parNewGeneration.cpp revision 9727:f944761a3ce3
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/cms/compactibleFreeListSpace.hpp"
27#include "gc/cms/concurrentMarkSweepGeneration.hpp"
28#include "gc/cms/parNewGeneration.inline.hpp"
29#include "gc/cms/parOopClosures.inline.hpp"
30#include "gc/serial/defNewGeneration.inline.hpp"
31#include "gc/shared/adaptiveSizePolicy.hpp"
32#include "gc/shared/ageTable.hpp"
33#include "gc/shared/copyFailedInfo.hpp"
34#include "gc/shared/gcHeapSummary.hpp"
35#include "gc/shared/gcTimer.hpp"
36#include "gc/shared/gcTrace.hpp"
37#include "gc/shared/gcTraceTime.inline.hpp"
38#include "gc/shared/genCollectedHeap.hpp"
39#include "gc/shared/genOopClosures.inline.hpp"
40#include "gc/shared/generation.hpp"
41#include "gc/shared/plab.inline.hpp"
42#include "gc/shared/referencePolicy.hpp"
43#include "gc/shared/space.hpp"
44#include "gc/shared/spaceDecorator.hpp"
45#include "gc/shared/strongRootsScope.hpp"
46#include "gc/shared/taskqueue.inline.hpp"
47#include "gc/shared/workgroup.hpp"
48#include "logging/log.hpp"
49#include "memory/resourceArea.hpp"
50#include "oops/objArrayOop.hpp"
51#include "oops/oop.inline.hpp"
52#include "runtime/atomic.inline.hpp"
53#include "runtime/handles.hpp"
54#include "runtime/handles.inline.hpp"
55#include "runtime/java.hpp"
56#include "runtime/thread.inline.hpp"
57#include "utilities/copy.hpp"
58#include "utilities/globalDefinitions.hpp"
59#include "utilities/stack.inline.hpp"
60
61ParScanThreadState::ParScanThreadState(Space* to_space_,
62                                       ParNewGeneration* young_gen_,
63                                       Generation* old_gen_,
64                                       int thread_num_,
65                                       ObjToScanQueueSet* work_queue_set_,
66                                       Stack<oop, mtGC>* overflow_stacks_,
67                                       size_t desired_plab_sz_,
68                                       ParallelTaskTerminator& term_) :
69  _to_space(to_space_),
70  _old_gen(old_gen_),
71  _young_gen(young_gen_),
72  _thread_num(thread_num_),
73  _work_queue(work_queue_set_->queue(thread_num_)),
74  _to_space_full(false),
75  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
76  _ageTable(false), // false ==> not the global age table, no perf data.
77  _to_space_alloc_buffer(desired_plab_sz_),
78  _to_space_closure(young_gen_, this),
79  _old_gen_closure(young_gen_, this),
80  _to_space_root_closure(young_gen_, this),
81  _old_gen_root_closure(young_gen_, this),
82  _older_gen_closure(young_gen_, this),
83  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
84                      &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
85                      work_queue_set_, &term_),
86  _is_alive_closure(young_gen_),
87  _scan_weak_ref_closure(young_gen_, this),
88  _keep_alive_closure(&_scan_weak_ref_closure),
89  _strong_roots_time(0.0),
90  _term_time(0.0)
91{
92  #if TASKQUEUE_STATS
93  _term_attempts = 0;
94  _overflow_refills = 0;
95  _overflow_refill_objs = 0;
96  #endif // TASKQUEUE_STATS
97
98  _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
99  _hash_seed = 17;  // Might want to take time-based random value.
100  _start = os::elapsedTime();
101  _old_gen_closure.set_generation(old_gen_);
102  _old_gen_root_closure.set_generation(old_gen_);
103}
104
105void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
106                                              size_t plab_word_size) {
107  ChunkArray* sca = survivor_chunk_array();
108  if (sca != NULL) {
109    // A non-null SCA implies that we want the PLAB data recorded.
110    sca->record_sample(plab_start, plab_word_size);
111  }
112}
113
114bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
115  return new_obj->is_objArray() &&
116         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
117         new_obj != old_obj;
118}
119
120void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
121  assert(old->is_objArray(), "must be obj array");
122  assert(old->is_forwarded(), "must be forwarded");
123  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
124  assert(!old_gen()->is_in(old), "must be in young generation.");
125
126  objArrayOop obj = objArrayOop(old->forwardee());
127  // Process ParGCArrayScanChunk elements now
128  // and push the remainder back onto queue
129  int start     = arrayOop(old)->length();
130  int end       = obj->length();
131  int remainder = end - start;
132  assert(start <= end, "just checking");
133  if (remainder > 2 * ParGCArrayScanChunk) {
134    // Test above combines last partial chunk with a full chunk
135    end = start + ParGCArrayScanChunk;
136    arrayOop(old)->set_length(end);
137    // Push remainder.
138    bool ok = work_queue()->push(old);
139    assert(ok, "just popped, push must be okay");
140  } else {
141    // Restore length so that it can be used if there
142    // is a promotion failure and forwarding pointers
143    // must be removed.
144    arrayOop(old)->set_length(end);
145  }
146
147  // process our set of indices (include header in first chunk)
148  // should make sure end is even (aligned to HeapWord in case of compressed oops)
149  if ((HeapWord *)obj < young_old_boundary()) {
150    // object is in to_space
151    obj->oop_iterate_range(&_to_space_closure, start, end);
152  } else {
153    // object is in old generation
154    obj->oop_iterate_range(&_old_gen_closure, start, end);
155  }
156}
157
158void ParScanThreadState::trim_queues(int max_size) {
159  ObjToScanQueue* queue = work_queue();
160  do {
161    while (queue->size() > (juint)max_size) {
162      oop obj_to_scan;
163      if (queue->pop_local(obj_to_scan)) {
164        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
165          if (obj_to_scan->is_objArray() &&
166              obj_to_scan->is_forwarded() &&
167              obj_to_scan->forwardee() != obj_to_scan) {
168            scan_partial_array_and_push_remainder(obj_to_scan);
169          } else {
170            // object is in to_space
171            obj_to_scan->oop_iterate(&_to_space_closure);
172          }
173        } else {
174          // object is in old generation
175          obj_to_scan->oop_iterate(&_old_gen_closure);
176        }
177      }
178    }
179    // For the  case of compressed oops, we have a private, non-shared
180    // overflow stack, so we eagerly drain it so as to more evenly
181    // distribute load early. Note: this may be good to do in
182    // general rather than delay for the final stealing phase.
