parNewGeneration.cpp revision 8556:ee0c45f5e977
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/cms/compactibleFreeListSpace.hpp"
27#include "gc/cms/concurrentMarkSweepGeneration.hpp"
28#include "gc/cms/parNewGeneration.hpp"
29#include "gc/cms/parOopClosures.inline.hpp"
30#include "gc/serial/defNewGeneration.inline.hpp"
31#include "gc/shared/adaptiveSizePolicy.hpp"
32#include "gc/shared/ageTable.hpp"
33#include "gc/shared/copyFailedInfo.hpp"
34#include "gc/shared/gcHeapSummary.hpp"
35#include "gc/shared/gcTimer.hpp"
36#include "gc/shared/gcTrace.hpp"
37#include "gc/shared/gcTraceTime.hpp"
38#include "gc/shared/genCollectedHeap.hpp"
39#include "gc/shared/genOopClosures.inline.hpp"
40#include "gc/shared/generation.hpp"
41#include "gc/shared/plab.inline.hpp"
42#include "gc/shared/referencePolicy.hpp"
43#include "gc/shared/space.hpp"
44#include "gc/shared/spaceDecorator.hpp"
45#include "gc/shared/strongRootsScope.hpp"
46#include "gc/shared/taskqueue.inline.hpp"
47#include "gc/shared/workgroup.hpp"
48#include "memory/resourceArea.hpp"
49#include "oops/objArrayOop.hpp"
50#include "oops/oop.inline.hpp"
51#include "runtime/atomic.inline.hpp"
52#include "runtime/handles.hpp"
53#include "runtime/handles.inline.hpp"
54#include "runtime/java.hpp"
55#include "runtime/thread.inline.hpp"
56#include "utilities/copy.hpp"
57#include "utilities/globalDefinitions.hpp"
58#include "utilities/stack.inline.hpp"
59
60#ifdef _MSC_VER
61#pragma warning( push )
62#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
63#endif
64ParScanThreadState::ParScanThreadState(Space* to_space_,
65                                       ParNewGeneration* young_gen_,
66                                       Generation* old_gen_,
67                                       int thread_num_,
68                                       ObjToScanQueueSet* work_queue_set_,
69                                       Stack<oop, mtGC>* overflow_stacks_,
70                                       size_t desired_plab_sz_,
71                                       ParallelTaskTerminator& term_) :
72  _to_space(to_space_), _old_gen(old_gen_), _young_gen(young_gen_), _thread_num(thread_num_),
73  _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
74  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
75  _ageTable(false), // false ==> not the global age table, no perf data.
76  _to_space_alloc_buffer(desired_plab_sz_),
77  _to_space_closure(young_gen_, this), _old_gen_closure(young_gen_, this),
78  _to_space_root_closure(young_gen_, this), _old_gen_root_closure(young_gen_, this),
79  _older_gen_closure(young_gen_, this),
80  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
81                      &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
82                      work_queue_set_, &term_),
83  _is_alive_closure(young_gen_), _scan_weak_ref_closure(young_gen_, this),
84  _keep_alive_closure(&_scan_weak_ref_closure),
85  _strong_roots_time(0.0), _term_time(0.0)
86{
87  #if TASKQUEUE_STATS
88  _term_attempts = 0;
89  _overflow_refills = 0;
90  _overflow_refill_objs = 0;
91  #endif // TASKQUEUE_STATS
92
93  _survivor_chunk_array =
94    (ChunkArray*) old_gen()->get_data_recorder(thread_num());
95  _hash_seed = 17;  // Might want to take time-based random value.
96  _start = os::elapsedTime();
97  _old_gen_closure.set_generation(old_gen_);
98  _old_gen_root_closure.set_generation(old_gen_);
99}
100#ifdef _MSC_VER
101#pragma warning( pop )
102#endif
103
104void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
105                                              size_t plab_word_size) {
106  ChunkArray* sca = survivor_chunk_array();
107  if (sca != NULL) {
108    // A non-null SCA implies that we want the PLAB data recorded.
109    sca->record_sample(plab_start, plab_word_size);
110  }
111}
112
113bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
114  return new_obj->is_objArray() &&
115         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
116         new_obj != old_obj;
117}
118
119void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
120  assert(old->is_objArray(), "must be obj array");
121  assert(old->is_forwarded(), "must be forwarded");
122  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
123  assert(!old_gen()->is_in(old), "must be in young generation.");
124
125  objArrayOop obj = objArrayOop(old->forwardee());
126  // Process ParGCArrayScanChunk elements now
127  // and push the remainder back onto queue
128  int start     = arrayOop(old)->length();
129  int end       = obj->length();
130  int remainder = end - start;
131  assert(start <= end, "just checking");
132  if (remainder > 2 * ParGCArrayScanChunk) {
133    // Test above combines last partial chunk with a full chunk
134    end = start + ParGCArrayScanChunk;
135    arrayOop(old)->set_length(end);
136    // Push remainder.
137    bool ok = work_queue()->push(old);
138    assert(ok, "just popped, push must be okay");
139  } else {
140    // Restore length so that it can be used if there
141    // is a promotion failure and forwarding pointers
142    // must be removed.
