g1CollectorPolicy.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/g1/concurrentG1Refine.hpp"
27#include "gc/g1/concurrentMark.hpp"
28#include "gc/g1/concurrentMarkThread.inline.hpp"
29#include "gc/g1/g1CollectedHeap.inline.hpp"
30#include "gc/g1/g1CollectorPolicy.hpp"
31#include "gc/g1/g1ErgoVerbose.hpp"
32#include "gc/g1/g1GCPhaseTimes.hpp"
33#include "gc/g1/g1Log.hpp"
34#include "gc/g1/heapRegion.inline.hpp"
35#include "gc/g1/heapRegionRemSet.hpp"
36#include "gc/shared/gcPolicyCounters.hpp"
37#include "runtime/arguments.hpp"
38#include "runtime/java.hpp"
39#include "runtime/mutexLocker.hpp"
40#include "utilities/debug.hpp"
41
42// Different defaults for different number of GC threads
43// They were chosen by running GCOld and SPECjbb on debris with different
44//   numbers of GC threads and choosing them based on the results
45
46// all the same
47static double rs_length_diff_defaults[] = {
48  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
49};
50
51static double cost_per_card_ms_defaults[] = {
52  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
53};
54
55// all the same
56static double young_cards_per_entry_ratio_defaults[] = {
57  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
58};
59
60static double cost_per_entry_ms_defaults[] = {
61  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
62};
63
64static double cost_per_byte_ms_defaults[] = {
65  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
66};
67
68// these should be pretty consistent
69static double constant_other_time_ms_defaults[] = {
70  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
71};
72
73
74static double young_other_cost_per_region_ms_defaults[] = {
75  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
76};
77
78static double non_young_other_cost_per_region_ms_defaults[] = {
79  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
80};
81
82G1CollectorPolicy::G1CollectorPolicy() :
83  _parallel_gc_threads(ParallelGCThreads),
84
85  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
86  _stop_world_start(0.0),
87
88  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
89  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
90
91  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
92  _prev_collection_pause_end_ms(0.0),
93  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
94  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
96  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
100  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
101  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
102  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
103  _non_young_other_cost_per_region_ms_seq(
104                                         new TruncatedSeq(TruncatedSeqLength)),
105
106  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
107  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
108
109  _pause_time_target_ms((double) MaxGCPauseMillis),
110
111  _recent_prev_end_times_for_all_gcs_sec(
112                                new TruncatedSeq(NumPrevPausesForHeuristics)),
113
114  _recent_avg_pause_time_ratio(0.0),
115
116  _eden_used_bytes_before_gc(0),
117  _survivor_used_bytes_before_gc(0),
118  _heap_used_bytes_before_gc(0),
119  _metaspace_used_bytes_before_gc(0),
120  _eden_capacity_bytes_before_gc(0),
121  _heap_capacity_bytes_before_gc(0),
122
123  _eden_cset_region_length(0),
124  _survivor_cset_region_length(0),
125  _old_cset_region_length(0),
126
127  _sigma(G1ConfidencePercent / 100.0),
128
129  _collection_set(NULL),
130  _collection_set_bytes_used_before(0),
131
132  // Incremental CSet attributes
133  _inc_cset_build_state(Inactive),
134  _inc_cset_head(NULL),
135  _inc_cset_tail(NULL),
136  _inc_cset_bytes_used_before(0),
137  _inc_cset_max_finger(NULL),
138  _inc_cset_recorded_rs_lengths(0),
139  _inc_cset_recorded_rs_lengths_diffs(0),
140  _inc_cset_predicted_elapsed_time_ms(0.0),
141  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
142
143  // add here any more surv rate groups
144  _recorded_survivor_regions(0),
145  _recorded_survivor_head(NULL),
146  _recorded_survivor_tail(NULL),
147  _survivors_age_table(true),
148
149  _gc_overhead_perc(0.0) {
150
151  // SurvRateGroups below must be initialized after '_sigma' because they
152  // indirectly access '_sigma' through this object passed to their constructor.
153  _short_lived_surv_rate_group =
154    new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary);
155  _survivor_surv_rate_group =
156    new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary);
157
158  // Set up the region size and associated fields. Given that the
159  // policy is created before the heap, we have to set this up here,
160  // so it's done as soon as possible.
161
162  // It would have been natural to pass initial_heap_byte_size() and
163  // max_heap_byte_size() to setup_heap_region_size() but those have
164  // not been set up at this point since they should be aligned with
165  // the region size. So, there is a circular dependency here. We base
166  // the region size on the heap size, but the heap size should be
167  // aligned with the region size. To get around this we use the
168  // unaligned values for the heap.
169  HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
170  HeapRegionRemSet::setup_remset_size();
171
172  G1ErgoVerbose::initialize();
173  if (PrintAdaptiveSizePolicy) {
174    // Currently, we only use a single switch for all the heuristics.
175    G1ErgoVerbose::set_enabled(true);
176    // Given that we don't currently have a verboseness level
177    // parameter, we'll hardcode this to high. This can be easily
178    // changed in the future.
179    G1ErgoVerbose::set_level(ErgoHigh);
180  } else {
181    G1ErgoVerbose::set_enabled(false);
182  }
183
184  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
185  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
186
187  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
188
189  int index = MIN2(_parallel_gc_threads - 1, 7);
190
191  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
192  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
193  _young_cards_per_entry_ratio_seq->add(
194                                  young_cards_per_entry_ratio_defaults[index]);
195  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
196  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
197  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
198  _young_other_cost_per_region_ms_seq->add(
199                               young_other_cost_per_region_ms_defaults[index]);
200  _non_young_other_cost_per_region_ms_seq->add(
201                           non_young_other_cost_per_region_ms_defaults[index]);
202
203  // Below, we might need to calculate the pause time target based on
204  // the pause interval. When we do so we are going to give G1 maximum
205  // flexibility and allow it to do pauses when it needs to. So, we'll
206  // arrange that the pause interval to be pause time target + 1 to
207  // ensure that a) the pause time target is maximized with respect to
208  // the pause interval and b) we maintain the invariant that pause
209  // time target < pause interval. If the user does not want this
210  // maximum flexibility, they will have to set the pause interval
211  // explicitly.
212
213  // First make sure that, if either parameter is set, its value is
214  // reasonable.
215  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
216    if (MaxGCPauseMillis < 1) {
217      vm_exit_during_initialization("MaxGCPauseMillis should be "
218                                    "greater than 0");
219    }
220  }
221  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
222    if (GCPauseIntervalMillis < 1) {
223      vm_exit_during_initialization("GCPauseIntervalMillis should be "
224                                    "greater than 0");
225    }
226  }
227
228  // Then, if the pause time target parameter was not set, set it to
229  // the default value.
230  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
231    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
232      // The default pause time target in G1 is 200ms
233      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
234    } else {
235      // We do not allow the pause interval to be set without the
236      // pause time target
237      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
238                                    "without setting MaxGCPauseMillis");
239    }
240  }
241
242  // Then, if the interval parameter was not set, set it according to
243  // the pause time target (this will also deal with the case when the
244  // pause time target is the default value).
245  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
246    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
247  }
248
249  // Finally, make sure that the two parameters are consistent.
250  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
251    char buffer[256];
252    jio_snprintf(buffer, 256,
253                 "MaxGCPauseMillis (%u) should be less than "
254                 "GCPauseIntervalMillis (%u)",
255                 MaxGCPauseMillis, GCPauseIntervalMillis);
256    vm_exit_during_initialization(buffer);
257  }
258
259  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
260  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
261  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
262
263  // start conservatively (around 50ms is about right)
264  _concurrent_mark_remark_times_ms->add(0.05);
265  _concurrent_mark_cleanup_times_ms->add(0.20);
266  _tenuring_threshold = MaxTenuringThreshold;
267  // _max_survivor_regions will be calculated by
268  // update_young_list_target_length() during initialization.
269  _max_survivor_regions = 0;
270
271  assert(GCTimeRatio > 0,
272         "we should have set it to a default value set_g1_gc_flags() "
273         "if a user set it to 0");
274  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
275
276  uintx reserve_perc = G1ReservePercent;
277  // Put an artificial ceiling on this so that it's not set to a silly value.
278  if (reserve_perc > 50) {
279    reserve_perc = 50;
280    warning("G1ReservePercent is set to a value that is too large, "
281            "it's been updated to " UINTX_FORMAT, reserve_perc);
282  }
283  _reserve_factor = (double) reserve_perc / 100.0;
284  // This will be set when the heap is expanded
285  // for the first time during initialization.