183    // If applicable, we'll transfer a set of objects over to our
184    // work queue, allowing them to be stolen and draining our
185    // private overflow stack.
186  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
187}
188
189bool ParScanThreadState::take_from_overflow_stack() {
190  assert(ParGCUseLocalOverflow, "Else should not call");
191  assert(young_gen()->overflow_list() == NULL, "Error");
192  ObjToScanQueue* queue = work_queue();
193  Stack<oop, mtGC>* const of_stack = overflow_stack();
194  const size_t num_overflow_elems = of_stack->size();
195  const size_t space_available = queue->max_elems() - queue->size();
196  const size_t num_take_elems = MIN3(space_available / 4,
197                                     ParGCDesiredObjsFromOverflowList,
198                                     num_overflow_elems);
199  // Transfer the most recent num_take_elems from the overflow
200  // stack to our work queue.
201  for (size_t i = 0; i != num_take_elems; i++) {
202    oop cur = of_stack->pop();
203    oop obj_to_push = cur->forwardee();
204    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
205    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
206    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
207    if (should_be_partially_scanned(obj_to_push, cur)) {
208      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
209      obj_to_push = cur;
210    }
211    bool ok = queue->push(obj_to_push);
212    assert(ok, "Should have succeeded");
213  }
214  assert(young_gen()->overflow_list() == NULL, "Error");
215  return num_take_elems > 0;  // was something transferred?
216}
217
218void ParScanThreadState::push_on_overflow_stack(oop p) {
219  assert(ParGCUseLocalOverflow, "Else should not call");
220  overflow_stack()->push(p);
221  assert(young_gen()->overflow_list() == NULL, "Error");
222}
223
224HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
225  // If the object is small enough, try to reallocate the buffer.
226  HeapWord* obj = NULL;
227  if (!_to_space_full) {
228    PLAB* const plab = to_space_alloc_buffer();
229    Space* const sp  = to_space();
230    if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
231      // Is small enough; abandon this buffer and start a new one.
232      plab->retire();
233      size_t buf_size = plab->word_sz();
234      HeapWord* buf_space = sp->par_allocate(buf_size);
235      if (buf_space == NULL) {
236        const size_t min_bytes =
237          PLAB::min_size() << LogHeapWordSize;
238        size_t free_bytes = sp->free();
239        while(buf_space == NULL && free_bytes >= min_bytes) {
240          buf_size = free_bytes >> LogHeapWordSize;
241          assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
242          buf_space  = sp->par_allocate(buf_size);
243          free_bytes = sp->free();
244        }
245      }
246      if (buf_space != NULL) {
247        plab->set_buf(buf_space, buf_size);
248        record_survivor_plab(buf_space, buf_size);
249        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
250        // Note that we cannot compare buf_size < word_sz below
251        // because of AlignmentReserve (see PLAB::allocate()).
252        assert(obj != NULL || plab->words_remaining() < word_sz,
253               "Else should have been able to allocate");
254        // It's conceivable that we may be able to use the
255        // buffer we just grabbed for subsequent small requests
256        // even if not for this one.
257      } else {
258        // We're used up.
259        _to_space_full = true;
260      }
261    } else {
262      // Too large; allocate the object individually.
263      obj = sp->par_allocate(word_sz);
264    }
265  }
266  return obj;
267}
268
269void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
270  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
271}
272
273void ParScanThreadState::print_promotion_failure_size() {
274  if (_promotion_failed_info.has_failed()) {
275    log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
276                             _thread_num, _promotion_failed_info.first_size());
277  }
278}
279
280class ParScanThreadStateSet: private ResourceArray {
281public:
282  // Initializes states for the specified number of threads;
283  ParScanThreadStateSet(int                     num_threads,
284                        Space&                  to_space,
285                        ParNewGeneration&       young_gen,
286                        Generation&             old_gen,
287                        ObjToScanQueueSet&      queue_set,
288                        Stack<oop, mtGC>*       overflow_stacks_,
289                        size_t                  desired_plab_sz,
290                        ParallelTaskTerminator& term);
291
292  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
293
294  inline ParScanThreadState& thread_state(int i);
295
296  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
297  void reset(uint active_workers, bool promotion_failed);
298  void flush();
299
300  #if TASKQUEUE_STATS
301  static void
302    print_termination_stats_hdr(outputStream* const st);
303  void print_termination_stats();
304  static void
305    print_taskqueue_stats_hdr(outputStream* const st);
306  void print_taskqueue_stats();
307  void reset_stats();
308  #endif // TASKQUEUE_STATS
309
310private:
311  ParallelTaskTerminator& _term;
312  ParNewGeneration&       _young_gen;
313  Generation&             _old_gen;
314 public:
315  bool is_valid(int id) const { return id < length(); }
316  ParallelTaskTerminator* terminator() { return &_term; }
317};
318
319ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
320                                             Space& to_space,
321                                             ParNewGeneration& young_gen,
322                                             Generation& old_gen,
323                                             ObjToScanQueueSet& queue_set,
324                                             Stack<oop, mtGC>* overflow_stacks,
325                                             size_t desired_plab_sz,
326                                             ParallelTaskTerminator& term)
327  : ResourceArray(sizeof(ParScanThreadState), num_threads),
328    _young_gen(young_gen),
329    _old_gen(old_gen),
330    _term(term)
331{
332  assert(num_threads > 0, "sanity check!");
333  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
334         "overflow_stack allocation mismatch");
335  // Initialize states.
