g1CollectorPolicy.hpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
26#define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
27
28#include "gc/g1/collectionSetChooser.hpp"
29#include "gc/g1/g1CollectorState.hpp"
30#include "gc/g1/g1InCSetState.hpp"
31#include "gc/g1/g1MMUTracker.hpp"
32#include "gc/shared/collectorPolicy.hpp"
33
34// A G1CollectorPolicy makes policy decisions that determine the
35// characteristics of the collector.  Examples include:
36//   * choice of collection set.
37//   * when to collect.
38
39class HeapRegion;
40class CollectionSetChooser;
41class G1GCPhaseTimes;
42
43// TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
44// (the latter may contain non-young regions - i.e. regions that are
45// technically in old) while TraceOldGenTime collects data about full GCs.
46class TraceYoungGenTimeData : public CHeapObj<mtGC> {
47 private:
48  unsigned  _young_pause_num;
49  unsigned  _mixed_pause_num;
50
51  NumberSeq _all_stop_world_times_ms;
52  NumberSeq _all_yield_times_ms;
53
54  NumberSeq _total;
55  NumberSeq _other;
56  NumberSeq _root_region_scan_wait;
57  NumberSeq _parallel;
58  NumberSeq _ext_root_scan;
59  NumberSeq _satb_filtering;
60  NumberSeq _update_rs;
61  NumberSeq _scan_rs;
62  NumberSeq _obj_copy;
63  NumberSeq _termination;
64  NumberSeq _parallel_other;
65  NumberSeq _clear_ct;
66
67  void print_summary(const char* str, const NumberSeq* seq) const;
68  void print_summary_sd(const char* str, const NumberSeq* seq) const;
69
70public:
71   TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
72  void record_start_collection(double time_to_stop_the_world_ms);
73  void record_yield_time(double yield_time_ms);
74  void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
75  void increment_young_collection_count();
76  void increment_mixed_collection_count();
77  void print() const;
78};
79
80class TraceOldGenTimeData : public CHeapObj<mtGC> {
81 private:
82  NumberSeq _all_full_gc_times;
83
84 public:
85  void record_full_collection(double full_gc_time_ms);
86  void print() const;
87};
88
89// There are three command line options related to the young gen size:
90// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
91// just a short form for NewSize==MaxNewSize). G1 will use its internal
92// heuristics to calculate the actual young gen size, so these options
93// basically only limit the range within which G1 can pick a young gen
94// size. Also, these are general options taking byte sizes. G1 will
95// internally work with a number of regions instead. So, some rounding
96// will occur.
97//
98// If nothing related to the the young gen size is set on the command
99// line we should allow the young gen to be between G1NewSizePercent
100// and G1MaxNewSizePercent of the heap size. This means that every time
101// the heap size changes, the limits for the young gen size will be
102// recalculated.
103//
104// If only -XX:NewSize is set we should use the specified value as the
105// minimum size for young gen. Still using G1MaxNewSizePercent of the
106// heap as maximum.
107//
108// If only -XX:MaxNewSize is set we should use the specified value as the
109// maximum size for young gen. Still using G1NewSizePercent of the heap
110// as minimum.
111//
112// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
113// No updates when the heap size changes. There is a special case when
114// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
115// different heuristic for calculating the collection set when we do mixed
116// collection.
117//
118// If only -XX:NewRatio is set we should use the specified ratio of the heap
119// as both min and max. This will be interpreted as "fixed" just like the
120// NewSize==MaxNewSize case above. But we will update the min and max
121// every time the heap size changes.
122//
123// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
124// combined with either NewSize or MaxNewSize. (A warning message is printed.)
125class G1YoungGenSizer : public CHeapObj<mtGC> {
126private:
127  enum SizerKind {
128    SizerDefaults,
129    SizerNewSizeOnly,
130    SizerMaxNewSizeOnly,
131    SizerMaxAndNewSize,
132    SizerNewRatio
133  };
134  SizerKind _sizer_kind;
135  uint _min_desired_young_length;
136  uint _max_desired_young_length;
137  bool _adaptive_size;
138  uint calculate_default_min_length(uint new_number_of_heap_regions);
139  uint calculate_default_max_length(uint new_number_of_heap_regions);
140
141  // Update the given values for minimum and maximum young gen length in regions
142  // given the number of heap regions depending on the kind of sizing algorithm.