286  _reserve_regions = 0;
287
288  _collectionSetChooser = new CollectionSetChooser();
289}
290
291void G1CollectorPolicy::initialize_alignments() {
292  _space_alignment = HeapRegion::GrainBytes;
293  size_t card_table_alignment = GenRemSet::max_alignment_constraint();
294  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
295  _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
296}
297
298void G1CollectorPolicy::initialize_flags() {
299  if (G1HeapRegionSize != HeapRegion::GrainBytes) {
300    FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
301  }
302
303  if (SurvivorRatio < 1) {
304    vm_exit_during_initialization("Invalid survivor ratio specified");
305  }
306  CollectorPolicy::initialize_flags();
307  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
308}
309
310void G1CollectorPolicy::post_heap_initialize() {
311  uintx max_regions = G1CollectedHeap::heap()->max_regions();
312  size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
313  if (max_young_size != MaxNewSize) {
314    FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
315  }
316}
317
318G1CollectorState* G1CollectorPolicy::collector_state() { return _g1->collector_state(); }
319
320G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
321        _min_desired_young_length(0), _max_desired_young_length(0) {
322  if (FLAG_IS_CMDLINE(NewRatio)) {
323    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
324      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
325    } else {
326      _sizer_kind = SizerNewRatio;
327      _adaptive_size = false;
328      return;
329    }
330  }
331
332  if (NewSize > MaxNewSize) {
333    if (FLAG_IS_CMDLINE(MaxNewSize)) {
334      warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
335              "A new max generation size of " SIZE_FORMAT "k will be used.",
336              NewSize/K, MaxNewSize/K, NewSize/K);
337    }
338    MaxNewSize = NewSize;
339  }
340
341  if (FLAG_IS_CMDLINE(NewSize)) {
342    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
343                                     1U);
344    if (FLAG_IS_CMDLINE(MaxNewSize)) {
345      _max_desired_young_length =
346                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
347                                  1U);
348      _sizer_kind = SizerMaxAndNewSize;
349      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
350    } else {
351      _sizer_kind = SizerNewSizeOnly;
352    }
353  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
354    _max_desired_young_length =
355                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
356                                  1U);
357    _sizer_kind = SizerMaxNewSizeOnly;
358  }
359}
360
361uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
362  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
363  return MAX2(1U, default_value);
364}
365
366uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
367  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
368  return MAX2(1U, default_value);
369}
370
371void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
372  assert(number_of_heap_regions > 0, "Heap must be initialized");
373
374  switch (_sizer_kind) {
375    case SizerDefaults:
376      *min_young_length = calculate_default_min_length(number_of_heap_regions);
377      *max_young_length = calculate_default_max_length(number_of_heap_regions);
378      break;
379    case SizerNewSizeOnly:
380      *max_young_length = calculate_default_max_length(number_of_heap_regions);
381      *max_young_length = MAX2(*min_young_length, *max_young_length);
382      break;
383    case SizerMaxNewSizeOnly:
384      *min_young_length = calculate_default_min_length(number_of_heap_regions);
385      *min_young_length = MIN2(*min_young_length, *max_young_length);
386      break;
387    case SizerMaxAndNewSize:
388      // Do nothing. Values set on the command line, don't update them at runtime.
389      break;
390    case SizerNewRatio:
391      *min_young_length = number_of_heap_regions / (NewRatio + 1);
392      *max_young_length = *min_young_length;
393      break;
394    default:
395      ShouldNotReachHere();
396  }
397
398  assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
399}
400
401uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
402  // We need to pass the desired values because recalculation may not update these
403  // values in some cases.
404  uint temp = _min_desired_young_length;
405  uint result = _max_desired_young_length;
406  recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
407  return result;
408}
409
410void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
411  recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
412          &_max_desired_young_length);
413}
414
415void G1CollectorPolicy::init() {
416  // Set aside an initial future to_space.
417  _g1 = G1CollectedHeap::heap();
418
419  assert(Heap_lock->owned_by_self(), "Locking discipline.");
420
421  initialize_gc_policy_counters();
422
423  if (adaptive_young_list_length()) {
424    _young_list_fixed_length = 0;
425  } else {
426    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
427  }
428  _free_regions_at_end_of_collection = _g1->num_free_regions();
429  update_young_list_target_length();
430
431  // We may immediately start allocating regions and placing them on the
432  // collection set list. Initialize the per-collection set info
433  start_incremental_cset_building();
434}
435
436// Create the jstat counters for the policy.
437void G1CollectorPolicy::initialize_gc_policy_counters() {
438  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
439}
440
441bool G1CollectorPolicy::predict_will_fit(uint young_length,
442                                         double base_time_ms,
443                                         uint base_free_regions,
444                                         double target_pause_time_ms) {
445  if (young_length >= base_free_regions) {
446    // end condition 1: not enough space for the young regions
447    return false;
448  }
449
450  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
451  size_t bytes_to_copy =
452               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
453  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
454  double young_other_time_ms = predict_young_other_time_ms(young_length);
455  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
456  if (pause_time_ms > target_pause_time_ms) {
457    // end condition 2: prediction is over the target pause time
458    return false;
459  }
460
461  size_t free_bytes =
462                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
463  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
464    // end condition 3: out-of-space (conservatively!)
465    return false;
466  }
467
468  // success!
469  return true;
470}
471
472void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
473  // re-calculate the necessary reserve
474  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
475  // We use ceiling so that if reserve_regions_d is > 0.0 (but
476  // smaller than 1.0) we'll get 1.
477  _reserve_regions = (uint) ceil(reserve_regions_d);
478
479  _young_gen_sizer->heap_size_changed(new_number_of_regions);
480}
481
482uint G1CollectorPolicy::calculate_young_list_desired_min_length(
483                                                       uint base_min_length) {
484  uint desired_min_length = 0;
485  if (adaptive_young_list_length()) {
486    if (_alloc_rate_ms_seq->num() > 3) {
487      double now_sec = os::elapsedTime();
488      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
489      double alloc_rate_ms = predict_alloc_rate_ms();
490      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
491    } else {
492      // otherwise we don't have enough info to make the prediction
493    }
494  }
495  desired_min_length += base_min_length;
496  // make sure we don't go below any user-defined minimum bound
497  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
498}
499
500uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
501  // Here, we might want to also take into account any additional
502  // constraints (i.e., user-defined minimum bound). Currently, we
503  // effectively don't set this bound.
504  return _young_gen_sizer->max_desired_young_length();
505}
506
507void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
508  if (rs_lengths == (size_t) -1) {
509    // if it's set to the default value (-1), we should predict it;
510    // otherwise, use the given value.
511    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
512  }
513
514  // Calculate the absolute and desired min bounds.
515
516  // This is how many young regions we already have (currently: the survivors).
517  uint base_min_length = recorded_survivor_regions();
518  uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
519  // This is the absolute minimum young length. Ensure that we
520  // will at least have one eden region available for allocation.
521  uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
522  // If we shrank the young list target it should not shrink below the current size.
523  desired_min_length = MAX2(desired_min_length, absolute_min_length);
524  // Calculate the absolute and desired max bounds.
525
526  // We will try our best not to "eat" into the reserve.
527  uint absolute_max_length = 0;
528  if (_free_regions_at_end_of_collection > _reserve_regions) {
529    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
530  }
531  uint desired_max_length = calculate_young_list_desired_max_length();
532  if (desired_max_length > absolute_max_length) {
533    desired_max_length = absolute_max_length;
534  }
535
536  uint young_list_target_length = 0;
537  if (adaptive_young_list_length()) {
538    if (collector_state()->gcs_are_young()) {
539      young_list_target_length =
540                        calculate_young_list_target_length(rs_lengths,
541                                                           base_min_length,
542                                                           desired_min_length,
543                                                           desired_max_length);
544      _rs_lengths_prediction = rs_lengths;
545    } else {
546      // Don't calculate anything and let the code below bound it to
547      // the desired_min_length, i.e., do the next GC as soon as
548      // possible to maximize how many old regions we can add to it.
549    }
550  } else {
551    // The user asked for a fixed young gen so we'll fix the young gen
552    // whether the next GC is young or mixed.
553    young_list_target_length = _young_list_fixed_length;
554  }
555
556  // Make sure we don't go over the desired max length, nor under the
557  // desired min length. In case they clash, desired_min_length wins
558  // which is why that test is second.
559  if (young_list_target_length > desired_max_length) {
560    young_list_target_length = desired_max_length;
561  }
562  if (young_list_target_length < desired_min_length) {
563    young_list_target_length = desired_min_length;
564  }
565
566  assert(young_list_target_length > recorded_survivor_regions(),
567         "we should be able to allocate at least one eden region");
568  assert(young_list_target_length >= absolute_min_length, "post-condition");
569  _young_list_target_length = young_list_target_length;
570
571  update_max_gc_locker_expansion();
572}
573
574uint
575G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
576                                                     uint base_min_length,
577                                                     uint desired_min_length,
578                                                     uint desired_max_length) {
579  assert(adaptive_young_list_length(), "pre-condition");
580  assert(collector_state()->gcs_are_young(), "only call this for young GCs");
581
582  // In case some edge-condition makes the desired max length too small...
583  if (desired_max_length <= desired_min_length) {
584    return desired_min_length;
585  }
586
587  // We'll adjust min_young_length and max_young_length not to include
588  // the already allocated young regions (i.e., so they reflect the
589  // min and max eden regions we'll allocate). The base_min_length
590  // will be reflected in the predictions by the
591  // survivor_regions_evac_time prediction.
