Notify the region that concurrent marking has finished. Copy the
586  // (now finalized) next marking info fields into the prev marking
587  // info fields.
588  inline void note_end_of_marking();
589
590  // Notify the region that it will be used as to-space during a GC
591  // and we are about to start copying objects into it.
592  inline void note_start_of_copying(bool during_initial_mark);
593
594  // Notify the region that it ceases being to-space during a GC and
595  // we will not copy objects into it any more.
596  inline void note_end_of_copying(bool during_initial_mark);
597
598  // Notify the region that we are about to start processing
599  // self-forwarded objects during evac failure handling.
600  void note_self_forwarding_removal_start(bool during_initial_mark,
601                                          bool during_conc_mark);
602
603  // Notify the region that we have finished processing self-forwarded
604  // objects during evac failure handling.
605  void note_self_forwarding_removal_end(bool during_initial_mark,
606                                        bool during_conc_mark,
607                                        size_t marked_bytes);
608
609  // Returns "false" iff no object in the region was allocated when the
610  // last mark phase ended.
611  bool is_marked() { return _prev_top_at_mark_start != bottom(); }
612
613  void reset_during_compaction() {
614    assert(is_starts_humongous(),
615           "should only be called for starts humongous regions");
616
617    zero_marked_bytes();
618    init_top_at_mark_start();
619  }
620
621  void calc_gc_efficiency(void);
622  double gc_efficiency() { return _gc_efficiency;}
623
624  int  young_index_in_cset() const { return _young_index_in_cset; }
625  void set_young_index_in_cset(int index) {
626    assert( (index == -1) || is_young(), "pre-condition" );
627    _young_index_in_cset = index;
628  }
629
630  int age_in_surv_rate_group() {
631    assert( _surv_rate_group != NULL, "pre-condition" );
632    assert( _age_index > -1, "pre-condition" );
633    return _surv_rate_group->age_in_group(_age_index);
634  }
635
636  void record_surv_words_in_group(size_t words_survived) {
637    assert( _surv_rate_group != NULL, "pre-condition" );
638    assert( _age_index > -1, "pre-condition" );
639    int age_in_group = age_in_surv_rate_group();
640    _surv_rate_group->record_surviving_words(age_in_group, words_survived);
641  }
642
643  int age_in_surv_rate_group_cond() {
644    if (_surv_rate_group != NULL)
645      return age_in_surv_rate_group();
646    else
647      return -1;
648  }
649
650  SurvRateGroup* surv_rate_group() {
651    return _surv_rate_group;
652  }
653
654  void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
655    assert( surv_rate_group != NULL, "pre-condition" );
656    assert( _surv_rate_group == NULL, "pre-condition" );
657    assert( is_young(), "pre-condition" );
658
659    _surv_rate_group = surv_rate_group;
660    _age_index = surv_rate_group->next_age_index();
661  }
662
663  void uninstall_surv_rate_group() {
664    if (_surv_rate_group != NULL) {
665      assert( _age_index > -1, "pre-condition" );
666      assert( is_young(), "pre-condition" );
667
668      _surv_rate_group = NULL;
669      _age_index = -1;
670    } else {
671      assert( _age_index == -1, "pre-condition" );
672    }
673  }
674
675  void set_free() { _type.set_free(); }
676
677  void set_eden()        { _type.set_eden();        }
678  void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
679  void set_survivor()    { _type.set_survivor();    }
680
681  void set_old() { _type.set_old(); }
682
683  void set_archive() { _type.set_archive(); }
684
685  // Determine if an object has been allocated since the last
686  // mark performed by the collector. This returns true iff the object
687  // is within the unmarked area of the region.
688  bool obj_allocated_since_prev_marking(oop obj) const {
689    return (HeapWord *) obj >= prev_top_at_mark_start();
690  }
691  bool obj_allocated_since_next_marking(oop obj) const {
692    return (HeapWord *) obj >= next_top_at_mark_start();
693  }
694
695  // Returns the "evacuation_failed" property of the region.