143  void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
144
145public:
146  G1YoungGenSizer();
147  // Calculate the maximum length of the young gen given the number of regions
148  // depending on the sizing algorithm.
149  uint max_young_length(uint number_of_heap_regions);
150
151  void heap_size_changed(uint new_number_of_heap_regions);
152  uint min_desired_young_length() {
153    return _min_desired_young_length;
154  }
155  uint max_desired_young_length() {
156    return _max_desired_young_length;
157  }
158  bool adaptive_young_list_length() {
159    return _adaptive_size;
160  }
161};
162
163class G1CollectorPolicy: public CollectorPolicy {
164private:
165  // either equal to the number of parallel threads, if ParallelGCThreads
166  // has been set, or 1 otherwise
167  int _parallel_gc_threads;
168
169  // The number of GC threads currently active.
170  uintx _no_of_gc_threads;
171
172  enum SomePrivateConstants {
173    NumPrevPausesForHeuristics = 10
174  };
175
176  G1MMUTracker* _mmu_tracker;
177
178  void initialize_alignments();
179  void initialize_flags();
180
181  CollectionSetChooser* _collectionSetChooser;
182
183  double _full_collection_start_sec;
184  uint   _cur_collection_pause_used_regions_at_start;
185
186  // These exclude marking times.
187  TruncatedSeq* _recent_gc_times_ms;
188
189  TruncatedSeq* _concurrent_mark_remark_times_ms;
190  TruncatedSeq* _concurrent_mark_cleanup_times_ms;
191
192  TraceYoungGenTimeData _trace_young_gen_time_data;
193  TraceOldGenTimeData   _trace_old_gen_time_data;
194
195  double _stop_world_start;
196
197  uint _young_list_target_length;
198  uint _young_list_fixed_length;
199
200  // The max number of regions we can extend the eden by while the GC
201  // locker is active. This should be >= _young_list_target_length;
202  uint _young_list_max_length;
203
204  SurvRateGroup* _short_lived_surv_rate_group;
205  SurvRateGroup* _survivor_surv_rate_group;
206  // add here any more surv rate groups
207
208  double _gc_overhead_perc;
209
210  double _reserve_factor;
211  uint   _reserve_regions;
212
213  enum PredictionConstants {
214    TruncatedSeqLength = 10
215  };
216
217  TruncatedSeq* _alloc_rate_ms_seq;
218  double        _prev_collection_pause_end_ms;
219
220  TruncatedSeq* _rs_length_diff_seq;
221  TruncatedSeq* _cost_per_card_ms_seq;
222  TruncatedSeq* _young_cards_per_entry_ratio_seq;
223  TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
224  TruncatedSeq* _cost_per_entry_ms_seq;
225  TruncatedSeq* _mixed_cost_per_entry_ms_seq;
226  TruncatedSeq* _cost_per_byte_ms_seq;
227  TruncatedSeq* _constant_other_time_ms_seq;
228  TruncatedSeq* _young_other_cost_per_region_ms_seq;
229  TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
230
231  TruncatedSeq* _pending_cards_seq;
232  TruncatedSeq* _rs_lengths_seq;
233
234  TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
235
236  G1YoungGenSizer* _young_gen_sizer;
237
238  uint _eden_cset_region_length;
239  uint _survivor_cset_region_length;
240  uint _old_cset_region_length;
241
242  void init_cset_region_lengths(uint eden_cset_region_length,
243                                uint survivor_cset_region_length);
244
245  uint eden_cset_region_length()     { return _eden_cset_region_length;     }
246  uint survivor_cset_region_length() { return _survivor_cset_region_length; }
247  uint old_cset_region_length()      { return _old_cset_region_length;      }
248
249  uint _free_regions_at_end_of_collection;
250
251  size_t _recorded_rs_lengths;
252  size_t _max_rs_lengths;
253  double _sigma;
254
255  size_t _rs_lengths_prediction;
256
257  double sigma() { return _sigma; }
258
259  // A function that prevents us putting too much stock in small sample
260  // sets.  Returns a number between 2.0 and 1.0, depending on the number
261  // of samples.  5 or more samples yields one; fewer scales linearly from
262  // 2.0 at 1 sample to 1.0 at 5.