592  assert(desired_min_length > base_min_length, "invariant");
593  uint min_young_length = desired_min_length - base_min_length;
594  assert(desired_max_length > base_min_length, "invariant");
595  uint max_young_length = desired_max_length - base_min_length;
596
597  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
598  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
599  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
600  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
601  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
602  double base_time_ms =
603    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
604    survivor_regions_evac_time;
605  uint available_free_regions = _free_regions_at_end_of_collection;
606  uint base_free_regions = 0;
607  if (available_free_regions > _reserve_regions) {
608    base_free_regions = available_free_regions - _reserve_regions;
609  }
610
611  // Here, we will make sure that the shortest young length that
612  // makes sense fits within the target pause time.
613
614  if (predict_will_fit(min_young_length, base_time_ms,
615                       base_free_regions, target_pause_time_ms)) {
616    // The shortest young length will fit into the target pause time;
617    // we'll now check whether the absolute maximum number of young
618    // regions will fit in the target pause time. If not, we'll do
619    // a binary search between min_young_length and max_young_length.
620    if (predict_will_fit(max_young_length, base_time_ms,
621                         base_free_regions, target_pause_time_ms)) {
622      // The maximum young length will fit into the target pause time.
623      // We are done so set min young length to the maximum length (as
624      // the result is assumed to be returned in min_young_length).
625      min_young_length = max_young_length;
626    } else {
627      // The maximum possible number of young regions will not fit within
628      // the target pause time so we'll search for the optimal
629      // length. The loop invariants are:
630      //
631      // min_young_length < max_young_length
632      // min_young_length is known to fit into the target pause time
633      // max_young_length is known not to fit into the target pause time
634      //
635      // Going into the loop we know the above hold as we've just
636      // checked them. Every time around the loop we check whether
637      // the middle value between min_young_length and
638      // max_young_length fits into the target pause time. If it
639      // does, it becomes the new min. If it doesn't, it becomes
640      // the new max. This way we maintain the loop invariants.
641
642      assert(min_young_length < max_young_length, "invariant");
643      uint diff = (max_young_length - min_young_length) / 2;
644      while (diff > 0) {
645        uint young_length = min_young_length + diff;
646        if (predict_will_fit(young_length, base_time_ms,
647                             base_free_regions, target_pause_time_ms)) {
648          min_young_length = young_length;
649        } else {
650          max_young_length = young_length;
651        }
652        assert(min_young_length <  max_young_length, "invariant");
653        diff = (max_young_length - min_young_length) / 2;
654      }
655      // The results is min_young_length which, according to the
656      // loop invariants, should fit within the target pause time.
657
658      // These are the post-conditions of the binary search above:
659      assert(min_young_length < max_young_length,
660             "otherwise we should have discovered that max_young_length "
661             "fits into the pause target and not done the binary search");
662      assert(predict_will_fit(min_young_length, base_time_ms,
663                              base_free_regions, target_pause_time_ms),
664             "min_young_length, the result of the binary search, should "
665             "fit into the pause target");
666      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
667                               base_free_regions, target_pause_time_ms),
668             "min_young_length, the result of the binary search, should be "
669             "optimal, so no larger length should fit into the pause target");
670    }
671  } else {
672    // Even the minimum length doesn't fit into the pause time
673    // target, return it as the result nevertheless.
674  }
675  return base_min_length + min_young_length;
676}
677
678double G1CollectorPolicy::predict_survivor_regions_evac_time() {
679  double survivor_regions_evac_time = 0.0;
680  for (HeapRegion * r = _recorded_survivor_head;
681       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
682       r = r->get_next_young_region()) {
683    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
684  }
685  return survivor_regions_evac_time;
686}
687
688void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
689  guarantee( adaptive_young_list_length(), "should not call this otherwise" );
690
691  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
692  if (rs_lengths > _rs_lengths_prediction) {
693    // add 10% to avoid having to recalculate often
694    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
695    update_young_list_target_length(rs_lengths_prediction);
696  }
697}
698
699
700
701HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
702                                               bool is_tlab,
703                                               bool* gc_overhead_limit_was_exceeded) {
704  guarantee(false, "Not using this policy feature yet.");
705  return NULL;
706}
707
708// This method controls how a collector handles one or more
709// of its generations being fully allocated.
710HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
711                                                       bool is_tlab) {
712  guarantee(false, "Not using this policy feature yet.");
713  return NULL;
714}
715
716
717#ifndef PRODUCT
718bool G1CollectorPolicy::verify_young_ages() {
719  HeapRegion* head = _g1->young_list()->first_region();
720  return
721    verify_young_ages(head, _short_lived_surv_rate_group);
722  // also call verify_young_ages on any additional surv rate groups
723}
724
725bool
726G1CollectorPolicy::verify_young_ages(HeapRegion* head,
727                                     SurvRateGroup *surv_rate_group) {
728  guarantee( surv_rate_group != NULL, "pre-condition" );
729
730  const char* name = surv_rate_group->name();
731  bool ret = true;
732  int prev_age = -1;
733
734  for (HeapRegion* curr = head;
735       curr != NULL;
736       curr = curr->get_next_young_region()) {
737    SurvRateGroup* group = curr->surv_rate_group();
738    if (group == NULL && !curr->is_survivor()) {
739      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
740      ret = false;
741    }
742
743    if (surv_rate_group == group) {
744      int age = curr->age_in_surv_rate_group();
745
746      if (age < 0) {
747        gclog_or_tty->print_cr("## %s: encountered negative age", name);
748        ret = false;
749      }
750
751      if (age <= prev_age) {
752        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
753                               "(%d, %d)", name, age, prev_age);
754        ret = false;
755      }
756      prev_age = age;
757    }
758  }
759
760  return ret;
761}
762#endif // PRODUCT
763
764void G1CollectorPolicy::record_full_collection_start() {
765  _full_collection_start_sec = os::elapsedTime();
766  record_heap_size_info_at_start(true /* full */);
767  // Release the future to-space so that it is available for compaction into.
768  collector_state()->set_full_collection(true);
769}
770
771void G1CollectorPolicy::record_full_collection_end() {
772  // Consider this like a collection pause for the purposes of allocation
773  // since last pause.
774  double end_sec = os::elapsedTime();
775  double full_gc_time_sec = end_sec - _full_collection_start_sec;
776  double full_gc_time_ms = full_gc_time_sec * 1000.0;
777
778  _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
779
780  update_recent_gc_times(end_sec, full_gc_time_ms);
781
782  collector_state()->set_full_collection(false);
783
784  // "Nuke" the heuristics that control the young/mixed GC
785  // transitions and make sure we start with young GCs after the Full GC.
786  collector_state()->set_gcs_are_young(true);
787  collector_state()->set_last_young_gc(false);
788  collector_state()->set_initiate_conc_mark_if_possible(false);
789  collector_state()->set_during_initial_mark_pause(false);
790  collector_state()->set_in_marking_window(false);
791  collector_state()->set_in_marking_window_im(false);
792
793  _short_lived_surv_rate_group->start_adding_regions();
794  // also call this on any additional surv rate groups
795
796  record_survivor_regions(0, NULL, NULL);
797
798  _free_regions_at_end_of_collection = _g1->num_free_regions();
799  // Reset survivors SurvRateGroup.
800  _survivor_surv_rate_group->reset();
801  update_young_list_target_length();
802  _collectionSetChooser->clear();
803}
804
805void G1CollectorPolicy::record_stop_world_start() {
806  _stop_world_start = os::elapsedTime();
807}
808
809void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
810  // We only need to do this here as the policy will only be applied
811  // to the GC we're about to start. so, no point is calculating this
812  // every time we calculate / recalculate the target young length.