696  bool evacuation_failed() { return _evacuation_failed; }
697
698  // Sets the "evacuation_failed" property of the region.
699  void set_evacuation_failed(bool b) {
700    _evacuation_failed = b;
701
702    if (b) {
703      _next_marked_bytes = 0;
704    }
705  }
706
707  // Requires that "mr" be entirely within the region.
708  // Apply "cl->do_object" to all objects that intersect with "mr".
709  // If the iteration encounters an unparseable portion of the region,
710  // or if "cl->abort()" is true after a closure application,
711  // terminate the iteration and return the address of the start of the
712  // subregion that isn't done.  (The two can be distinguished by querying
713  // "cl->abort()".)  Return of "NULL" indicates that the iteration
714  // completed.
715  HeapWord*
716  object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
717
718  // filter_young: if true and the region is a young region then we
719  // skip the iteration.
720  // card_ptr: if not NULL, and we decide that the card is not young
721  // and we iterate over it, we'll clean the card before we start the
722  // iteration.
723  HeapWord*
724  oops_on_card_seq_iterate_careful(MemRegion mr,
725                                   FilterOutOfRegionClosure* cl,
726                                   bool filter_young,
727                                   jbyte* card_ptr);
728
729  size_t recorded_rs_length() const        { return _recorded_rs_length; }
730  double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
731  size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
732
733  void set_recorded_rs_length(size_t rs_length) {
734    _recorded_rs_length = rs_length;
735  }
736
737  void set_predicted_elapsed_time_ms(double ms) {
738    _predicted_elapsed_time_ms = ms;
739  }
740
741  void set_predicted_bytes_to_copy(size_t bytes) {
742    _predicted_bytes_to_copy = bytes;
743  }
744
745  virtual CompactibleSpace* next_compaction_space() const;
746
747  virtual void reset_after_compaction();
748
749  // Routines for managing a list of code roots (attached to the
750  // this region's RSet) that point into this heap region.
751  void add_strong_code_root(nmethod* nm);
752  void add_strong_code_root_locked(nmethod* nm);
753  void remove_strong_code_root(nmethod* nm);
754
755  // Applies blk->do_code_blob() to each of the entries in
756  // the strong code roots list for this region
757  void strong_code_roots_do(CodeBlobClosure* blk) const;
758
759  // Verify that the entries on the strong code root list for this
760  // region are live and include at least one pointer into this region.
761  void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
762
763  void print() const;
764  void print_on(outputStream* st) const;
765
766  // vo == UsePrevMarking  -> use "prev" marking information,
767  // vo == UseNextMarking -> use "next" marking information
768  // vo == UseMarkWord    -> use the mark word in the object header
769  //
770  // NOTE: Only the "prev" marking information is guaranteed to be
771  // consistent most of the time, so most calls to this should use
772  // vo == UsePrevMarking.
773  // Currently, there is only one case where this is called with
774  // vo == UseNextMarking, which is to verify the "next" marking
775  // information at the end of remark.
776  // Currently there is only one place where this is called with
777  // vo == UseMarkWord, which is to verify the marking during a
778  // full GC.
779  void verify(VerifyOption vo, bool *failures) const;
780
781  // Override; it uses the "prev" marking information
782  virtual void verify() const;
783};
784
785// HeapRegionClosure is used for iterating over regions.
786// Terminates the iteration when the "doHeapRegion" method returns "true".
787class HeapRegionClosure : public StackObj {
788  friend class HeapRegionManager;
789  friend class G1CollectedHeap;
790
791  bool _complete;
792  void incomplete() { _complete = false; }
793
794 public:
795  HeapRegionClosure(): _complete(true) {}
796
797  // Typically called on each region until it returns true.
798  virtual bool doHeapRegion(HeapRegion* r) = 0;
799
800  // True after iteration if the closure was applied to all heap regions
801  // and returned "false" in all cases.
802  bool complete() { return _complete; }
803};
804
805#endif // SHARE_VM_GC_G1_HEAPREGION_HPP
806