263  double confidence_factor(int samples) {
264    if (samples > 4) return 1.0;
265    else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
266  }
267
268  double get_new_neg_prediction(TruncatedSeq* seq) {
269    return seq->davg() - sigma() * seq->dsd();
270  }
271
272#ifndef PRODUCT
273  bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
274#endif // PRODUCT
275
276  void adjust_concurrent_refinement(double update_rs_time,
277                                    double update_rs_processed_buffers,
278                                    double goal_ms);
279
280  uintx no_of_gc_threads() { return _no_of_gc_threads; }
281  void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
282
283  double _pause_time_target_ms;
284
285  size_t _pending_cards;
286
287public:
288  // Accessors
289
290  void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
291    hr->set_eden();
292    hr->install_surv_rate_group(_short_lived_surv_rate_group);
293    hr->set_young_index_in_cset(young_index_in_cset);
294  }
295
296  void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
297    assert(hr->is_survivor(), "pre-condition");
298    hr->install_surv_rate_group(_survivor_surv_rate_group);
299    hr->set_young_index_in_cset(young_index_in_cset);
300  }
301
302#ifndef PRODUCT
303  bool verify_young_ages();
304#endif // PRODUCT
305
306  double get_new_prediction(TruncatedSeq* seq) {
307    return MAX2(seq->davg() + sigma() * seq->dsd(),
308                seq->davg() * confidence_factor(seq->num()));
309  }
310
311  void record_max_rs_lengths(size_t rs_lengths) {
312    _max_rs_lengths = rs_lengths;
313  }
314
315  size_t predict_rs_length_diff() {
316    return (size_t) get_new_prediction(_rs_length_diff_seq);
317  }
318
319  double predict_alloc_rate_ms() {
320    return get_new_prediction(_alloc_rate_ms_seq);
321  }
322
323  double predict_cost_per_card_ms() {
324    return get_new_prediction(_cost_per_card_ms_seq);
325  }
326
327  double predict_rs_update_time_ms(size_t pending_cards) {
328    return (double) pending_cards * predict_cost_per_card_ms();
329  }
330
331  double predict_young_cards_per_entry_ratio() {
332    return get_new_prediction(_young_cards_per_entry_ratio_seq);
333  }
334
335  double predict_mixed_cards_per_entry_ratio() {
336    if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
337      return predict_young_cards_per_entry_ratio();
338    } else {
339      return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
340    }
341  }
342
343  size_t predict_young_card_num(size_t rs_length) {
344    return (size_t) ((double) rs_length *
345                     predict_young_cards_per_entry_ratio());
346  }
347
348  size_t predict_non_young_card_num(size_t rs_length) {
349    return (size_t) ((double) rs_length *
350                     predict_mixed_cards_per_entry_ratio());
351  }
352
353  double predict_rs_scan_time_ms(size_t card_num) {
354    if (collector_state()->gcs_are_young()) {
355      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
356    } else {
357      return predict_mixed_rs_scan_time_ms(card_num);
358    }
359  }
360
361  double predict_mixed_rs_scan_time_ms(size_t card_num) {
362    if (_mixed_cost_per_entry_ms_seq->num() < 3) {
363      return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
364    } else {
365      return (double) (card_num *
366                       get_new_prediction(_mixed_cost_per_entry_ms_seq));
367    }
368  }
369
370  double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
371    if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
372      return (1.1 * (double) bytes_to_copy) *
373              get_new_prediction(_cost_per_byte_ms_seq);
374    } else {
375      return (double) bytes_to_copy *
376             get_new_prediction(_cost_per_byte_ms_during_cm_seq);
377    }
378  }
379
380  double predict_object_copy_time_ms(size_t bytes_to_copy) {
381    if (collector_state()->during_concurrent_mark()) {
382      return predict_object_copy_time_ms_during_cm(bytes_to_copy);
383    } else {
384      return (double) bytes_to_copy *
385              get_new_prediction(_cost_per_byte_ms_seq);
386    }
387  }
388
389  double predict_constant_other_time_ms() {
390    return get_new_prediction(_constant_other_time_ms_seq);
391  }
392
393  double predict_young_other_time_ms(size_t young_num) {
394    return (double) young_num *
395           get_new_prediction(_young_other_cost_per_region_ms_seq);
396  }
397
398  double predict_non_young_other_time_ms(size_t non_young_num) {