813  update_survivors_policy();
814
815  assert(_g1->used() == _g1->recalculate_used(),
816         "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
817         _g1->used(), _g1->recalculate_used());
818
819  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
820  _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
821  _stop_world_start = 0.0;
822
823  record_heap_size_info_at_start(false /* full */);
824
825  phase_times()->record_cur_collection_start_sec(start_time_sec);
826  _pending_cards = _g1->pending_card_num();
827
828  _collection_set_bytes_used_before = 0;
829  _bytes_copied_during_gc = 0;
830
831  collector_state()->set_last_gc_was_young(false);
832
833  // do that for any other surv rate groups
834  _short_lived_surv_rate_group->stop_adding_regions();
835  _survivors_age_table.clear();
836
837  assert( verify_young_ages(), "region age verification" );
838}
839
840void G1CollectorPolicy::record_concurrent_mark_init_end(double
841                                                   mark_init_elapsed_time_ms) {
842  collector_state()->set_during_marking(true);
843  assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
844  collector_state()->set_during_initial_mark_pause(false);
845  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
846}
847
848void G1CollectorPolicy::record_concurrent_mark_remark_start() {
849  _mark_remark_start_sec = os::elapsedTime();
850  collector_state()->set_during_marking(false);
851}
852
853void G1CollectorPolicy::record_concurrent_mark_remark_end() {
854  double end_time_sec = os::elapsedTime();
855  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
856  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
857  _cur_mark_stop_world_time_ms += elapsed_time_ms;
858  _prev_collection_pause_end_ms += elapsed_time_ms;
859
860  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, _g1->gc_tracer_cm()->gc_id());
861}
862
863void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
864  _mark_cleanup_start_sec = os::elapsedTime();
865}
866
867void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
868  collector_state()->set_last_young_gc(true);
869  collector_state()->set_in_marking_window(false);
870}
871
872void G1CollectorPolicy::record_concurrent_pause() {
873  if (_stop_world_start > 0.0) {
874    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
875    _trace_young_gen_time_data.record_yield_time(yield_ms);
876  }
877}
878
879bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
880  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
881    return false;
882  }
883
884  size_t marking_initiating_used_threshold =
885    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
886  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
887  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
888
889  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
890    if (collector_state()->gcs_are_young() && !collector_state()->last_young_gc()) {
891      ergo_verbose5(ErgoConcCycles,
892        "request concurrent cycle initiation",
893        ergo_format_reason("occupancy higher than threshold")
894        ergo_format_byte("occupancy")
895        ergo_format_byte("allocation request")
896        ergo_format_byte_perc("threshold")
897        ergo_format_str("source"),
898        cur_used_bytes,
899        alloc_byte_size,
900        marking_initiating_used_threshold,
901        (double) InitiatingHeapOccupancyPercent,
902        source);
903      return true;
904    } else {
905      ergo_verbose5(ErgoConcCycles,
906        "do not request concurrent cycle initiation",
907        ergo_format_reason("still doing mixed collections")
908        ergo_format_byte("occupancy")
909        ergo_format_byte("allocation request")
910        ergo_format_byte_perc("threshold")
911        ergo_format_str("source"),
912        cur_used_bytes,
913        alloc_byte_size,
914        marking_initiating_used_threshold,
915        (double) InitiatingHeapOccupancyPercent,
916        source);
917    }
918  }
919
920  return false;
921}
922
923// Anything below that is considered to be zero
924#define MIN_TIMER_GRANULARITY 0.0000001
925
926void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
927  double end_time_sec = os::elapsedTime();
928  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
929         "otherwise, the subtraction below does not make sense");
930  size_t rs_size =
931            _cur_collection_pause_used_regions_at_start - cset_region_length();
932  size_t cur_used_bytes = _g1->used();
933  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
934  bool last_pause_included_initial_mark = false;
935  bool update_stats = !_g1->evacuation_failed();
936
937#ifndef PRODUCT
938  if (G1YoungSurvRateVerbose) {
939    gclog_or_tty->cr();
940    _short_lived_surv_rate_group->print();
941    // do that for any other surv rate groups too
942  }
943#endif // PRODUCT
944
945  last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
946  if (last_pause_included_initial_mark) {
947    record_concurrent_mark_init_end(0.0);
948  } else if (need_to_start_conc_mark("end of GC")) {
949    // Note: this might have already been set, if during the last
950    // pause we decided to start a cycle but at the beginning of
951    // this pause we decided to postpone it. That's OK.
952    collector_state()->set_initiate_conc_mark_if_possible(true);
953  }
954
955  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
956                          end_time_sec, _g1->gc_tracer_stw()->gc_id());
957
958  if (update_stats) {
959    _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
960    // this is where we update the allocation rate of the application
961    double app_time_ms =
962      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
963    if (app_time_ms < MIN_TIMER_GRANULARITY) {
964      // This usually happens due to the timer not having the required
965      // granularity. Some Linuxes are the usual culprits.
966      // We'll just set it to something (arbitrarily) small.
967      app_time_ms = 1.0;
968    }
969    // We maintain the invariant that all objects allocated by mutator
970    // threads will be allocated out of eden regions. So, we can use
971    // the eden region number allocated since the previous GC to
972    // calculate the application's allocate rate. The only exception
973    // to that is humongous objects that are allocated separately. But
974    // given that humongous object allocations do not really affect
975    // either the pause's duration nor when the next pause will take
976    // place we can safely ignore them here.
977    uint regions_allocated = eden_cset_region_length();
978    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
979    _alloc_rate_ms_seq->add(alloc_rate_ms);
980
981    double interval_ms =
982      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
983    update_recent_gc_times(end_time_sec, pause_time_ms);
984    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
985    if (recent_avg_pause_time_ratio() < 0.0 ||
986        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
987#ifndef PRODUCT
988      // Dump info to allow post-facto debugging
989      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
990      gclog_or_tty->print_cr("-------------------------------------------");
991      gclog_or_tty->print_cr("Recent GC Times (ms):");
992      _recent_gc_times_ms->dump();
993      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
994      _recent_prev_end_times_for_all_gcs_sec->dump();
995      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
996                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
997      // In debug mode, terminate the JVM if the user wants to debug at this point.
998      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
999#endif  // !PRODUCT
1000      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1001      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1002      if (_recent_avg_pause_time_ratio < 0.0) {
1003        _recent_avg_pause_time_ratio = 0.0;
1004      } else {
1005        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1006        _recent_avg_pause_time_ratio = 1.0;
1007      }
1008    }
1009  }
1010
1011  bool new_in_marking_window = collector_state()->in_marking_window();
1012  bool new_in_marking_window_im = false;
1013  if (last_pause_included_initial_mark) {
1014    new_in_marking_window = true;
1015    new_in_marking_window_im = true;
1016  }
1017
1018  if (collector_state()->last_young_gc()) {
1019    // This is supposed to to be the "last young GC" before we start
1020    // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1021
1022    if (!last_pause_included_initial_mark) {
1023      if (next_gc_should_be_mixed("start mixed GCs",
1024                                  "do not start mixed GCs")) {
1025        collector_state()->set_gcs_are_young(false);
1026      }
1027    } else {
1028      ergo_verbose0(ErgoMixedGCs,
1029                    "do not start mixed GCs",
1030                    ergo_format_reason("concurrent cycle is about to start"));
1031    }
1032    collector_state()->set_last_young_gc(false);
1033  }
1034
1035  if (!collector_state()->last_gc_was_young()) {
1036    // This is a mixed GC. Here we decide whether to continue doing
1037    // mixed GCs or not.
1038
1039    if (!next_gc_should_be_mixed("continue mixed GCs",
1040                                 "do not continue mixed GCs")) {
1041      collector_state()->set_gcs_are_young(true);
1042    }
1043  }
1044
1045  _short_lived_surv_rate_group->start_adding_regions();
1046  // Do that for any other surv rate groups
1047
1048  if (update_stats) {
1049    double cost_per_card_ms = 0.0;
1050    if (_pending_cards > 0) {
1051      cost_per_card_ms = phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) / (double) _pending_cards;
1052      _cost_per_card_ms_seq->add(cost_per_card_ms);
1053    }
1054
1055    double cost_per_entry_ms = 0.0;
1056    if (cards_scanned > 10) {
1057      cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1058      if (collector_state()->last_gc_was_young()) {
1059        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1060      } else {
1061        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1062      }
1063    }
1064
1065    if (_max_rs_lengths > 0) {
1066      double cards_per_entry_ratio =
1067        (double) cards_scanned / (double) _max_rs_lengths;
1068      if (collector_state()->last_gc_was_young()) {
1069        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1070      } else {
1071        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1072      }
1073    }
1074
1075    // This is defensive. For a while _max_rs_lengths could get
1076    // smaller than _recorded_rs_lengths which was causing
1077    // rs_length_diff to get very large and mess up the RSet length
1078    // predictions. The reason was unsafe concurrent updates to the
1079    // _inc_cset_recorded_rs_lengths field which the code below guards
1080    // against (see CR 7118202). This bug has now been fixed (see CR
1081    // 7119027). However, I'm still worried that
1082    // _inc_cset_recorded_rs_lengths might still end up somewhat
1083    // inaccurate. The concurrent refinement thread calculates an
1084    // RSet's length concurrently with other CR threads updating it
1085    // which might cause it to calculate the length incorrectly (if,
1086    // say, it's in mid-coarsening). So I'll leave in the defensive
1087    // conditional below just in case.