336  for (int i = 0; i < num_threads; ++i) {
337    new ((ParScanThreadState*)_data + i)
338        ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
339                           overflow_stacks, desired_plab_sz, term);
340  }
341}
342
343inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
344  assert(i >= 0 && i < length(), "sanity check!");
345  return ((ParScanThreadState*)_data)[i];
346}
347
348void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
349  for (int i = 0; i < length(); ++i) {
350    if (thread_state(i).promotion_failed()) {
351      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
352      thread_state(i).promotion_failed_info().reset();
353    }
354  }
355}
356
357void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
358  _term.reset_for_reuse(active_threads);
359  if (promotion_failed) {
360    for (int i = 0; i < length(); ++i) {
361      thread_state(i).print_promotion_failure_size();
362    }
363  }
364}
365
366#if TASKQUEUE_STATS
367void ParScanThreadState::reset_stats() {
368  taskqueue_stats().reset();
369  _term_attempts = 0;
370  _overflow_refills = 0;
371  _overflow_refill_objs = 0;
372}
373
374void ParScanThreadStateSet::reset_stats() {
375  for (int i = 0; i < length(); ++i) {
376    thread_state(i).reset_stats();
377  }
378}
379
380void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
381  st->print_raw_cr("GC Termination Stats");
382  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
383  st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
384  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
385}
386
387void ParScanThreadStateSet::print_termination_stats() {
388  LogHandle(gc, task, stats) log;
389  if (!log.is_debug()) {
390    return;
391  }
392
393  ResourceMark rm;
394  outputStream* st = log.debug_stream();
395
396  print_termination_stats_hdr(st);
397
398  for (int i = 0; i < length(); ++i) {
399    const ParScanThreadState & pss = thread_state(i);
400    const double elapsed_ms = pss.elapsed_time() * 1000.0;
401    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
402    const double term_ms = pss.term_time() * 1000.0;
403    st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
404                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
405                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
406  }
407}
408
409// Print stats related to work queue activity.
410void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
411  st->print_raw_cr("GC Task Stats");
412  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
413  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
414}
415
416void ParScanThreadStateSet::print_taskqueue_stats() {
417  if (!develop_log_is_enabled(Trace, gc, task, stats)) {
418    return;
419  }
420  LogHandle(gc, task, stats) log;
421  ResourceMark rm;
422  outputStream* st = log.trace_stream();
423  print_taskqueue_stats_hdr(st);
424
425  TaskQueueStats totals;
426  for (int i = 0; i < length(); ++i) {
427    const ParScanThreadState & pss = thread_state(i);
428    const TaskQueueStats & stats = pss.taskqueue_stats();
429    st->print("%3d ", i); stats.print(st); st->cr();
430    totals += stats;
431
432    if (pss.overflow_refills() > 0) {
433      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
434                   SIZE_FORMAT_W(10) " overflow objects",
435                   pss.overflow_refills(), pss.overflow_refill_objs());
436    }
437  }
438  st->print("tot "); totals.print(st); st->cr();
439
440  DEBUG_ONLY(totals.verify());
441}
442#endif // TASKQUEUE_STATS
443
444void ParScanThreadStateSet::flush() {
445  // Work in this loop should be kept as lightweight as
446  // possible since this might otherwise become a bottleneck
447  // to scaling. Should we add heavy-weight work into this
448  // loop, consider parallelizing the loop into the worker threads.
449  for (int i = 0; i < length(); ++i) {
450    ParScanThreadState& par_scan_state = thread_state(i);
451
452    // Flush stats related to To-space PLAB activity and
453    // retire the last buffer.
454    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
455
456    // Every thread has its own age table.  We need to merge
457    // them all into one.
458    ageTable *local_table = par_scan_state.age_table();
459    _young_gen.age_table()->merge(local_table);
460
461    // Inform old gen that we're done.
462    _old_gen.par_promote_alloc_done(i);
463    _old_gen.par_oop_since_save_marks_iterate_done(i);
464  }
465
466  if (UseConcMarkSweepGC) {
467    // We need to call this even when ResizeOldPLAB is disabled
468    // so as to avoid breaking some asserts. While we may be able
469    // to avoid this by reorganizing the code a bit, I am loathe
470    // to do that unless we find cases where ergo leads to bad
471    // performance.
472    CFLS_LAB::compute_desired_plab_size();
473  }
474}
475
476ParScanClosure::ParScanClosure(ParNewGeneration* g,
477                               ParScanThreadState* par_scan_state) :
478  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
479  _boundary = _g->reserved().end();
480}
481
482void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
483void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
484
485void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
486void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
487
488void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
489void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
490
491void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
492void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
493
494ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
495                                             ParScanThreadState* par_scan_state)
496  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
497{}
498
499void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
500void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
501
502#ifdef WIN32
503#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
504#endif
505
506ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
507    ParScanThreadState* par_scan_state_,
508    ParScanWithoutBarrierClosure* to_space_closure_,
509    ParScanWithBarrierClosure* old_gen_closure_,
510    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
511    ParNewGeneration* par_gen_,
512    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
513    ObjToScanQueueSet* task_queues_,
514    ParallelTaskTerminator* terminator_) :
515
516    _par_scan_state(par_scan_state_),
517    _to_space_closure(to_space_closure_),
518    _old_gen_closure(old_gen_closure_),
519    _to_space_root_closure(to_space_root_closure_),
520    _old_gen_root_closure(old_gen_root_closure_),
521    _par_gen(par_gen_),
522    _task_queues(task_queues_),
523    _terminator(terminator_)
524{}
525
526void ParEvacuateFollowersClosure::do_void() {
527  ObjToScanQueue* work_q = par_scan_state()->work_queue();
528
529  while (true) {
530    // Scan to-space and old-gen objs until we run out of both.
531    oop obj_to_scan;
532    par_scan_state()->trim_queues(0);
533
534    // We have no local work, attempt to steal from other threads.
535
536    // Attempt to steal work from promoted.
537    if (task_queues()->steal(par_scan_state()->thread_num(),
538                             par_scan_state()->hash_seed(),
539                             obj_to_scan)) {
540      bool res = work_q->push(obj_to_scan);
541      assert(res, "Empty queue should have room for a push.");
542
543      // If successful, goto Start.
544      continue;
545
546      // Try global overflow list.
547    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
548      continue;
549    }
550
551    // Otherwise, offer termination.
