g1AllocRegion.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/g1/g1AllocRegion.inline.hpp"
27#include "gc/g1/g1CollectedHeap.inline.hpp"
28#include "runtime/orderAccess.inline.hpp"
29
30G1CollectedHeap* G1AllocRegion::_g1h = NULL;
31HeapRegion* G1AllocRegion::_dummy_region = NULL;
32
33void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
34  assert(_dummy_region == NULL, "should be set once");
35  assert(dummy_region != NULL, "pre-condition");
36  assert(dummy_region->free() == 0, "pre-condition");
37
38  // Make sure that any allocation attempt on this region will fail
39  // and will not trigger any asserts.
40  assert(allocate(dummy_region, 1, false) == NULL, "should fail");
41  assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
42  assert(allocate(dummy_region, 1, true) == NULL, "should fail");
43  assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");
44
45  _g1h = g1h;
46  _dummy_region = dummy_region;
47}
48
49size_t G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
50                                              bool bot_updates) {
51  assert(alloc_region != NULL && alloc_region != _dummy_region,
52         "pre-condition");
53  size_t result = 0;
54
55  // Other threads might still be trying to allocate using a CAS out
56  // of the region we are trying to retire, as they can do so without
57  // holding the lock. So, we first have to make sure that noone else
58  // can allocate out of it by doing a maximal allocation. Even if our
59  // CAS attempt fails a few times, we'll succeed sooner or later
60  // given that failed CAS attempts mean that the region is getting
61  // closed to being full.
62  size_t free_word_size = alloc_region->free() / HeapWordSize;
63
64  // This is the minimum free chunk we can turn into a dummy
65  // object. If the free space falls below this, then noone can
66  // allocate in this region anyway (all allocation requests will be
67  // of a size larger than this) so we won't have to perform the dummy
68  // allocation.
69  size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
70
71  while (free_word_size >= min_word_size_to_fill) {
72    HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
73    if (dummy != NULL) {
74      // If the allocation was successful we should fill in the space.
75      CollectedHeap::fill_with_object(dummy, free_word_size);
76      alloc_region->set_pre_dummy_top(dummy);
77      result += free_word_size * HeapWordSize;
78      break;
79    }
80
81    free_word_size = alloc_region->free() / HeapWordSize;
82    // It's also possible that someone else beats us to the
83    // allocation and they fill up the region. In that case, we can
84    // just get out of the loop.
85  }
86  result += alloc_region->free();
87
88  assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
89         "post-condition");
90  return result;
91}
92
93size_t G1AllocRegion::retire(bool fill_up) {
94  assert_alloc_region(_alloc_region != NULL, "not initialized properly");
95
96  size_t result = 0;
97
98  trace("retiring");
99  HeapRegion* alloc_region = _alloc_region;
100  if (alloc_region != _dummy_region) {
101    // We never have to check whether the active region is empty or not,
102    // and potentially free it if it is, given that it's guaranteed that
103    // it will never be empty.
104    assert_alloc_region(!alloc_region->is_empty(),
105                           "the alloc region should never be empty");
106
107    if (fill_up) {
108      result = fill_up_remaining_space(alloc_region, _bot_updates);
109    }
110
111    assert_alloc_region(alloc_region->used() >= _used_bytes_before, "invariant");
112    size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
113    retire_region(alloc_region, allocated_bytes);
114    _used_bytes_before = 0;
115    _alloc_region = _dummy_region;
116  }
117  trace("retired");
118
119  return result;
120}
121
122HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
123                                                       bool force) {
124  assert_alloc_region(_alloc_region == _dummy_region, "pre-condition");
125  assert_alloc_region(_used_bytes_before == 0, "pre-condition");
126
127  trace("attempting region allocation");
128  HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
129  if (new_alloc_region != NULL) {
130    new_alloc_region->reset_pre_dummy_top();
131    // Need to do this before the allocation
132    _used_bytes_before = new_alloc_region->used();
133    HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
134    assert_alloc_region(result != NULL, "the allocation should succeeded");
135
136    OrderAccess::storestore();
137    // Note that we first perform the allocation and then we store the
138    // region in _alloc_region. This is the reason why an active region
139    // can never be empty.
140    update_alloc_region(new_alloc_region);
141    trace("region allocation successful");
142    return result;
143  } else {
144    trace("region allocation failed");
145    return NULL;
146  }
147  ShouldNotReachHere();
148}
149
150void G1AllocRegion::init() {
151  trace("initializing");
152  assert_alloc_region(_alloc_region == NULL && _used_bytes_before == 0, "pre-condition");
153  assert_alloc_region(_dummy_region != NULL, "should have been set");
154  _alloc_region = _dummy_region;
155  _count = 0;
156  trace("initialized");
157}
158
159void G1AllocRegion::set(HeapRegion* alloc_region) {
160  trace("setting");
161  // We explicitly check that the region is not empty to make sure we
162  // maintain the "the alloc region cannot be empty" invariant.