1088    size_t rs_length_diff = 0;
1089    if (_max_rs_lengths > _recorded_rs_lengths) {
1090      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1091    }
1092    _rs_length_diff_seq->add((double) rs_length_diff);
1093
1094    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1095    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1096    double cost_per_byte_ms = 0.0;
1097
1098    if (copied_bytes > 0) {
1099      cost_per_byte_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1100      if (collector_state()->in_marking_window()) {
1101        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1102      } else {
1103        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1104      }
1105    }
1106
1107    double all_other_time_ms = pause_time_ms -
1108      (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
1109          phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
1110
1111    double young_other_time_ms = 0.0;
1112    if (young_cset_region_length() > 0) {
1113      young_other_time_ms =
1114        phase_times()->young_cset_choice_time_ms() +
1115        phase_times()->young_free_cset_time_ms();
1116      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1117                                          (double) young_cset_region_length());
1118    }
1119    double non_young_other_time_ms = 0.0;
1120    if (old_cset_region_length() > 0) {
1121      non_young_other_time_ms =
1122        phase_times()->non_young_cset_choice_time_ms() +
1123        phase_times()->non_young_free_cset_time_ms();
1124
1125      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1126                                            (double) old_cset_region_length());
1127    }
1128
1129    double constant_other_time_ms = all_other_time_ms -
1130      (young_other_time_ms + non_young_other_time_ms);
1131    _constant_other_time_ms_seq->add(constant_other_time_ms);
1132
1133    double survival_ratio = 0.0;
1134    if (_collection_set_bytes_used_before > 0) {
1135      survival_ratio = (double) _bytes_copied_during_gc /
1136                                   (double) _collection_set_bytes_used_before;
1137    }
1138
1139    _pending_cards_seq->add((double) _pending_cards);
1140    _rs_lengths_seq->add((double) _max_rs_lengths);
1141  }
1142
1143  collector_state()->set_in_marking_window(new_in_marking_window);
1144  collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1145  _free_regions_at_end_of_collection = _g1->num_free_regions();
1146  update_young_list_target_length();
1147
1148  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1149  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1150  adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS),
1151                               phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), update_rs_time_goal_ms);
1152
1153  _collectionSetChooser->verify();
1154}
1155
1156#define EXT_SIZE_FORMAT "%.1f%s"
1157#define EXT_SIZE_PARAMS(bytes)                                  \
1158  byte_size_in_proper_unit((double)(bytes)),                    \
1159  proper_unit_for_byte_size((bytes))
1160
1161void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1162  YoungList* young_list = _g1->young_list();
1163  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1164  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1165  _heap_capacity_bytes_before_gc = _g1->capacity();
1166  _heap_used_bytes_before_gc = _g1->used();
1167  _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1168
1169  _eden_capacity_bytes_before_gc =
1170         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1171
1172  if (full) {
1173    _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1174  }
1175}
1176
1177void G1CollectorPolicy::print_heap_transition(size_t bytes_before) {
1178  size_t bytes_after = _g1->used();
1179  size_t capacity = _g1->capacity();
1180
1181  gclog_or_tty->print(" " SIZE_FORMAT "%s->" SIZE_FORMAT "%s(" SIZE_FORMAT "%s)",
1182      byte_size_in_proper_unit(bytes_before),
1183      proper_unit_for_byte_size(bytes_before),
1184      byte_size_in_proper_unit(bytes_after),
1185      proper_unit_for_byte_size(bytes_after),
1186      byte_size_in_proper_unit(capacity),
1187      proper_unit_for_byte_size(capacity));
1188}
1189
1190void G1CollectorPolicy::print_heap_transition() {
1191  print_heap_transition(_heap_used_bytes_before_gc);
1192}
1193
1194void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1195  YoungList* young_list = _g1->young_list();
1196
1197  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1198  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1199  size_t heap_used_bytes_after_gc = _g1->used();
1200
1201  size_t heap_capacity_bytes_after_gc = _g1->capacity();
1202  size_t eden_capacity_bytes_after_gc =
1203    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1204
1205  gclog_or_tty->print(
1206    "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1207    "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1208    "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1209    EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1210    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1211    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1212    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1213    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1214    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1215    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1216    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1217    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1218    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1219    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1220
1221  if (full) {
1222    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1223  }
1224
1225  gclog_or_tty->cr();
1226}
1227
1228void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1229                                                     double update_rs_processed_buffers,
1230                                                     double goal_ms) {
1231  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1232  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1233
1234  if (G1UseAdaptiveConcRefinement) {
1235    const int k_gy = 3, k_gr = 6;
1236    const double inc_k = 1.1, dec_k = 0.9;
1237
1238    int g = cg1r->green_zone();
1239    if (update_rs_time > goal_ms) {
1240      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1241    } else {
1242      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1243        g = (int)MAX2(g * inc_k, g + 1.0);
1244      }
1245    }
1246    // Change the refinement threads params
1247    cg1r->set_green_zone(g);
1248    cg1r->set_yellow_zone(g * k_gy);
1249    cg1r->set_red_zone(g * k_gr);
1250    cg1r->reinitialize_threads();
1251
1252    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1253    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1254                                    cg1r->yellow_zone());
1255    // Change the barrier params
1256    dcqs.set_process_completed_threshold(processing_threshold);
1257    dcqs.set_max_completed_queue(cg1r->red_zone());
1258  }
1259
1260  int curr_queue_size = dcqs.completed_buffers_num();
1261  if (curr_queue_size >= cg1r->yellow_zone()) {
1262    dcqs.set_completed_queue_padding(curr_queue_size);
1263  } else {
1264    dcqs.set_completed_queue_padding(0);
1265  }
1266  dcqs.notify_if_necessary();
1267}
1268
1269double
1270G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1271                                                size_t scanned_cards) {
1272  return
1273    predict_rs_update_time_ms(pending_cards) +
1274    predict_rs_scan_time_ms(scanned_cards) +
1275    predict_constant_other_time_ms();
1276}
1277
1278double
1279G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1280  size_t rs_length = predict_rs_length_diff();
1281  size_t card_num;
1282  if (collector_state()->gcs_are_young()) {
1283    card_num = predict_young_card_num(rs_length);
1284  } else {
1285    card_num = predict_non_young_card_num(rs_length);
1286  }
1287  return predict_base_elapsed_time_ms(pending_cards, card_num);
1288}
1289
1290size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1291  size_t bytes_to_copy;
1292  if (hr->is_marked())
1293    bytes_to_copy = hr->max_live_bytes();
1294  else {
1295    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1296    int age = hr->age_in_surv_rate_group();
1297    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1298    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1299  }
1300  return bytes_to_copy;
1301}
1302
1303double
1304G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1305                                                  bool for_young_gc) {
1306  size_t rs_length = hr->rem_set()->occupied();
1307  size_t card_num;
1308
1309  // Predicting the number of cards is based on which type of GC
1310  // we're predicting for.
1311  if (for_young_gc) {
1312    card_num = predict_young_card_num(rs_length);
1313  } else {
1314    card_num = predict_non_young_card_num(rs_length);
1315  }
1316  size_t bytes_to_copy = predict_bytes_to_copy(hr);
1317
1318  double region_elapsed_time_ms =
1319    predict_rs_scan_time_ms(card_num) +
1320    predict_object_copy_time_ms(bytes_to_copy);
1321
1322  // The prediction of the "other" time for this region is based
1323  // upon the region type and NOT the GC type.
1324  if (hr->is_young()) {
1325    region_elapsed_time_ms += predict_young_other_time_ms(1);
1326  } else {
1327    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1328  }
1329  return region_elapsed_time_ms;
1330}
1331
1332void
1333G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1334                                            uint survivor_cset_region_length) {
1335  _eden_cset_region_length     = eden_cset_region_length;
1336  _survivor_cset_region_length = survivor_cset_region_length;
1337  _old_cset_region_length      = 0;
1338}
1339
1340void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1341  _recorded_rs_lengths = rs_lengths;
1342}
1343
1344void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1345                                               double elapsed_ms) {
1346  _recent_gc_times_ms->add(elapsed_ms);
1347  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1348  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1349}
1350
1351size_t G1CollectorPolicy::expansion_amount() {
1352  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1353  double threshold = _gc_overhead_perc;
1354  if (recent_gc_overhead > threshold) {
1355    // We will double the existing space, or take
1356    // G1ExpandByPercentOfAvailable % of the available expansion
1357    // space, whichever is smaller, bounded below by a minimum
1358    // expansion (unless that's all that's left.)
1359    const size_t min_expand_bytes = 1*M;
1360    size_t reserved_bytes = _g1->max_capacity();
1361    size_t committed_bytes = _g1->capacity();
1362    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1363    size_t expand_bytes;
1364    size_t expand_bytes_via_pct =
1365      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1366    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1367    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1368    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1369
1370    ergo_verbose5(ErgoHeapSizing,
1371                  "attempt heap expansion",
1372                  ergo_format_reason("recent GC overhead higher than "
1373                                     "threshold after GC")
1374                  ergo_format_perc("recent GC overhead")
1375                  ergo_format_perc("threshold")
1376                  ergo_format_byte("uncommitted")
1377                  ergo_format_byte_perc("calculated expansion amount"),
1378                  recent_gc_overhead, threshold,
1379                  uncommitted_bytes,
1380                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1381
1382    return expand_bytes;
1383  } else {
1384    return 0;
1385  }
1386}
1387
1388void G1CollectorPolicy::print_tracing_info() const {
1389  _trace_young_gen_time_data.print();
1390  _trace_old_gen_time_data.print();
1391}
1392
1393void G1CollectorPolicy::print_yg_surv_rate_info() const {
1394#ifndef PRODUCT
1395  _short_lived_surv_rate_group->print_surv_rate_summary();
1396  // add this call for any other surv rate groups
1397#endif // PRODUCT
1398}
1399
1400bool G1CollectorPolicy::is_young_list_full() {
1401  uint young_list_length = _g1->young_list()->length();
1402  uint young_list_target_length = _young_list_target_length;
1403  return young_list_length >= young_list_target_length;
1404}
1405
1406bool G1CollectorPolicy::can_expand_young_list() {
1407  uint young_list_length = _g1->young_list()->length();
1408  uint young_list_max_length = _young_list_max_length;
1409  return young_list_length < young_list_max_length;
1410}
1411
1412void G1CollectorPolicy::update_max_gc_locker_expansion() {
1413  uint expansion_region_num = 0;
1414  if (GCLockerEdenExpansionPercent > 0) {
1415    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1416    double expansion_region_num_d = perc * (double) _young_list_target_length;
1417    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1418    // less than 1.0) we'll get 1.