552    par_scan_state()->start_term_time();
553    if (terminator()->offer_termination()) break;
554    par_scan_state()->end_term_time();
555  }
556  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
557         "Broken overflow list?");
558  // Finish the last termination pause.
559  par_scan_state()->end_term_time();
560}
561
562ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
563                             Generation* old_gen,
564                             HeapWord* young_old_boundary,
565                             ParScanThreadStateSet* state_set,
566                             StrongRootsScope* strong_roots_scope) :
567    AbstractGangTask("ParNewGeneration collection"),
568    _young_gen(young_gen), _old_gen(old_gen),
569    _young_old_boundary(young_old_boundary),
570    _state_set(state_set),
571    _strong_roots_scope(strong_roots_scope)
572{}
573
574void ParNewGenTask::work(uint worker_id) {
575  GenCollectedHeap* gch = GenCollectedHeap::heap();
576  // Since this is being done in a separate thread, need new resource
577  // and handle marks.
578  ResourceMark rm;
579  HandleMark hm;
580
581  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
582  assert(_state_set->is_valid(worker_id), "Should not have been called");
583
584  par_scan_state.set_young_old_boundary(_young_old_boundary);
585
586  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
587                                      gch->rem_set()->klass_rem_set());
588  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
589                                           &par_scan_state.to_space_root_closure(),
590                                           false);
591
592  par_scan_state.start_strong_roots();
593  gch->gen_process_roots(_strong_roots_scope,
594                         GenCollectedHeap::YoungGen,
595                         true,  // Process younger gens, if any, as strong roots.
596                         GenCollectedHeap::SO_ScavengeCodeCache,
597                         GenCollectedHeap::StrongAndWeakRoots,
598                         &par_scan_state.to_space_root_closure(),
599                         &par_scan_state.older_gen_closure(),
600                         &cld_scan_closure);
601
602  par_scan_state.end_strong_roots();
603
604  // "evacuate followers".
605  par_scan_state.evacuate_followers_closure().do_void();
606}
607
608ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
609  : DefNewGeneration(rs, initial_byte_size, "PCopy"),
610  _overflow_list(NULL),
611  _is_alive_closure(this),
612  _plab_stats(YoungPLABSize, PLABWeight)
613{
614  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
615  NOT_PRODUCT(_num_par_pushes = 0;)
616  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
617  guarantee(_task_queues != NULL, "task_queues allocation failure.");
618
619  for (uint i = 0; i < ParallelGCThreads; i++) {
620    ObjToScanQueue *q = new ObjToScanQueue();
621    guarantee(q != NULL, "work_queue Allocation failure.");
622    _task_queues->register_queue(i, q);
623  }
624
625  for (uint i = 0; i < ParallelGCThreads; i++) {
626    _task_queues->queue(i)->initialize();
627  }
628
629  _overflow_stacks = NULL;
630  if (ParGCUseLocalOverflow) {
631    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
632    typedef Stack<oop, mtGC> GCOopStack;
633
634    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
635    for (size_t i = 0; i < ParallelGCThreads; ++i) {
636      new (_overflow_stacks + i) Stack<oop, mtGC>();
637    }
638  }
639
640  if (UsePerfData) {
641    EXCEPTION_MARK;
642    ResourceMark rm;
643
644    const char* cname =
645         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
646    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
647                                     ParallelGCThreads, CHECK);
648  }
649}
650
651// ParNewGeneration::
652ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
653  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
654
655template <class T>
656void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
657#ifdef ASSERT
658  {
659    assert(!oopDesc::is_null(*p), "expected non-null ref");
660    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
661    // We never expect to see a null reference being processed
662    // as a weak reference.
663    assert(obj->is_oop(), "expected an oop while scanning weak refs");
664  }
665#endif // ASSERT
666
667  _par_cl->do_oop_nv(p);
668
669  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
670    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
671    _rs->write_ref_field_gc_par(p, obj);
672  }
673}
674
675void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
676void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
677
678// ParNewGeneration::
679KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
680  DefNewGeneration::KeepAliveClosure(cl) {}
681
682template <class T>
683void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
684#ifdef ASSERT
685  {
686    assert(!oopDesc::is_null(*p), "expected non-null ref");
687    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
688    // We never expect to see a null reference being processed
689    // as a weak reference.
690    assert(obj->is_oop(), "expected an oop while scanning weak refs");
691  }
692#endif // ASSERT
693
694  _cl->do_oop_nv(p);
695
696  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
697    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
698    _rs->write_ref_field_gc_par(p, obj);
699  }
700}
701
702void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
703void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
704
705template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
706  T heap_oop = oopDesc::load_heap_oop(p);
707  if (!oopDesc::is_null(heap_oop)) {
708    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
709    if ((HeapWord*)obj < _boundary) {
710      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
711      oop new_obj = obj->is_forwarded()
712                      ? obj->forwardee()
713                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
714      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
715    }
716    if (_gc_barrier) {
717      // If p points to a younger generation, mark the card.