399    return (double) non_young_num *
400           get_new_prediction(_non_young_other_cost_per_region_ms_seq);
401  }
402
403  double predict_base_elapsed_time_ms(size_t pending_cards);
404  double predict_base_elapsed_time_ms(size_t pending_cards,
405                                      size_t scanned_cards);
406  size_t predict_bytes_to_copy(HeapRegion* hr);
407  double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
408
409  void set_recorded_rs_lengths(size_t rs_lengths);
410
411  uint cset_region_length()       { return young_cset_region_length() +
412                                           old_cset_region_length(); }
413  uint young_cset_region_length() { return eden_cset_region_length() +
414                                           survivor_cset_region_length(); }
415
416  double predict_survivor_regions_evac_time();
417
418  void cset_regions_freed() {
419    bool propagate = collector_state()->should_propagate();
420    _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
421    _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
422    // also call it on any more surv rate groups
423  }
424
425  G1MMUTracker* mmu_tracker() {
426    return _mmu_tracker;
427  }
428
429  double max_pause_time_ms() {
430    return _mmu_tracker->max_gc_time() * 1000.0;
431  }
432
433  double predict_remark_time_ms() {
434    return get_new_prediction(_concurrent_mark_remark_times_ms);
435  }
436
437  double predict_cleanup_time_ms() {
438    return get_new_prediction(_concurrent_mark_cleanup_times_ms);
439  }
440
441  // Returns an estimate of the survival rate of the region at yg-age
442  // "yg_age".
443  double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
444    TruncatedSeq* seq = surv_rate_group->get_seq(age);
445    if (seq->num() == 0)
446      gclog_or_tty->print("BARF! age is %d", age);
447    guarantee( seq->num() > 0, "invariant" );
448    double pred = get_new_prediction(seq);
449    if (pred > 1.0)
450      pred = 1.0;
451    return pred;
452  }
453
454  double predict_yg_surv_rate(int age) {
455    return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
456  }
457
458  double accum_yg_surv_rate_pred(int age) {
459    return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
460  }
461
462private:
463  // Statistics kept per GC stoppage, pause or full.
464  TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
465
466  // Add a new GC of the given duration and end time to the record.
467  void update_recent_gc_times(double end_time_sec, double elapsed_ms);
468
469  // The head of the list (via "next_in_collection_set()") representing the
470  // current collection set. Set from the incrementally built collection
471  // set at the start of the pause.
472  HeapRegion* _collection_set;
473
474  // The number of bytes in the collection set before the pause. Set from
475  // the incrementally built collection set at the start of an evacuation
476  // pause, and incremented in finalize_old_cset_part() when adding old regions
477  // (if any) to the collection set.
478  size_t _collection_set_bytes_used_before;
479
480  // The number of bytes copied during the GC.
481  size_t _bytes_copied_during_gc;
482
483  // The associated information that is maintained while the incremental
484  // collection set is being built with young regions. Used to populate
485  // the recorded info for the evacuation pause.
486
487  enum CSetBuildType {
488    Active,             // We are actively building the collection set
489    Inactive            // We are not actively building the collection set
490  };
491
492  CSetBuildType _inc_cset_build_state;
493
494  // The head of the incrementally built collection set.
495  HeapRegion* _inc_cset_head;
496
497  // The tail of the incrementally built collection set.
498  HeapRegion* _inc_cset_tail;
499
500  // The number of bytes in the incrementally built collection set.
501  // Used to set _collection_set_bytes_used_before at the start of
502  // an evacuation pause.
503  size_t _inc_cset_bytes_used_before;
504
505  // Used to record the highest end of heap region in collection set
506  HeapWord* _inc_cset_max_finger;
507
508  // The RSet lengths recorded for regions in the CSet. It is updated
509  // by the thread that adds a new region to the CSet. We assume that
510  // only one thread can be allocating a new CSet region (currently,
511  // it does so after taking the Heap_lock) hence no need to
512  // synchronize updates to this field.