1419    expansion_region_num = (uint) ceil(expansion_region_num_d);
1420  } else {
1421    assert(expansion_region_num == 0, "sanity");
1422  }
1423  _young_list_max_length = _young_list_target_length + expansion_region_num;
1424  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1425}
1426
1427// Calculates survivor space parameters.
1428void G1CollectorPolicy::update_survivors_policy() {
1429  double max_survivor_regions_d =
1430                 (double) _young_list_target_length / (double) SurvivorRatio;
1431  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1432  // smaller than 1.0) we'll get 1.
1433  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1434
1435  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1436        HeapRegion::GrainWords * _max_survivor_regions, counters());
1437}
1438
1439bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1440                                                     GCCause::Cause gc_cause) {
1441  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1442  if (!during_cycle) {
1443    ergo_verbose1(ErgoConcCycles,
1444                  "request concurrent cycle initiation",
1445                  ergo_format_reason("requested by GC cause")
1446                  ergo_format_str("GC cause"),
1447                  GCCause::to_string(gc_cause));
1448    collector_state()->set_initiate_conc_mark_if_possible(true);
1449    return true;
1450  } else {
1451    ergo_verbose1(ErgoConcCycles,
1452                  "do not request concurrent cycle initiation",
1453                  ergo_format_reason("concurrent cycle already in progress")
1454                  ergo_format_str("GC cause"),
1455                  GCCause::to_string(gc_cause));
1456    return false;
1457  }
1458}
1459
1460void
1461G1CollectorPolicy::decide_on_conc_mark_initiation() {
1462  // We are about to decide on whether this pause will be an
1463  // initial-mark pause.
1464
1465  // First, collector_state()->during_initial_mark_pause() should not be already set. We
1466  // will set it here if we have to. However, it should be cleared by
1467  // the end of the pause (it's only set for the duration of an
1468  // initial-mark pause).
1469  assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1470
1471  if (collector_state()->initiate_conc_mark_if_possible()) {
1472    // We had noticed on a previous pause that the heap occupancy has
1473    // gone over the initiating threshold and we should start a
1474    // concurrent marking cycle. So we might initiate one.
1475
1476    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1477    if (!during_cycle) {
1478      // The concurrent marking thread is not "during a cycle", i.e.,
1479      // it has completed the last one. So we can go ahead and
1480      // initiate a new cycle.
1481
1482      collector_state()->set_during_initial_mark_pause(true);
1483      // We do not allow mixed GCs during marking.
1484      if (!collector_state()->gcs_are_young()) {
1485        collector_state()->set_gcs_are_young(true);
1486        ergo_verbose0(ErgoMixedGCs,
1487                      "end mixed GCs",
1488                      ergo_format_reason("concurrent cycle is about to start"));
1489      }
1490
1491      // And we can now clear initiate_conc_mark_if_possible() as
1492      // we've already acted on it.
1493      collector_state()->set_initiate_conc_mark_if_possible(false);
1494
1495      ergo_verbose0(ErgoConcCycles,
1496                  "initiate concurrent cycle",
1497                  ergo_format_reason("concurrent cycle initiation requested"));
1498    } else {
1499      // The concurrent marking thread is still finishing up the
1500      // previous cycle. If we start one right now the two cycles
1501      // overlap. In particular, the concurrent marking thread might
1502      // be in the process of clearing the next marking bitmap (which
1503      // we will use for the next cycle if we start one). Starting a
1504      // cycle now will be bad given that parts of the marking
1505      // information might get cleared by the marking thread. And we
1506      // cannot wait for the marking thread to finish the cycle as it
1507      // periodically yields while clearing the next marking bitmap
1508      // and, if it's in a yield point, it's waiting for us to
1509      // finish. So, at this point we will not start a cycle and we'll
1510      // let the concurrent marking thread complete the last one.
1511      ergo_verbose0(ErgoConcCycles,
1512                    "do not initiate concurrent cycle",
1513                    ergo_format_reason("concurrent cycle already in progress"));
1514    }
1515  }
1516}
1517
1518class ParKnownGarbageHRClosure: public HeapRegionClosure {
1519  G1CollectedHeap* _g1h;
1520  CSetChooserParUpdater _cset_updater;
1521
1522public:
1523  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1524                           uint chunk_size) :
1525    _g1h(G1CollectedHeap::heap()),
1526    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1527
1528  bool doHeapRegion(HeapRegion* r) {
1529    // Do we have any marking information for this region?
1530    if (r->is_marked()) {
1531      // We will skip any region that's currently used as an old GC
1532      // alloc region (we should not consider those for collection
1533      // before we fill them up).
1534      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1535        _cset_updater.add_region(r);
1536      }
1537    }
1538    return false;
1539  }
1540};
1541
1542class ParKnownGarbageTask: public AbstractGangTask {
1543  CollectionSetChooser* _hrSorted;
1544  uint _chunk_size;
1545  G1CollectedHeap* _g1;
1546  HeapRegionClaimer _hrclaimer;
1547
1548public:
1549  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1550      AbstractGangTask("ParKnownGarbageTask"),
1551      _hrSorted(hrSorted), _chunk_size(chunk_size),
1552      _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1553
1554  void work(uint worker_id) {
1555    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1556    _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1557  }
1558};
1559
1560uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
1561  assert(n_workers > 0, "Active gc workers should be greater than 0");
1562  const uint overpartition_factor = 4;
1563  const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1564  return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1565}
1566
1567void
1568G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1569  _collectionSetChooser->clear();
1570
1571  WorkGang* workers = _g1->workers();
1572  uint n_workers = workers->active_workers();
1573
1574  uint n_regions = _g1->num_regions();
1575  uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1576  _collectionSetChooser->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1577  ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1578  workers->run_task(&par_known_garbage_task);
1579
1580  _collectionSetChooser->sort_regions();
1581
1582  double end_sec = os::elapsedTime();
1583  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1584  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1585  _cur_mark_stop_world_time_ms += elapsed_time_ms;
1586  _prev_collection_pause_end_ms += elapsed_time_ms;
1587  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, _g1->gc_tracer_cm()->gc_id());
1588}
1589
1590// Add the heap region at the head of the non-incremental collection set
1591void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1592  assert(_inc_cset_build_state == Active, "Precondition");
1593  assert(hr->is_old(), "the region should be old");
1594
1595  assert(!hr->in_collection_set(), "should not already be in the CSet");
1596  _g1->register_old_region_with_cset(hr);
1597  hr->set_next_in_collection_set(_collection_set);
1598  _collection_set = hr;
1599  _collection_set_bytes_used_before += hr->used();
1600  size_t rs_length = hr->rem_set()->occupied();
1601  _recorded_rs_lengths += rs_length;
1602  _old_cset_region_length += 1;
1603}
1604
1605// Initialize the per-collection-set information
1606void G1CollectorPolicy::start_incremental_cset_building() {
1607  assert(_inc_cset_build_state == Inactive, "Precondition");
1608
1609  _inc_cset_head = NULL;
1610  _inc_cset_tail = NULL;
1611  _inc_cset_bytes_used_before = 0;
1612
1613  _inc_cset_max_finger = 0;
1614  _inc_cset_recorded_rs_lengths = 0;
1615  _inc_cset_recorded_rs_lengths_diffs = 0;
1616  _inc_cset_predicted_elapsed_time_ms = 0.0;
1617  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1618  _inc_cset_build_state = Active;
1619}
1620
1621void G1CollectorPolicy::finalize_incremental_cset_building() {
1622  assert(_inc_cset_build_state == Active, "Precondition");
1623  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1624
1625  // The two "main" fields, _inc_cset_recorded_rs_lengths and
1626  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1627  // that adds a new region to the CSet. Further updates by the
1628  // concurrent refinement thread that samples the young RSet lengths
1629  // are accumulated in the *_diffs fields. Here we add the diffs to
1630  // the "main" fields.
1631
1632  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1633    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1634  } else {
1635    // This is defensive. The diff should in theory be always positive
1636    // as RSets can only grow between GCs. However, given that we
1637    // sample their size concurrently with other threads updating them
1638    // it's possible that we might get the wrong size back, which
1639    // could make the calculations somewhat inaccurate.
1640    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1641    if (_inc_cset_recorded_rs_lengths >= diffs) {
1642      _inc_cset_recorded_rs_lengths -= diffs;
1643    } else {
1644      _inc_cset_recorded_rs_lengths = 0;
1645    }
1646  }
1647  _inc_cset_predicted_elapsed_time_ms +=
1648                                     _inc_cset_predicted_elapsed_time_ms_diffs;
1649
1650  _inc_cset_recorded_rs_lengths_diffs = 0;
1651  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1652}
1653
1654void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1655  // This routine is used when:
1656  // * adding survivor regions to the incremental cset at the end of an
1657  //   evacuation pause,
1658  // * adding the current allocation region to the incremental cset
1659  //   when it is retired, and
1660  // * updating existing policy information for a region in the
1661  //   incremental cset via young list RSet sampling.
1662  // Therefore this routine may be called at a safepoint by the
1663  // VM thread, or in-between safepoints by mutator threads (when
1664  // retiring the current allocation region) or a concurrent
1665  // refine thread (RSet sampling).