718      if ((HeapWord*)obj < _gen_boundary) {
719        _rs->write_ref_field_gc_par(p, obj);
720      }
721    }
722  }
723}
724
725void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
726void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
727
728class ParNewRefProcTaskProxy: public AbstractGangTask {
729  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
730public:
731  ParNewRefProcTaskProxy(ProcessTask& task,
732                         ParNewGeneration& young_gen,
733                         Generation& old_gen,
734                         HeapWord* young_old_boundary,
735                         ParScanThreadStateSet& state_set);
736
737private:
738  virtual void work(uint worker_id);
739private:
740  ParNewGeneration&      _young_gen;
741  ProcessTask&           _task;
742  Generation&            _old_gen;
743  HeapWord*              _young_old_boundary;
744  ParScanThreadStateSet& _state_set;
745};
746
747ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
748                                               ParNewGeneration& young_gen,
749                                               Generation& old_gen,
750                                               HeapWord* young_old_boundary,
751                                               ParScanThreadStateSet& state_set)
752  : AbstractGangTask("ParNewGeneration parallel reference processing"),
753    _young_gen(young_gen),
754    _task(task),
755    _old_gen(old_gen),
756    _young_old_boundary(young_old_boundary),
757    _state_set(state_set)
758{ }
759
760void ParNewRefProcTaskProxy::work(uint worker_id) {
761  ResourceMark rm;
762  HandleMark hm;
763  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
764  par_scan_state.set_young_old_boundary(_young_old_boundary);
765  _task.work(worker_id, par_scan_state.is_alive_closure(),
766             par_scan_state.keep_alive_closure(),
767             par_scan_state.evacuate_followers_closure());
768}
769
770class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
771  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
772  EnqueueTask& _task;
773
774public:
775  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
776    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
777      _task(task)
778  { }
779
780  virtual void work(uint worker_id) {
781    _task.work(worker_id);
782  }
783};
784
785void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
786  GenCollectedHeap* gch = GenCollectedHeap::heap();
787  WorkGang* workers = gch->workers();
788  assert(workers != NULL, "Need parallel worker threads.");
789  _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
790  ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
791                                 _young_gen.reserved().end(), _state_set);
792  workers->run_task(&rp_task);
793  _state_set.reset(0 /* bad value in debug if not reset */,
794                   _young_gen.promotion_failed());
795}
796
797void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
798  GenCollectedHeap* gch = GenCollectedHeap::heap();
799  WorkGang* workers = gch->workers();
800  assert(workers != NULL, "Need parallel worker threads.");
801  ParNewRefEnqueueTaskProxy enq_task(task);
802  workers->run_task(&enq_task);
803}
804
805void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
806  _state_set.flush();
807  GenCollectedHeap* gch = GenCollectedHeap::heap();
808  gch->save_marks();
809}
810
811ScanClosureWithParBarrier::
812ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
813  ScanClosure(g, gc_barrier)
814{ }
815
816EvacuateFollowersClosureGeneral::
817EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
818                                OopsInGenClosure* cur,
819                                OopsInGenClosure* older) :
820  _gch(gch),
821  _scan_cur_or_nonheap(cur), _scan_older(older)
822{ }
823
824void EvacuateFollowersClosureGeneral::do_void() {
825  do {
826    // Beware: this call will lead to closure applications via virtual
827    // calls.
828    _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
829                                       _scan_cur_or_nonheap,
830                                       _scan_older);
831  } while (!_gch->no_allocs_since_save_marks());
832}
833
834// A Generation that does parallel young-gen collection.
835
836void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
837  assert(_promo_failure_scan_stack.is_empty(), "post condition");
838  _promo_failure_scan_stack.clear(true); // Clear cached segments.
839
840  remove_forwarding_pointers();
841  log_info(gc, promotion)("Promotion failed");
842  // All the spaces are in play for mark-sweep.
843  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
844  from()->set_next_compaction_space(to());
845  gch->set_incremental_collection_failed();
846  // Inform the next generation that a promotion failure occurred.
847  _old_gen->promotion_failure_occurred();
848
849  // Trace promotion failure in the parallel GC threads
850  thread_state_set.trace_promotion_failed(gc_tracer());
851  // Single threaded code may have reported promotion failure to the global state
852  if (_promotion_failed_info.has_failed()) {
853    _gc_tracer.report_promotion_failed(_promotion_failed_info);
854  }
855  // Reset the PromotionFailureALot counters.
856  NOT_PRODUCT(gch->reset_promotion_should_fail();)
857}
858
859void ParNewGeneration::collect(bool   full,
860                               bool   clear_all_soft_refs,
861                               size_t size,
862                               bool   is_tlab) {
863  assert(full || size > 0, "otherwise we don't want to collect");
864
865  GenCollectedHeap* gch = GenCollectedHeap::heap();
866
867  _gc_timer->register_gc_start();
868
869  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
870  WorkGang* workers = gch->workers();
871  assert(workers != NULL, "Need workgang for parallel work");
872  uint active_workers =
873       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
874                                               workers->active_workers(),
875                                               Threads::number_of_non_daemon_threads());
876  workers->set_active_workers(active_workers);
877  _old_gen = gch->old_gen();
878
879  // If the next generation is too full to accommodate worst-case promotion
880  // from this generation, pass on collection; let the next generation
881  // do it.
882  if (!collection_attempt_is_safe()) {
883    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
884    return;
885  }
886  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
887
888  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
889  gch->trace_heap_before_gc(gc_tracer());
890
891  init_assuming_no_promotion_failure();
892
893  if (UseAdaptiveSizePolicy) {
894    set_survivor_overflow(false);
895    size_policy->minor_collection_begin();
896  }
897
898  GCTraceTime(Trace, gc) t1("ParNew", NULL, gch->gc_cause());
899
900  age_table()->clear();
901  to()->clear(SpaceDecorator::Mangle);
902
903  gch->save_marks();
904
905  // Set the correct parallelism (number of queues) in the reference processor
906  ref_processor()->set_active_mt_degree(active_workers);
907
908  // Always set the terminator for the active number of workers
909  // because only those workers go through the termination protocol.
910  ParallelTaskTerminator _term(active_workers, task_queues());
911  ParScanThreadStateSet thread_state_set(active_workers,
912                                         *to(), *this, *_old_gen, *task_queues(),
913                                         _overflow_stacks, desired_plab_sz(), _term);
914
915  thread_state_set.reset(active_workers, promotion_failed());
916
917  {
918    StrongRootsScope srs(active_workers);
919
920    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
921    gch->rem_set()->prepare_for_younger_refs_iterate(true);
922    // It turns out that even when we're using 1 thread, doing the work in a
923    // separate thread causes wide variance in run times.  We can't help this
924    // in the multi-threaded case, but we special-case n=1 here to get
925    // repeatable measurements of the 1-thread overhead of the parallel code.
926    if (active_workers > 1) {
927      workers->run_task(&tsk);
928    } else {
929      tsk.work(0);
930    }
931  }
932
933  thread_state_set.reset(0 /* Bad value in debug if not reset */,
934                         promotion_failed());
935
936  // Trace and reset failed promotion info.
937  if (promotion_failed()) {
938    thread_state_set.trace_promotion_failed(gc_tracer());
939  }
940
941  // Process (weak) reference objects found during scavenge.