513  size_t _inc_cset_recorded_rs_lengths;
514
515  // A concurrent refinement thread periodically samples the young
516  // region RSets and needs to update _inc_cset_recorded_rs_lengths as
517  // the RSets grow. Instead of having to synchronize updates to that
518  // field we accumulate them in this field and add it to
519  // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
520  ssize_t _inc_cset_recorded_rs_lengths_diffs;
521
522  // The predicted elapsed time it will take to collect the regions in
523  // the CSet. This is updated by the thread that adds a new region to
524  // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
525  // MT-safety assumptions.
526  double _inc_cset_predicted_elapsed_time_ms;
527
528  // See the comment for _inc_cset_recorded_rs_lengths_diffs.
529  double _inc_cset_predicted_elapsed_time_ms_diffs;
530
531  // Stash a pointer to the g1 heap.
532  G1CollectedHeap* _g1;
533
534  G1GCPhaseTimes* _phase_times;
535
536  // The ratio of gc time to elapsed time, computed over recent pauses.
537  double _recent_avg_pause_time_ratio;
538
539  double recent_avg_pause_time_ratio() {
540    return _recent_avg_pause_time_ratio;
541  }
542
543  // This set of variables tracks the collector efficiency, in order to
544  // determine whether we should initiate a new marking.
545  double _cur_mark_stop_world_time_ms;
546  double _mark_remark_start_sec;
547  double _mark_cleanup_start_sec;
548
549  // Update the young list target length either by setting it to the
550  // desired fixed value or by calculating it using G1's pause
551  // prediction model. If no rs_lengths parameter is passed, predict
552  // the RS lengths using the prediction model, otherwise use the
553  // given rs_lengths as the prediction.
554  void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
555
556  // Calculate and return the minimum desired young list target
557  // length. This is the minimum desired young list length according
558  // to the user's inputs.
559  uint calculate_young_list_desired_min_length(uint base_min_length);
560
561  // Calculate and return the maximum desired young list target
562  // length. This is the maximum desired young list length according
563  // to the user's inputs.
564  uint calculate_young_list_desired_max_length();
565
566  // Calculate and return the maximum young list target length that
567  // can fit into the pause time goal. The parameters are: rs_lengths
568  // represent the prediction of how large the young RSet lengths will
569  // be, base_min_length is the already existing number of regions in
570  // the young list, min_length and max_length are the desired min and
571  // max young list length according to the user's inputs.
572  uint calculate_young_list_target_length(size_t rs_lengths,
573                                          uint base_min_length,
574                                          uint desired_min_length,
575                                          uint desired_max_length);
576
577  // Calculate and return chunk size (in number of regions) for parallel
578  // concurrent mark cleanup.
579  uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions);
580
581  // Check whether a given young length (young_length) fits into the
582  // given target pause time and whether the prediction for the amount
583  // of objects to be copied for the given length will fit into the
584  // given free space (expressed by base_free_regions).  It is used by
585  // calculate_young_list_target_length().
586  bool predict_will_fit(uint young_length, double base_time_ms,
587                        uint base_free_regions, double target_pause_time_ms);
588
589  // Calculate the minimum number of old regions we'll add to the CSet
590  // during a mixed GC.
591  uint calc_min_old_cset_length();
592
593  // Calculate the maximum number of old regions we'll add to the CSet
594  // during a mixed GC.
595  uint calc_max_old_cset_length();
596
597  // Returns the given amount of uncollected reclaimable space
598  // as a percentage of the current heap capacity.
599  double reclaimable_bytes_perc(size_t reclaimable_bytes);
600
601public:
602
603  G1CollectorPolicy();
604
605  virtual G1CollectorPolicy* as_g1_policy() { return this; }
606
607  G1CollectorState* collector_state();
608
609  G1GCPhaseTimes* phase_times() const { return _phase_times; }
610
611  // Check the current value of the young list RSet lengths and
612  // compare it against the last prediction. If the current value is
613  // higher, recalculate the young list target length prediction.
614  void revise_young_list_target_length_if_necessary();
615
616  // This should be called after the heap is resized.
617  void record_new_heap_size(uint new_number_of_regions);
618
619  void init();
620
621  // Create jstat counters for the policy.
622  virtual void initialize_gc_policy_counters();
623
624  virtual HeapWord* mem_allocate_work(size_t size,
625                                      bool is_tlab,
626                                      bool* gc_overhead_limit_was_exceeded);
627
628  // This method controls how a collector handles one or more
629  // of its generations being fully allocated.
