g1AllocRegion.cpp revision 8638:767f36deb0dc
1/*
2 * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/g1/g1AllocRegion.inline.hpp"
27#include "gc/g1/g1CollectedHeap.inline.hpp"
28#include "runtime/orderAccess.inline.hpp"
29
30G1CollectedHeap* G1AllocRegion::_g1h = NULL;
31HeapRegion* G1AllocRegion::_dummy_region = NULL;
32
33void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
34  assert(_dummy_region == NULL, "should be set once");
35  assert(dummy_region != NULL, "pre-condition");
36  assert(dummy_region->free() == 0, "pre-condition");
37
38  // Make sure that any allocation attempt on this region will fail
39  // and will not trigger any asserts.
40  assert(allocate(dummy_region, 1, false) == NULL, "should fail");
41  assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
42  assert(allocate(dummy_region, 1, true) == NULL, "should fail");
43  assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");
44
45  _g1h = g1h;
46  _dummy_region = dummy_region;
47}
48
49void G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
50                                            bool bot_updates) {
51  assert(alloc_region != NULL && alloc_region != _dummy_region,
52         "pre-condition");
53
54  // Other threads might still be trying to allocate using a CAS out
55  // of the region we are trying to retire, as they can do so without
56  // holding the lock. So, we first have to make sure that noone else
57  // can allocate out of it by doing a maximal allocation. Even if our
58  // CAS attempt fails a few times, we'll succeed sooner or later
59  // given that failed CAS attempts mean that the region is getting
60  // closed to being full.
61  size_t free_word_size = alloc_region->free() / HeapWordSize;
62
63  // This is the minimum free chunk we can turn into a dummy
64  // object. If the free space falls below this, then noone can
65  // allocate in this region anyway (all allocation requests will be
66  // of a size larger than this) so we won't have to perform the dummy
67  // allocation.
68  size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
69
70  while (free_word_size >= min_word_size_to_fill) {
71    HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
72    if (dummy != NULL) {
73      // If the allocation was successful we should fill in the space.
74      CollectedHeap::fill_with_object(dummy, free_word_size);
75      alloc_region->set_pre_dummy_top(dummy);
76      break;
77    }
78
79    free_word_size = alloc_region->free() / HeapWordSize;
80    // It's also possible that someone else beats us to the
81    // allocation and they fill up the region. In that case, we can
82    // just get out of the loop.
83  }
84  assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
85         "post-condition");
86}
87
88void G1AllocRegion::retire(bool fill_up) {
89  assert(_alloc_region != NULL, ar_ext_msg(this, "not initialized properly"));
90
91  trace("retiring");
92  HeapRegion* alloc_region = _alloc_region;
93  if (alloc_region != _dummy_region) {
94    // We never have to check whether the active region is empty or not,
95    // and potentially free it if it is, given that it's guaranteed that
96    // it will never be empty.
97    assert(!alloc_region->is_empty(),
98           ar_ext_msg(this, "the alloc region should never be empty"));
99
100    if (fill_up) {
101      fill_up_remaining_space(alloc_region, _bot_updates);
102    }
103
104    assert(alloc_region->used() >= _used_bytes_before,
105           ar_ext_msg(this, "invariant"));
106    size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
107    retire_region(alloc_region, allocated_bytes);
108    _used_bytes_before = 0;
109    _alloc_region = _dummy_region;
110  }
111  trace("retired");
112}
113
114HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
115                                                       bool force) {
116  assert(_alloc_region == _dummy_region, ar_ext_msg(this, "pre-condition"));
117  assert(_used_bytes_before == 0, ar_ext_msg(this, "pre-condition"));
118
119  trace("attempting region allocation");
120  HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
121  if (new_alloc_region != NULL) {
122    new_alloc_region->reset_pre_dummy_top();
123    // Need to do this before the allocation
124    _used_bytes_before = new_alloc_region->used();
125    HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
126    assert(result != NULL, ar_ext_msg(this, "the allocation should succeeded"));
127
128    OrderAccess::storestore();
129    // Note that we first perform the allocation and then we store the
130    // region in _alloc_region. This is the reason why an active region
131    // can never be empty.
132    update_alloc_region(new_alloc_region);
133    trace("region allocation successful");
134    return result;
135  } else {
136    trace("region allocation failed");
137    return NULL;
138  }
139  ShouldNotReachHere();
140}
141
142void G1AllocRegion::fill_in_ext_msg(ar_ext_msg* msg, const char* message) {
143  msg->append("[%s] %s c: %u b: %s r: " PTR_FORMAT " u: " SIZE_FORMAT,
144              _name, message, _count, BOOL_TO_STR(_bot_updates),
145              p2i(_alloc_region), _used_bytes_before);
146}
147
148void G1AllocRegion::init() {
149  trace("initializing");
150  assert(_alloc_region == NULL && _used_bytes_before == 0,
151         ar_ext_msg(this, "pre-condition"));
152  assert(_dummy_region != NULL, ar_ext_msg(this, "should have been set"));
153  _alloc_region = _dummy_region;
154  _count = 0;
155  trace("initialized");
156}
157
158void G1AllocRegion::set(HeapRegion* alloc_region) {
159  trace("setting");
160  // We explicitly check that the region is not empty to make sure we
161  // maintain the "the alloc region cannot be empty" invariant.