942  ReferenceProcessor* rp = ref_processor();
943  IsAliveClosure is_alive(this);
944  ScanWeakRefClosure scan_weak_ref(this);
945  KeepAliveClosure keep_alive(&scan_weak_ref);
946  ScanClosure               scan_without_gc_barrier(this, false);
947  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
948  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
949  EvacuateFollowersClosureGeneral evacuate_followers(gch,
950    &scan_without_gc_barrier, &scan_with_gc_barrier);
951  rp->setup_policy(clear_all_soft_refs);
952  // Can  the mt_degree be set later (at run_task() time would be best)?
953  rp->set_active_mt_degree(active_workers);
954  ReferenceProcessorStats stats;
955  if (rp->processing_is_mt()) {
956    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
957    stats = rp->process_discovered_references(&is_alive, &keep_alive,
958                                              &evacuate_followers, &task_executor,
959                                              _gc_timer);
960  } else {
961    thread_state_set.flush();
962    gch->save_marks();
963    stats = rp->process_discovered_references(&is_alive, &keep_alive,
964                                              &evacuate_followers, NULL,
965                                              _gc_timer);
966  }
967  _gc_tracer.report_gc_reference_stats(stats);
968  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
969
970  if (!promotion_failed()) {
971    // Swap the survivor spaces.
972    eden()->clear(SpaceDecorator::Mangle);
973    from()->clear(SpaceDecorator::Mangle);
974    if (ZapUnusedHeapArea) {
975      // This is now done here because of the piece-meal mangling which
976      // can check for valid mangling at intermediate points in the
977      // collection(s).  When a young collection fails to collect
978      // sufficient space resizing of the young generation can occur
979      // and redistribute the spaces in the young generation.  Mangle
980      // here so that unzapped regions don't get distributed to
981      // other spaces.
982      to()->mangle_unused_area();
983    }
984    swap_spaces();
985
986    // A successful scavenge should restart the GC time limit count which is
987    // for full GC's.
988    size_policy->reset_gc_overhead_limit_count();
989
990    assert(to()->is_empty(), "to space should be empty now");
991
992    adjust_desired_tenuring_threshold();
993  } else {
994    handle_promotion_failed(gch, thread_state_set);
995  }
996  // set new iteration safe limit for the survivor spaces
997  from()->set_concurrent_iteration_safe_limit(from()->top());
998  to()->set_concurrent_iteration_safe_limit(to()->top());
999
1000  if (ResizePLAB) {
1001    plab_stats()->adjust_desired_plab_sz();
1002  }
1003
1004  TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1005  TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1006
1007  if (UseAdaptiveSizePolicy) {
1008    size_policy->minor_collection_end(gch->gc_cause());
1009    size_policy->avg_survived()->sample(from()->used());
1010  }
1011
1012  // We need to use a monotonically non-decreasing time in ms
1013  // or we will see time-warp warnings and os::javaTimeMillis()
1014  // does not guarantee monotonicity.
1015  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1016  update_time_of_last_gc(now);
1017
1018  rp->set_enqueuing_is_done(true);
1019  if (rp->processing_is_mt()) {
1020    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1021    rp->enqueue_discovered_references(&task_executor);
1022  } else {
1023    rp->enqueue_discovered_references(NULL);
1024  }
1025  rp->verify_no_references_recorded();
1026
1027  gch->trace_heap_after_gc(gc_tracer());
1028
1029  _gc_timer->register_gc_end();
1030
1031  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1032}
1033
1034size_t ParNewGeneration::desired_plab_sz() {
1035  return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1036}
1037
1038static int sum;
1039void ParNewGeneration::waste_some_time() {
1040  for (int i = 0; i < 100; i++) {
1041    sum += i;
1042  }
1043}
1044
1045static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1046
1047// Because of concurrency, there are times where an object for which
1048// "is_forwarded()" is true contains an "interim" forwarding pointer
1049// value.  Such a value will soon be overwritten with a real value.
1050// This method requires "obj" to have a forwarding pointer, and waits, if
1051// necessary for a real one to be inserted, and returns it.
1052
1053oop ParNewGeneration::real_forwardee(oop obj) {
1054  oop forward_ptr = obj->forwardee();
1055  if (forward_ptr != ClaimedForwardPtr) {
1056    return forward_ptr;
1057  } else {
1058    return real_forwardee_slow(obj);
1059  }
1060}
1061
1062oop ParNewGeneration::real_forwardee_slow(oop obj) {
1063  // Spin-read if it is claimed but not yet written by another thread.
1064  oop forward_ptr = obj->forwardee();
1065  while (forward_ptr == ClaimedForwardPtr) {
1066    waste_some_time();
1067    assert(obj->is_forwarded(), "precondition");
1068    forward_ptr = obj->forwardee();
1069  }
1070  return forward_ptr;
1071}
1072
1073void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1074  if (m->must_be_preserved_for_promotion_failure(obj)) {
1075    // We should really have separate per-worker stacks, rather
1076    // than use locking of a common pair of stacks.
1077    MutexLocker ml(ParGCRareEvent_lock);
1078    preserve_mark(obj, m);
1079  }
1080}
1081
1082// Multiple GC threads may try to promote an object.  If the object
1083// is successfully promoted, a forwarding pointer will be installed in
1084// the object in the young generation.  This method claims the right
1085// to install the forwarding pointer before it copies the object,
1086// thus avoiding the need to undo the copy as in
1087// copy_to_survivor_space_avoiding_with_undo.
1088
1089oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1090                                             oop old,
1091                                             size_t sz,
1092                                             markOop m) {
1093  // In the sequential version, this assert also says that the object is
1094  // not forwarded.  That might not be the case here.  It is the case that
1095  // the caller observed it to be not forwarded at some time in the past.
1096  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1097
1098  // The sequential code read "old->age()" below.  That doesn't work here,
1099  // since the age is in the mark word, and that might be overwritten with
1100  // a forwarding pointer by a parallel thread.  So we must save the mark
1101  // word in a local and then analyze it.