1666
1667  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1668  size_t used_bytes = hr->used();
1669  _inc_cset_recorded_rs_lengths += rs_length;
1670  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1671  _inc_cset_bytes_used_before += used_bytes;
1672
1673  // Cache the values we have added to the aggregated information
1674  // in the heap region in case we have to remove this region from
1675  // the incremental collection set, or it is updated by the
1676  // rset sampling code
1677  hr->set_recorded_rs_length(rs_length);
1678  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1679}
1680
1681void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1682                                                     size_t new_rs_length) {
1683  // Update the CSet information that is dependent on the new RS length
1684  assert(hr->is_young(), "Precondition");
1685  assert(!SafepointSynchronize::is_at_safepoint(),
1686                                               "should not be at a safepoint");
1687
1688  // We could have updated _inc_cset_recorded_rs_lengths and
1689  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1690  // that atomically, as this code is executed by a concurrent
1691  // refinement thread, potentially concurrently with a mutator thread
1692  // allocating a new region and also updating the same fields. To
1693  // avoid the atomic operations we accumulate these updates on two
1694  // separate fields (*_diffs) and we'll just add them to the "main"
1695  // fields at the start of a GC.
1696
1697  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1698  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1699  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1700
1701  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1702  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1703  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1704  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1705
1706  hr->set_recorded_rs_length(new_rs_length);
1707  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1708}
1709
1710void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1711  assert(hr->is_young(), "invariant");
1712  assert(hr->young_index_in_cset() > -1, "should have already been set");
1713  assert(_inc_cset_build_state == Active, "Precondition");
1714
1715  // We need to clear and set the cached recorded/cached collection set
1716  // information in the heap region here (before the region gets added
1717  // to the collection set). An individual heap region's cached values
1718  // are calculated, aggregated with the policy collection set info,
1719  // and cached in the heap region here (initially) and (subsequently)
1720  // by the Young List sampling code.
1721
1722  size_t rs_length = hr->rem_set()->occupied();
1723  add_to_incremental_cset_info(hr, rs_length);
1724
1725  HeapWord* hr_end = hr->end();
1726  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1727
1728  assert(!hr->in_collection_set(), "invariant");
1729  _g1->register_young_region_with_cset(hr);
1730  assert(hr->next_in_collection_set() == NULL, "invariant");
1731}
1732
1733// Add the region at the RHS of the incremental cset
1734void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1735  // We should only ever be appending survivors at the end of a pause
1736  assert(hr->is_survivor(), "Logic");
1737
1738  // Do the 'common' stuff
1739  add_region_to_incremental_cset_common(hr);
1740
1741  // Now add the region at the right hand side
1742  if (_inc_cset_tail == NULL) {
1743    assert(_inc_cset_head == NULL, "invariant");
1744    _inc_cset_head = hr;
1745  } else {
1746    _inc_cset_tail->set_next_in_collection_set(hr);
1747  }
1748  _inc_cset_tail = hr;
1749}
1750
1751// Add the region to the LHS of the incremental cset
1752void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1753  // Survivors should be added to the RHS at the end of a pause
1754  assert(hr->is_eden(), "Logic");
1755
1756  // Do the 'common' stuff
1757  add_region_to_incremental_cset_common(hr);
1758
1759  // Add the region at the left hand side
1760  hr->set_next_in_collection_set(_inc_cset_head);
1761  if (_inc_cset_head == NULL) {
1762    assert(_inc_cset_tail == NULL, "Invariant");
1763    _inc_cset_tail = hr;
1764  }
1765  _inc_cset_head = hr;
1766}
1767
1768#ifndef PRODUCT
1769void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1770  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1771
1772  st->print_cr("\nCollection_set:");
1773  HeapRegion* csr = list_head;
1774  while (csr != NULL) {
1775    HeapRegion* next = csr->next_in_collection_set();
1776    assert(csr->in_collection_set(), "bad CS");
1777    st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1778                 HR_FORMAT_PARAMS(csr),
1779                 p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1780                 csr->age_in_surv_rate_group_cond());
1781    csr = next;
1782  }
1783}
1784#endif // !PRODUCT
1785
1786double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1787  // Returns the given amount of reclaimable bytes (that represents
1788  // the amount of reclaimable space still to be collected) as a
1789  // percentage of the current heap capacity.
1790  size_t capacity_bytes = _g1->capacity();
1791  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1792}
1793
1794bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1795                                                const char* false_action_str) {
1796  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1797  if (cset_chooser->is_empty()) {
1798    ergo_verbose0(ErgoMixedGCs,
1799                  false_action_str,
1800                  ergo_format_reason("candidate old regions not available"));
1801    return false;
1802  }
1803
1804  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1805  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1806  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1807  double threshold = (double) G1HeapWastePercent;
1808  if (reclaimable_perc <= threshold) {
1809    ergo_verbose4(ErgoMixedGCs,
1810              false_action_str,
1811              ergo_format_reason("reclaimable percentage not over threshold")
1812              ergo_format_region("candidate old regions")
1813              ergo_format_byte_perc("reclaimable")
1814              ergo_format_perc("threshold"),
1815              cset_chooser->remaining_regions(),
1816              reclaimable_bytes,
1817              reclaimable_perc, threshold);
1818    return false;
1819  }
1820
1821  ergo_verbose4(ErgoMixedGCs,
1822                true_action_str,
1823                ergo_format_reason("candidate old regions available")
1824                ergo_format_region("candidate old regions")
1825                ergo_format_byte_perc("reclaimable")
1826                ergo_format_perc("threshold"),
1827                cset_chooser->remaining_regions(),
1828                reclaimable_bytes,
1829                reclaimable_perc, threshold);
1830  return true;
1831}
1832
1833uint G1CollectorPolicy::calc_min_old_cset_length() {
1834  // The min old CSet region bound is based on the maximum desired
1835  // number of mixed GCs after a cycle. I.e., even if some old regions
1836  // look expensive, we should add them to the CSet anyway to make
1837  // sure we go through the available old regions in no more than the
1838  // maximum desired number of mixed GCs.
1839  //
1840  // The calculation is based on the number of marked regions we added
1841  // to the CSet chooser in the first place, not how many remain, so
1842  // that the result is the same during all mixed GCs that follow a cycle.
1843
1844  const size_t region_num = (size_t) _collectionSetChooser->length();
1845  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1846  size_t result = region_num / gc_num;
1847  // emulate ceiling
1848  if (result * gc_num < region_num) {
1849    result += 1;
1850  }
1851  return (uint) result;
1852}
1853
1854uint G1CollectorPolicy::calc_max_old_cset_length() {
1855  // The max old CSet region bound is based on the threshold expressed
1856  // as a percentage of the heap size. I.e., it should bound the
1857  // number of old regions added to the CSet irrespective of how many
1858  // of them are available.
1859
1860  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1861  const size_t region_num = g1h->num_regions();
1862  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1863  size_t result = region_num * perc / 100;
1864  // emulate ceiling
1865  if (100 * result < region_num * perc) {
1866    result += 1;
1867  }
1868  return (uint) result;
1869}
1870
1871
1872double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
1873  double young_start_time_sec = os::elapsedTime();
1874
1875  YoungList* young_list = _g1->young_list();
1876  finalize_incremental_cset_building();
1877
1878  guarantee(target_pause_time_ms > 0.0,
1879            "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
1880  guarantee(_collection_set == NULL, "Precondition");
1881
1882  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1883  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1884
1885  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1886                "start choosing CSet",
1887                ergo_format_size("_pending_cards")
1888                ergo_format_ms("predicted base time")
1889                ergo_format_ms("remaining time")
1890                ergo_format_ms("target pause time"),
1891                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1892
1893  collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
1894
1895  if (collector_state()->last_gc_was_young()) {
1896    _trace_young_gen_time_data.increment_young_collection_count();
1897  } else {
1898    _trace_young_gen_time_data.increment_mixed_collection_count();
1899  }
1900
1901  // The young list is laid with the survivor regions from the previous
1902  // pause are appended to the RHS of the young list, i.e.
1903  //   [Newly Young Regions ++ Survivors from last pause].
1904
1905  uint survivor_region_length = young_list->survivor_length();
1906  uint eden_region_length = young_list->eden_length();
1907  init_cset_region_lengths(eden_region_length, survivor_region_length);
1908
1909  HeapRegion* hr = young_list->first_survivor_region();
1910  while (hr != NULL) {
1911    assert(hr->is_survivor(), "badly formed young list");
1912    // There is a convention that all the young regions in the CSet
1913    // are tagged as "eden", so we do this for the survivors here. We
1914    // use the special set_eden_pre_gc() as it doesn't check that the
1915    // region is free (which is not the case here).
1916    hr->set_eden_pre_gc();
1917    hr = hr->get_next_young_region();
1918  }
1919
1920  // Clear the fields that point to the survivor list - they are all young now.