163  assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
164  assert_alloc_region(_alloc_region == _dummy_region &&
165                         _used_bytes_before == 0 && _count == 0,
166                         "pre-condition");
167
168  _used_bytes_before = alloc_region->used();
169  _alloc_region = alloc_region;
170  _count += 1;
171  trace("set");
172}
173
174void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
175  trace("update");
176  // We explicitly check that the region is not empty to make sure we
177  // maintain the "the alloc region cannot be empty" invariant.
178  assert_alloc_region(alloc_region != NULL && !alloc_region->is_empty(), "pre-condition");
179
180  _alloc_region = alloc_region;
181  _alloc_region->set_allocation_context(allocation_context());
182  _count += 1;
183  trace("updated");
184}
185
186HeapRegion* G1AllocRegion::release() {
187  trace("releasing");
188  HeapRegion* alloc_region = _alloc_region;
189  retire(false /* fill_up */);
190  assert_alloc_region(_alloc_region == _dummy_region, "post-condition of retire()");
191  _alloc_region = NULL;
192  trace("released");
193  return (alloc_region == _dummy_region) ? NULL : alloc_region;
194}
195
196#if G1_ALLOC_REGION_TRACING
197void G1AllocRegion::trace(const char* str, size_t min_word_size, size_t desired_word_size, size_t actual_word_size, HeapWord* result) {
198  // All the calls to trace that set either just the size or the size
199  // and the result are considered part of level 2 tracing and are
200  // skipped during level 1 tracing.
201  if ((actual_word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) {
202    const size_t buffer_length = 128;
203    char hr_buffer[buffer_length];
204    char rest_buffer[buffer_length];
205
206    HeapRegion* alloc_region = _alloc_region;
207    if (alloc_region == NULL) {
208      jio_snprintf(hr_buffer, buffer_length, "NULL");
209    } else if (alloc_region == _dummy_region) {
210      jio_snprintf(hr_buffer, buffer_length, "DUMMY");
211    } else {
212      jio_snprintf(hr_buffer, buffer_length,
213                   HR_FORMAT, HR_FORMAT_PARAMS(alloc_region));
214    }
215
216    if (G1_ALLOC_REGION_TRACING > 1) {
217      if (result != NULL) {
218        jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT " actual " SIZE_FORMAT " " PTR_FORMAT,
219                     min_word_size, desired_word_size, actual_word_size, result);
220      } else if (min_word_size != 0) {
221        jio_snprintf(rest_buffer, buffer_length, "min " SIZE_FORMAT " desired " SIZE_FORMAT, min_word_size, desired_word_size);
222      } else {
223        jio_snprintf(rest_buffer, buffer_length, "");
224      }
225    } else {
226      jio_snprintf(rest_buffer, buffer_length, "");
227    }
228
229    tty->print_cr("[%s] %u %s : %s %s",
230                  _name, _count, hr_buffer, str, rest_buffer);
231  }
232}
233#endif // G1_ALLOC_REGION_TRACING
234
235G1AllocRegion::G1AllocRegion(const char* name,
236                             bool bot_updates)
237  : _name(name), _bot_updates(bot_updates),
238    _alloc_region(NULL), _count(0), _used_bytes_before(0),
239    _allocation_context(AllocationContext::system()) { }
240
241
242HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
243                                                    bool force) {
244  return _g1h->new_mutator_alloc_region(word_size, force);
245}
246
247void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
248                                       size_t allocated_bytes) {
249  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
250}
251
252HeapRegion* G1GCAllocRegion::allocate_new_region(size_t word_size,
253                                                 bool force) {
254  assert(!force, "not supported for GC alloc regions");
255  return _g1h->new_gc_alloc_region(word_size, count(), _purpose);
256}
257
258void G1GCAllocRegion::retire_region(HeapRegion* alloc_region,
259                                    size_t allocated_bytes) {
260  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, _purpose);
261}
262
263size_t G1GCAllocRegion::retire(bool fill_up) {
264  HeapRegion* retired = get();
265  size_t end_waste = G1AllocRegion::retire(fill_up);
266  // Do not count retirement of the dummy allocation region.
267  if (retired != NULL) {
268    _stats->add_region_end_waste(end_waste / HeapWordSize);
269  }
270  return end_waste;
271}
272
273HeapRegion* OldGCAllocRegion::release() {
274  HeapRegion* cur = get();
275  if (cur != NULL) {
276    // Determine how far we are from the next card boundary. If it is smaller than
277    // the minimum object size we can allocate into, expand into the next card.
278    HeapWord* top = cur->top();
279    HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
280
281    size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
282
283    if (to_allocate_words != 0) {
284      // We are not at a card boundary. Fill up, possibly into the next, taking the
285      // end of the region and the minimum object size into account.
286      to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
287                               MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
288
289      // Skip allocation if there is not enough space to allocate even the smallest
290      // possible object. In this case this region will not be retained, so the
291      // original problem cannot occur.
292      if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
293        HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
294        CollectedHeap::fill_with_object(dummy, to_allocate_words);
295      }
296    }
297  }
298  return G1AllocRegion::release();
299}
300