1102  oopDesc dummyOld;
1103  dummyOld.set_mark(m);
1104  assert(!dummyOld.is_forwarded(),
1105         "should not be called with forwarding pointer mark word.");
1106
1107  oop new_obj = NULL;
1108  oop forward_ptr;
1109
1110  // Try allocating obj in to-space (unless too old)
1111  if (dummyOld.age() < tenuring_threshold()) {
1112    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1113    if (new_obj == NULL) {
1114      set_survivor_overflow(true);
1115    }
1116  }
1117
1118  if (new_obj == NULL) {
1119    // Either to-space is full or we decided to promote try allocating obj tenured
1120
1121    // Attempt to install a null forwarding pointer (atomically),
1122    // to claim the right to install the real forwarding pointer.
1123    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1124    if (forward_ptr != NULL) {
1125      // someone else beat us to it.
1126        return real_forwardee(old);
1127    }
1128
1129    if (!_promotion_failed) {
1130      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1131                                      old, m, sz);
1132    }
1133
1134    if (new_obj == NULL) {
1135      // promotion failed, forward to self
1136      _promotion_failed = true;
1137      new_obj = old;
1138
1139      preserve_mark_if_necessary(old, m);
1140      par_scan_state->register_promotion_failure(sz);
1141    }
1142
1143    old->forward_to(new_obj);
1144    forward_ptr = NULL;
1145  } else {
1146    // Is in to-space; do copying ourselves.
1147    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1148    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1149    forward_ptr = old->forward_to_atomic(new_obj);
1150    // Restore the mark word copied above.
1151    new_obj->set_mark(m);
1152    // Increment age if obj still in new generation
1153    new_obj->incr_age();
1154    par_scan_state->age_table()->add(new_obj, sz);
1155  }
1156  assert(new_obj != NULL, "just checking");
1157
1158  // This code must come after the CAS test, or it will print incorrect
1159  // information.
1160  log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1161                                  is_in_reserved(new_obj) ? "copying" : "tenuring",
1162                                  new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1163
1164  if (forward_ptr == NULL) {
1165    oop obj_to_push = new_obj;
1166    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1167      // Length field used as index of next element to be scanned.
1168      // Real length can be obtained from real_forwardee()
1169      arrayOop(old)->set_length(0);
1170      obj_to_push = old;
1171      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1172             "push forwarded object");
1173    }
1174    // Push it on one of the queues of to-be-scanned objects.
1175    bool simulate_overflow = false;
1176    NOT_PRODUCT(
1177      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1178        // simulate a stack overflow
1179        simulate_overflow = true;
1180      }
1181    )
1182    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1183      // Add stats for overflow pushes.
1184      log_develop_trace(gc)("Queue Overflow");
1185      push_on_overflow_list(old, par_scan_state);
1186      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1187    }
1188
1189    return new_obj;
1190  }
1191
1192  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1193  // allocate it?
1194  if (is_in_reserved(new_obj)) {
1195    // Must be in to_space.
1196    assert(to()->is_in_reserved(new_obj), "Checking");
1197    if (forward_ptr == ClaimedForwardPtr) {
1198      // Wait to get the real forwarding pointer value.
1199      forward_ptr = real_forwardee(old);
1200    }
1201    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1202  }
1203
1204  return forward_ptr;
1205}
1206
1207#ifndef PRODUCT
1208// It's OK to call this multi-threaded;  the worst thing
1209// that can happen is that we'll get a bunch of closely
1210// spaced simulated overflows, but that's OK, in fact
1211// probably good as it would exercise the overflow code
1212// under contention.
1213bool ParNewGeneration::should_simulate_overflow() {
1214  if (_overflow_counter-- <= 0) { // just being defensive
1215    _overflow_counter = ParGCWorkQueueOverflowInterval;
1216    return true;
1217  } else {
1218    return false;
1219  }
1220}
1221#endif
1222
1223// In case we are using compressed oops, we need to be careful.
1224// If the object being pushed is an object array, then its length
1225// field keeps track of the "grey boundary" at which the next
1226// incremental scan will be done (see ParGCArrayScanChunk).
1227// When using compressed oops, this length field is kept in the
1228// lower 32 bits of the erstwhile klass word and cannot be used
1229// for the overflow chaining pointer (OCP below). As such the OCP
1230// would itself need to be compressed into the top 32-bits in this
1231// case. Unfortunately, see below, in the event that we have a
1232// promotion failure, the node to be pushed on the list can be
1233// outside of the Java heap, so the heap-based pointer compression
1234// would not work (we would have potential aliasing between C-heap
1235// and Java-heap pointers). For this reason, when using compressed
1236// oops, we simply use a worker-thread-local, non-shared overflow
1237// list in the form of a growable array, with a slightly different
1238// overflow stack draining strategy. If/when we start using fat
1239// stacks here, we can go back to using (fat) pointer chains
1240// (although some performance comparisons would be useful since
1241// single global lists have their own performance disadvantages
1242// as we were made painfully aware not long ago, see 6786503).
1243#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1244void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1245  assert(is_in_reserved(from_space_obj), "Should be from this generation");
1246  if (ParGCUseLocalOverflow) {
1247    // In the case of compressed oops, we use a private, not-shared
1248    // overflow stack.
1249    par_scan_state->push_on_overflow_stack(from_space_obj);
1250  } else {
1251    assert(!UseCompressedOops, "Error");
1252    // if the object has been forwarded to itself, then we cannot
1253    // use the klass pointer for the linked list.  Instead we have
1254    // to allocate an oopDesc in the C-Heap and use that for the linked list.
1255    // XXX This is horribly inefficient when a promotion failure occurs
1256    // and should be fixed. XXX FIX ME !!!