630  virtual HeapWord* satisfy_failed_allocation(size_t size,
631                                              bool is_tlab);
632
633  bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
634
635  // Record the start and end of an evacuation pause.
636  void record_collection_pause_start(double start_time_sec);
637  void record_collection_pause_end(double pause_time_ms, size_t cards_scanned);
638
639  // Record the start and end of a full collection.
640  void record_full_collection_start();
641  void record_full_collection_end();
642
643  // Must currently be called while the world is stopped.
644  void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
645
646  // Record start and end of remark.
647  void record_concurrent_mark_remark_start();
648  void record_concurrent_mark_remark_end();
649
650  // Record start, end, and completion of cleanup.
651  void record_concurrent_mark_cleanup_start();
652  void record_concurrent_mark_cleanup_end();
653  void record_concurrent_mark_cleanup_completed();
654
655  // Records the information about the heap size for reporting in
656  // print_detailed_heap_transition
657  void record_heap_size_info_at_start(bool full);
658
659  // Print heap sizing transition (with less and more detail).
660
661  void print_heap_transition(size_t bytes_before);
662  void print_heap_transition();
663  void print_detailed_heap_transition(bool full = false);
664
665  void record_stop_world_start();
666  void record_concurrent_pause();
667
668  // Record how much space we copied during a GC. This is typically
669  // called when a GC alloc region is being retired.
670  void record_bytes_copied_during_gc(size_t bytes) {
671    _bytes_copied_during_gc += bytes;
672  }
673
674  // The amount of space we copied during a GC.
675  size_t bytes_copied_during_gc() {
676    return _bytes_copied_during_gc;
677  }
678
679  size_t collection_set_bytes_used_before() const {
680    return _collection_set_bytes_used_before;
681  }
682
683  // Determine whether there are candidate regions so that the
684  // next GC should be mixed. The two action strings are used
685  // in the ergo output when the method returns true or false.
686  bool next_gc_should_be_mixed(const char* true_action_str,
687                               const char* false_action_str);
688
689  // Choose a new collection set.  Marks the chosen regions as being
690  // "in_collection_set", and links them together.  The head and number of
691  // the collection set are available via access methods.
692  double finalize_young_cset_part(double target_pause_time_ms);
693  virtual void finalize_old_cset_part(double time_remaining_ms);
694
695  // The head of the list (via "next_in_collection_set()") representing the
696  // current collection set.
697  HeapRegion* collection_set() { return _collection_set; }
698
699  void clear_collection_set() { _collection_set = NULL; }
700
701  // Add old region "hr" to the CSet.
702  void add_old_region_to_cset(HeapRegion* hr);
703
704  // Incremental CSet Support
705
706  // The head of the incrementally built collection set.
707  HeapRegion* inc_cset_head() { return _inc_cset_head; }
708
709  // The tail of the incrementally built collection set.
710  HeapRegion* inc_set_tail() { return _inc_cset_tail; }
711
712  // Initialize incremental collection set info.
713  void start_incremental_cset_building();
714
715  // Perform any final calculations on the incremental CSet fields
716  // before we can use them.
717  void finalize_incremental_cset_building();
718
719  void clear_incremental_cset() {
720    _inc_cset_head = NULL;
721    _inc_cset_tail = NULL;
722  }
723
724  // Stop adding regions to the incremental collection set
725  void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
726
727  // Add information about hr to the aggregated information for the
728  // incrementally built collection set.
729  void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
730
731  // Update information about hr in the aggregated information for
732  // the incrementally built collection set.
733  void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
734
735private:
736  // Update the incremental cset information when adding a region
737  // (should not be called directly).
738  void add_region_to_incremental_cset_common(HeapRegion* hr);
739
740public:
741  // Add hr to the LHS of the incremental collection set.
742  void add_region_to_incremental_cset_lhs(HeapRegion* hr);
743
744  // Add hr to the RHS of the incremental collection set.