1921  young_list->clear_survivors();
1922
1923  _collection_set = _inc_cset_head;
1924  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1925  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1926
1927  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1928                "add young regions to CSet",
1929                ergo_format_region("eden")
1930                ergo_format_region("survivors")
1931                ergo_format_ms("predicted young region time")
1932                ergo_format_ms("target pause time"),
1933                eden_region_length, survivor_region_length,
1934                _inc_cset_predicted_elapsed_time_ms,
1935                target_pause_time_ms);
1936
1937  // The number of recorded young regions is the incremental
1938  // collection set's current size
1939  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1940
1941  double young_end_time_sec = os::elapsedTime();
1942  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1943
1944  return time_remaining_ms;
1945}
1946
1947void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
1948  double non_young_start_time_sec = os::elapsedTime();
1949  double predicted_old_time_ms = 0.0;
1950
1951
1952  if (!collector_state()->gcs_are_young()) {
1953    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1954    cset_chooser->verify();
1955    const uint min_old_cset_length = calc_min_old_cset_length();
1956    const uint max_old_cset_length = calc_max_old_cset_length();
1957
1958    uint expensive_region_num = 0;
1959    bool check_time_remaining = adaptive_young_list_length();
1960
1961    HeapRegion* hr = cset_chooser->peek();
1962    while (hr != NULL) {
1963      if (old_cset_region_length() >= max_old_cset_length) {
1964        // Added maximum number of old regions to the CSet.
1965        ergo_verbose2(ErgoCSetConstruction,
1966                      "finish adding old regions to CSet",
1967                      ergo_format_reason("old CSet region num reached max")
1968                      ergo_format_region("old")
1969                      ergo_format_region("max"),
1970                      old_cset_region_length(), max_old_cset_length);
1971        break;
1972      }
1973
1974
1975      // Stop adding regions if the remaining reclaimable space is
1976      // not above G1HeapWastePercent.
1977      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1978      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1979      double threshold = (double) G1HeapWastePercent;
1980      if (reclaimable_perc <= threshold) {
1981        // We've added enough old regions that the amount of uncollected
1982        // reclaimable space is at or below the waste threshold. Stop
1983        // adding old regions to the CSet.
1984        ergo_verbose5(ErgoCSetConstruction,
1985                      "finish adding old regions to CSet",
1986                      ergo_format_reason("reclaimable percentage not over threshold")
1987                      ergo_format_region("old")
1988                      ergo_format_region("max")
1989                      ergo_format_byte_perc("reclaimable")
1990                      ergo_format_perc("threshold"),
1991                      old_cset_region_length(),
1992                      max_old_cset_length,
1993                      reclaimable_bytes,
1994                      reclaimable_perc, threshold);
1995        break;
1996      }
1997
1998      double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1999      if (check_time_remaining) {
2000        if (predicted_time_ms > time_remaining_ms) {
2001          // Too expensive for the current CSet.
2002
2003          if (old_cset_region_length() >= min_old_cset_length) {
2004            // We have added the minimum number of old regions to the CSet,
2005            // we are done with this CSet.
2006            ergo_verbose4(ErgoCSetConstruction,
2007                          "finish adding old regions to CSet",
2008                          ergo_format_reason("predicted time is too high")
2009                          ergo_format_ms("predicted time")
2010                          ergo_format_ms("remaining time")
2011                          ergo_format_region("old")
2012                          ergo_format_region("min"),
2013                          predicted_time_ms, time_remaining_ms,
2014                          old_cset_region_length(), min_old_cset_length);
2015            break;
2016          }
2017
2018          // We'll add it anyway given that we haven't reached the
2019          // minimum number of old regions.
2020          expensive_region_num += 1;
2021        }
2022      } else {
2023        if (old_cset_region_length() >= min_old_cset_length) {
2024          // In the non-auto-tuning case, we'll finish adding regions
2025          // to the CSet if we reach the minimum.
2026          ergo_verbose2(ErgoCSetConstruction,
2027                        "finish adding old regions to CSet",
2028                        ergo_format_reason("old CSet region num reached min")
2029                        ergo_format_region("old")
2030                        ergo_format_region("min"),
2031                        old_cset_region_length(), min_old_cset_length);
2032          break;
2033        }
2034      }
2035
2036      // We will add this region to the CSet.
2037      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2038      predicted_old_time_ms += predicted_time_ms;
2039      cset_chooser->pop(); // already have region via peek()
2040      _g1->old_set_remove(hr);
2041      add_old_region_to_cset(hr);
2042
2043      hr = cset_chooser->peek();
2044    }
2045    if (hr == NULL) {
2046      ergo_verbose0(ErgoCSetConstruction,
2047                    "finish adding old regions to CSet",
2048                    ergo_format_reason("candidate old regions not available"));
2049    }
2050
2051    if (expensive_region_num > 0) {
2052      // We print the information once here at the end, predicated on
2053      // whether we added any apparently expensive regions or not, to
2054      // avoid generating output per region.
2055      ergo_verbose4(ErgoCSetConstruction,
2056                    "added expensive regions to CSet",
2057                    ergo_format_reason("old CSet region num not reached min")
2058                    ergo_format_region("old")
2059                    ergo_format_region("expensive")
2060                    ergo_format_region("min")
2061                    ergo_format_ms("remaining time"),
2062                    old_cset_region_length(),
2063                    expensive_region_num,
2064                    min_old_cset_length,
2065                    time_remaining_ms);
2066    }
2067
2068    cset_chooser->verify();
2069  }
2070
2071  stop_incremental_cset_building();
2072
2073  ergo_verbose3(ErgoCSetConstruction,
2074                "finish choosing CSet",
2075                ergo_format_region("old")
2076                ergo_format_ms("predicted old region time")
2077                ergo_format_ms("time remaining"),
2078                old_cset_region_length(),
2079                predicted_old_time_ms, time_remaining_ms);
2080
2081  double non_young_end_time_sec = os::elapsedTime();
2082  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2083}
2084
2085void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2086  if(TraceYoungGenTime) {
2087    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2088  }
2089}
2090
2091void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2092  if(TraceYoungGenTime) {
2093    _all_yield_times_ms.add(yield_time_ms);
2094  }
2095}
2096
2097void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2098  if(TraceYoungGenTime) {
2099    _total.add(pause_time_ms);
2100    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2101    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2102    _parallel.add(phase_times->cur_collection_par_time_ms());
2103    _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2104    _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2105    _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2106    _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2107    _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2108    _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2109
2110    double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2111      phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2112      phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2113      phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2114      phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2115      phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2116
2117    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2118    _parallel_other.add(parallel_other_time);
2119    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2120  }
2121}
2122
2123void TraceYoungGenTimeData::increment_young_collection_count() {
2124  if(TraceYoungGenTime) {
2125    ++_young_pause_num;
2126  }
2127}
2128
2129void TraceYoungGenTimeData::increment_mixed_collection_count() {
2130  if(TraceYoungGenTime) {
2131    ++_mixed_pause_num;
2132  }
2133}
2134
2135void TraceYoungGenTimeData::print_summary(const char* str,
2136                                          const NumberSeq* seq) const {
2137  double sum = seq->sum();
2138  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2139                str, sum / 1000.0, seq->avg());
2140}
2141
2142void TraceYoungGenTimeData::print_summary_sd(const char* str,
2143                                             const NumberSeq* seq) const {
2144  print_summary(str, seq);
2145  gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2146                "(num", seq->num(), seq->sd(), seq->maximum());
2147}
2148
2149void TraceYoungGenTimeData::print() const {
2150  if (!TraceYoungGenTime) {
2151    return;
2152  }
2153
2154  gclog_or_tty->print_cr("ALL PAUSES");
2155  print_summary_sd("   Total", &_total);
2156  gclog_or_tty->cr();
2157  gclog_or_tty->cr();
2158  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2159  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2160  gclog_or_tty->cr();
2161
2162  gclog_or_tty->print_cr("EVACUATION PAUSES");
2163
2164  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2165    gclog_or_tty->print_cr("none");
2166  } else {
2167    print_summary_sd("   Evacuation Pauses", &_total);
2168    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2169    print_summary("      Parallel Time", &_parallel);
2170    print_summary("         Ext Root Scanning", &_ext_root_scan);
2171    print_summary("         SATB Filtering", &_satb_filtering);
2172    print_summary("         Update RS", &_update_rs);
2173    print_summary("         Scan RS", &_scan_rs);
2174    print_summary("         Object Copy", &_obj_copy);
2175    print_summary("         Termination", &_termination);
2176    print_summary("         Parallel Other", &_parallel_other);
2177    print_summary("      Clear CT", &_clear_ct);
2178    print_summary("      Other", &_other);
2179  }
2180  gclog_or_tty->cr();
2181
2182  gclog_or_tty->print_cr("MISC");
2183  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2184  print_summary_sd("   Yields", &_all_yield_times_ms);
2185}
2186
2187void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2188  if (TraceOldGenTime) {
2189    _all_full_gc_times.add(full_gc_time_ms);
2190  }
2191}
2192
2193void TraceOldGenTimeData::print() const {
2194  if (!TraceOldGenTime) {
2195    return;
2196  }
2197
2198  if (_all_full_gc_times.num() > 0) {
2199    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2200      _all_full_gc_times.num(),
2201      _all_full_gc_times.sum() / 1000.0);
2202    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2203    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2204      _all_full_gc_times.sd(),
2205      _all_full_gc_times.maximum());
2206  }
2207}
2208