1257#ifndef PRODUCT
1258    Atomic::inc_ptr(&_num_par_pushes);
1259    assert(_num_par_pushes > 0, "Tautology");
1260#endif
1261    if (from_space_obj->forwardee() == from_space_obj) {
1262      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1263      listhead->forward_to(from_space_obj);
1264      from_space_obj = listhead;
1265    }
1266    oop observed_overflow_list = _overflow_list;
1267    oop cur_overflow_list;
1268    do {
1269      cur_overflow_list = observed_overflow_list;
1270      if (cur_overflow_list != BUSY) {
1271        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1272      } else {
1273        from_space_obj->set_klass_to_list_ptr(NULL);
1274      }
1275      observed_overflow_list =
1276        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1277    } while (cur_overflow_list != observed_overflow_list);
1278  }
1279}
1280
1281bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1282  bool res;
1283
1284  if (ParGCUseLocalOverflow) {
1285    res = par_scan_state->take_from_overflow_stack();
1286  } else {
1287    assert(!UseCompressedOops, "Error");
1288    res = take_from_overflow_list_work(par_scan_state);
1289  }
1290  return res;
1291}
1292
1293
1294// *NOTE*: The overflow list manipulation code here and
1295// in CMSCollector:: are very similar in shape,
1296// except that in the CMS case we thread the objects
1297// directly into the list via their mark word, and do
1298// not need to deal with special cases below related
1299// to chunking of object arrays and promotion failure
1300// handling.
1301// CR 6797058 has been filed to attempt consolidation of
1302// the common code.
1303// Because of the common code, if you make any changes in
1304// the code below, please check the CMS version to see if
1305// similar changes might be needed.
1306// See CMSCollector::par_take_from_overflow_list() for
1307// more extensive documentation comments.
1308bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1309  ObjToScanQueue* work_q = par_scan_state->work_queue();
1310  // How many to take?
1311  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1312                                 (size_t)ParGCDesiredObjsFromOverflowList);
1313
1314  assert(!UseCompressedOops, "Error");
1315  assert(par_scan_state->overflow_stack() == NULL, "Error");
1316  if (_overflow_list == NULL) return false;
1317
1318  // Otherwise, there was something there; try claiming the list.
1319  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1320  // Trim off a prefix of at most objsFromOverflow items
1321  Thread* tid = Thread::current();
1322  size_t spin_count = ParallelGCThreads;
1323  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1324  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1325    // someone grabbed it before we did ...
1326    // ... we spin for a short while...
1327    os::sleep(tid, sleep_time_millis, false);
1328    if (_overflow_list == NULL) {
1329      // nothing left to take
1330      return false;
1331    } else if (_overflow_list != BUSY) {
1332     // try and grab the prefix
1333     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1334    }
1335  }
1336  if (prefix == NULL || prefix == BUSY) {
1337     // Nothing to take or waited long enough
1338     if (prefix == NULL) {
1339       // Write back the NULL in case we overwrote it with BUSY above
1340       // and it is still the same value.
1341       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1342     }
1343     return false;
1344  }
1345  assert(prefix != NULL && prefix != BUSY, "Error");
1346  size_t i = 1;
1347  oop cur = prefix;
1348  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1349    i++; cur = cur->list_ptr_from_klass();
1350  }
1351
1352  // Reattach remaining (suffix) to overflow list
1353  if (cur->klass_or_null() == NULL) {
1354    // Write back the NULL in lieu of the BUSY we wrote
1355    // above and it is still the same value.
1356    if (_overflow_list == BUSY) {
1357      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1358    }
1359  } else {
1360    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1361    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1362    cur->set_klass_to_list_ptr(NULL);     // break off suffix
1363    // It's possible that the list is still in the empty(busy) state
1364    // we left it in a short while ago; in that case we may be
1365    // able to place back the suffix.
1366    oop observed_overflow_list = _overflow_list;
1367    oop cur_overflow_list = observed_overflow_list;
1368    bool attached = false;
1369    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1370      observed_overflow_list =
1371        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1372      if (cur_overflow_list == observed_overflow_list) {
1373        attached = true;
1374        break;
1375      } else cur_overflow_list = observed_overflow_list;
1376    }
1377    if (!attached) {
1378      // Too bad, someone else got in in between; we'll need to do a splice.
1379      // Find the last item of suffix list
1380      oop last = suffix;
1381      while (last->klass_or_null() != NULL) {
1382        last = last->list_ptr_from_klass();
1383      }
1384      // Atomically prepend suffix to current overflow list
1385      observed_overflow_list = _overflow_list;
1386      do {
1387        cur_overflow_list = observed_overflow_list;
1388        if (cur_overflow_list != BUSY) {
1389          // Do the splice ...
1390          last->set_klass_to_list_ptr(cur_overflow_list);
1391        } else { // cur_overflow_list == BUSY
1392          last->set_klass_to_list_ptr(NULL);
1393        }
1394        observed_overflow_list =
1395          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1396      } while (cur_overflow_list != observed_overflow_list);
1397    }
1398  }
1399
1400  // Push objects on prefix list onto this thread's work queue
1401  assert(prefix != NULL && prefix != BUSY, "program logic");
1402  cur = prefix;
1403  ssize_t n = 0;
1404  while (cur != NULL) {
1405    oop obj_to_push = cur->forwardee();
1406    oop next        = cur->list_ptr_from_klass();
1407    cur->set_klass(obj_to_push->klass());
1408    // This may be an array object that is self-forwarded. In that case, the list pointer
1409    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1410    if (!is_in_reserved(cur)) {
1411      // This can become a scaling bottleneck when there is work queue overflow coincident
1412      // with promotion failure.
1413      oopDesc* f = cur;
1414      FREE_C_HEAP_ARRAY(oopDesc, f);
1415    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1416      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1417      obj_to_push = cur;
1418    }
1419    bool ok = work_q->push(obj_to_push);
1420    assert(ok, "Should have succeeded");
1421    cur = next;
1422    n++;
1423  }
1424  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1425#ifndef PRODUCT
1426  assert(_num_par_pushes >= n, "Too many pops?");
1427  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1428#endif
1429  return true;
1430}
1431#undef BUSY
1432
1433void ParNewGeneration::ref_processor_init() {
1434  if (_ref_processor == NULL) {
1435    // Allocate and initialize a reference processor
1436    _ref_processor =
1437      new ReferenceProcessor(_reserved,                  // span
1438                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1439                             ParallelGCThreads,          // mt processing degree
1440                             refs_discovery_is_mt(),     // mt discovery
1441                             ParallelGCThreads,          // mt discovery degree
1442                             refs_discovery_is_atomic(), // atomic_discovery
1443                             NULL);                      // is_alive_non_header
1444  }
1445}
1446
1447const char* ParNewGeneration::name() const {
1448  return "par new generation";
1449}
1450