745  void add_region_to_incremental_cset_rhs(HeapRegion* hr);
746
747#ifndef PRODUCT
748  void print_collection_set(HeapRegion* list_head, outputStream* st);
749#endif // !PRODUCT
750
751  // This sets the initiate_conc_mark_if_possible() flag to start a
752  // new cycle, as long as we are not already in one. It's best if it
753  // is called during a safepoint when the test whether a cycle is in
754  // progress or not is stable.
755  bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
756
757  // This is called at the very beginning of an evacuation pause (it
758  // has to be the first thing that the pause does). If
759  // initiate_conc_mark_if_possible() is true, and the concurrent
760  // marking thread has completed its work during the previous cycle,
761  // it will set during_initial_mark_pause() to so that the pause does
762  // the initial-mark work and start a marking cycle.
763  void decide_on_conc_mark_initiation();
764
765  // If an expansion would be appropriate, because recent GC overhead had
766  // exceeded the desired limit, return an amount to expand by.
767  virtual size_t expansion_amount();
768
769  // Print tracing information.
770  void print_tracing_info() const;
771
772  // Print stats on young survival ratio
773  void print_yg_surv_rate_info() const;
774
775  void finished_recalculating_age_indexes(bool is_survivors) {
776    if (is_survivors) {
777      _survivor_surv_rate_group->finished_recalculating_age_indexes();
778    } else {
779      _short_lived_surv_rate_group->finished_recalculating_age_indexes();
780    }
781    // do that for any other surv rate groups
782  }
783
784  size_t young_list_target_length() const { return _young_list_target_length; }
785
786  bool is_young_list_full();
787
788  bool can_expand_young_list();
789
790  uint young_list_max_length() {
791    return _young_list_max_length;
792  }
793
794  bool adaptive_young_list_length() {
795    return _young_gen_sizer->adaptive_young_list_length();
796  }
797
798private:
799  //
800  // Survivor regions policy.
801  //
802
803  // Current tenuring threshold, set to 0 if the collector reaches the
804  // maximum amount of survivors regions.
805  uint _tenuring_threshold;
806
807  // The limit on the number of regions allocated for survivors.
808  uint _max_survivor_regions;
809
810  // For reporting purposes.
811  // The value of _heap_bytes_before_gc is also used to calculate
812  // the cost of copying.
813
814  size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
815  size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
816  size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
817  size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
818
819  size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
820  size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
821
822  // The amount of survivor regions after a collection.
823  uint _recorded_survivor_regions;
824  // List of survivor regions.
825  HeapRegion* _recorded_survivor_head;
826  HeapRegion* _recorded_survivor_tail;
827
828  ageTable _survivors_age_table;
829
830public:
831  uint tenuring_threshold() const { return _tenuring_threshold; }
832
833  static const uint REGIONS_UNLIMITED = (uint) -1;
834
835  uint max_regions(InCSetState dest) {
836    switch (dest.value()) {
837      case InCSetState::Young:
838        return _max_survivor_regions;
839      case InCSetState::Old:
840        return REGIONS_UNLIMITED;
841      default:
842        assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value());
843        break;
844    }
845    // keep some compilers happy
846    return 0;
847  }
848
849  void note_start_adding_survivor_regions() {
850    _survivor_surv_rate_group->start_adding_regions();
851  }
852
853  void note_stop_adding_survivor_regions() {
854    _survivor_surv_rate_group->stop_adding_regions();
855  }
856
857  void record_survivor_regions(uint regions,
858                               HeapRegion* head,
859                               HeapRegion* tail) {
860    _recorded_survivor_regions = regions;
861    _recorded_survivor_head    = head;
862    _recorded_survivor_tail    = tail;
863  }
864
865  uint recorded_survivor_regions() {
866    return _recorded_survivor_regions;
867  }
868
869  void record_age_table(ageTable* age_table) {
870    _survivors_age_table.merge(age_table);
871  }
872
873  void update_max_gc_locker_expansion();
874
875  // Calculates survivor space parameters.
876  void update_survivors_policy();
877
878  virtual void post_heap_initialize();
879};
880
881// This should move to some place more general...
882
883// If we have "n" measurements, and we've kept track of their "sum" and the
884// "sum_of_squares" of the measurements, this returns the variance of the
885// sequence.
886inline double variance(int n, double sum_of_squares, double sum) {
887  double n_d = (double)n;
888  double avg = sum/n_d;
889  return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
890}
891
892#endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
893