162  assert(alloc_region != NULL && !alloc_region->is_empty(),
163         ar_ext_msg(this, "pre-condition"));
164  assert(_alloc_region == _dummy_region &&
165         _used_bytes_before == 0 && _count == 0,
166         ar_ext_msg(this, "pre-condition"));
167
168  _used_bytes_before = alloc_region->used();
169  _alloc_region = alloc_region;
170  _count += 1;
171  trace("set");
172}
173
174void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
175  trace("update");
176  // We explicitly check that the region is not empty to make sure we
177  // maintain the "the alloc region cannot be empty" invariant.
178  assert(alloc_region != NULL && !alloc_region->is_empty(),
179         ar_ext_msg(this, "pre-condition"));
180
181  _alloc_region = alloc_region;
182  _alloc_region->set_allocation_context(allocation_context());
183  _count += 1;
184  trace("updated");
185}
186
187HeapRegion* G1AllocRegion::release() {
188  trace("releasing");
189  HeapRegion* alloc_region = _alloc_region;
190  retire(false /* fill_up */);
191  assert(_alloc_region == _dummy_region,
192         ar_ext_msg(this, "post-condition of retire()"));
193  _alloc_region = NULL;
194  trace("released");
195  return (alloc_region == _dummy_region) ? NULL : alloc_region;
196}
197
198#if G1_ALLOC_REGION_TRACING
199void G1AllocRegion::trace(const char* str, size_t word_size, HeapWord* result) {
200  // All the calls to trace that set either just the size or the size
201  // and the result are considered part of level 2 tracing and are
202  // skipped during level 1 tracing.
203  if ((word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) {
204    const size_t buffer_length = 128;
205    char hr_buffer[buffer_length];
206    char rest_buffer[buffer_length];
207
208    HeapRegion* alloc_region = _alloc_region;
209    if (alloc_region == NULL) {
210      jio_snprintf(hr_buffer, buffer_length, "NULL");
211    } else if (alloc_region == _dummy_region) {
212      jio_snprintf(hr_buffer, buffer_length, "DUMMY");
213    } else {
214      jio_snprintf(hr_buffer, buffer_length,
215                   HR_FORMAT, HR_FORMAT_PARAMS(alloc_region));
216    }
217
218    if (G1_ALLOC_REGION_TRACING > 1) {
219      if (result != NULL) {
220        jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT " " PTR_FORMAT,
221                     word_size, result);
222      } else if (word_size != 0) {
223        jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT, word_size);
224      } else {
225        jio_snprintf(rest_buffer, buffer_length, "");
226      }
227    } else {
228      jio_snprintf(rest_buffer, buffer_length, "");
229    }
230
231    tty->print_cr("[%s] %u %s : %s %s",
232                  _name, _count, hr_buffer, str, rest_buffer);
233  }
234}
235#endif // G1_ALLOC_REGION_TRACING
236
237G1AllocRegion::G1AllocRegion(const char* name,
238                             bool bot_updates)
239  : _name(name), _bot_updates(bot_updates),
240    _alloc_region(NULL), _count(0), _used_bytes_before(0),
241    _allocation_context(AllocationContext::system()) { }
242
243
244HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
245                                                    bool force) {
246  return _g1h->new_mutator_alloc_region(word_size, force);
247}
248
249void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
250                                       size_t allocated_bytes) {
251  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
252}
253
254HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
255                                                       bool force) {
256  assert(!force, "not supported for GC alloc regions");
257  return _g1h->new_gc_alloc_region(word_size, count(), InCSetState::Young);
258}
259
260void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
261                                          size_t allocated_bytes) {
262  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, InCSetState::Young);
263}
264
265HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
266                                                  bool force) {
267  assert(!force, "not supported for GC alloc regions");
268  return _g1h->new_gc_alloc_region(word_size, count(), InCSetState::Old);
269}
270
271void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
272                                     size_t allocated_bytes) {
273  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, InCSetState::Old);
274}
275
276HeapRegion* OldGCAllocRegion::release() {
277  HeapRegion* cur = get();
278  if (cur != NULL) {
279    // Determine how far we are from the next card boundary. If it is smaller than
280    // the minimum object size we can allocate into, expand into the next card.
281    HeapWord* top = cur->top();
282    HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
283
284    size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
285
286    if (to_allocate_words != 0) {
287      // We are not at a card boundary. Fill up, possibly into the next, taking the
288      // end of the region and the minimum object size into account.
289      to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
290                               MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
291
292      // Skip allocation if there is not enough space to allocate even the smallest
293      // possible object. In this case this region will not be retained, so the
294      // original problem cannot occur.
295      if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
296        HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
297        CollectedHeap::fill_with_object(dummy, to_allocate_words);
298      }
299    }
300  }
301  return G1AllocRegion::release();
302}
303
304
305