143    arrayOop(old)->set_length(end);
144  }
145
146  // process our set of indices (include header in first chunk)
147  // should make sure end is even (aligned to HeapWord in case of compressed oops)
148  if ((HeapWord *)obj < young_old_boundary()) {
149    // object is in to_space
150    obj->oop_iterate_range(&_to_space_closure, start, end);
151  } else {
152    // object is in old generation
153    obj->oop_iterate_range(&_old_gen_closure, start, end);
154  }
155}
156
157
158void ParScanThreadState::trim_queues(int max_size) {
159  ObjToScanQueue* queue = work_queue();
160  do {
161    while (queue->size() > (juint)max_size) {
162      oop obj_to_scan;
163      if (queue->pop_local(obj_to_scan)) {
164        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
165          if (obj_to_scan->is_objArray() &&
166              obj_to_scan->is_forwarded() &&
167              obj_to_scan->forwardee() != obj_to_scan) {
168            scan_partial_array_and_push_remainder(obj_to_scan);
169          } else {
170            // object is in to_space
171            obj_to_scan->oop_iterate(&_to_space_closure);
172          }
173        } else {
174          // object is in old generation
175          obj_to_scan->oop_iterate(&_old_gen_closure);
176        }
177      }
178    }
179    // For the  case of compressed oops, we have a private, non-shared
180    // overflow stack, so we eagerly drain it so as to more evenly
181    // distribute load early. Note: this may be good to do in
182    // general rather than delay for the final stealing phase.
183    // If applicable, we'll transfer a set of objects over to our
184    // work queue, allowing them to be stolen and draining our
185    // private overflow stack.
186  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
187}
188
189bool ParScanThreadState::take_from_overflow_stack() {
190  assert(ParGCUseLocalOverflow, "Else should not call");
191  assert(young_gen()->overflow_list() == NULL, "Error");
192  ObjToScanQueue* queue = work_queue();
193  Stack<oop, mtGC>* const of_stack = overflow_stack();
194  const size_t num_overflow_elems = of_stack->size();
195  const size_t space_available = queue->max_elems() - queue->size();
196  const size_t num_take_elems = MIN3(space_available / 4,
197                                     ParGCDesiredObjsFromOverflowList,
198                                     num_overflow_elems);
199  // Transfer the most recent num_take_elems from the overflow
200  // stack to our work queue.
201  for (size_t i = 0; i != num_take_elems; i++) {
202    oop cur = of_stack->pop();
203    oop obj_to_push = cur->forwardee();
204    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
205    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
206    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
207    if (should_be_partially_scanned(obj_to_push, cur)) {
208      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
209      obj_to_push = cur;
210    }
211    bool ok = queue->push(obj_to_push);
212    assert(ok, "Should have succeeded");
213  }
214  assert(young_gen()->overflow_list() == NULL, "Error");
215  return num_take_elems > 0;  // was something transferred?
216}
217
218void ParScanThreadState::push_on_overflow_stack(oop p) {
219  assert(ParGCUseLocalOverflow, "Else should not call");
220  overflow_stack()->push(p);
221  assert(young_gen()->overflow_list() == NULL, "Error");
222}
223
224HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
225
226  // Otherwise, if the object is small enough, try to reallocate the
227  // buffer.
228  HeapWord* obj = NULL;
229  if (!_to_space_full) {
230    PLAB* const plab = to_space_alloc_buffer();
231    Space*            const sp   = to_space();
232    if (word_sz * 100 <
233        ParallelGCBufferWastePct * plab->word_sz()) {
234      // Is small enough; abandon this buffer and start a new one.
235      plab->retire();
236      size_t buf_size = plab->word_sz();
237      HeapWord* buf_space = sp->par_allocate(buf_size);
238      if (buf_space == NULL) {
239        const size_t min_bytes =
240          PLAB::min_size() << LogHeapWordSize;
241        size_t free_bytes = sp->free();
242        while(buf_space == NULL && free_bytes >= min_bytes) {
243          buf_size = free_bytes >> LogHeapWordSize;
244          assert(buf_size == (size_t)align_object_size(buf_size),
245                 "Invariant");
246          buf_space  = sp->par_allocate(buf_size);
247          free_bytes = sp->free();
248        }
249      }
250      if (buf_space != NULL) {
251        plab->set_word_size(buf_size);
252        plab->set_buf(buf_space);
253        record_survivor_plab(buf_space, buf_size);
254        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
255        // Note that we cannot compare buf_size < word_sz below
256        // because of AlignmentReserve (see PLAB::allocate()).
257        assert(obj != NULL || plab->words_remaining() < word_sz,
258               "Else should have been able to allocate");
259        // It's conceivable that we may be able to use the
260        // buffer we just grabbed for subsequent small requests
261        // even if not for this one.
262      } else {
263        // We're used up.
264        _to_space_full = true;
265      }
266
267    } else {
268      // Too large; allocate the object individually.
269      obj = sp->par_allocate(word_sz);
270    }
271  }
272  return obj;
273}
274
275
276void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
277  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
278}
279
280void ParScanThreadState::print_promotion_failure_size() {
281  if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
282    gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
283                        _thread_num, _promotion_failed_info.first_size());
284  }
285}
286
287class ParScanThreadStateSet: private ResourceArray {
288public:
289  // Initializes states for the specified number of threads;
290  ParScanThreadStateSet(int                     num_threads,
291                        Space&                  to_space,
292                        ParNewGeneration&       gen,
293                        Generation&             old_gen,
294                        ObjToScanQueueSet&      queue_set,
295                        Stack<oop, mtGC>*       overflow_stacks_,
296                        size_t                  desired_plab_sz,
297                        ParallelTaskTerminator& term);
298
299  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
300
301  inline ParScanThreadState& thread_state(int i);
302
303  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
304  void reset(uint active_workers, bool promotion_failed);
305  void flush();
306
307  #if TASKQUEUE_STATS
308  static void
309    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
310  void print_termination_stats(outputStream* const st = gclog_or_tty);
311  static void
312    print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
313  void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
314  void reset_stats();
315  #endif // TASKQUEUE_STATS
316
317private:
318  ParallelTaskTerminator& _term;
319  ParNewGeneration&       _gen;
320  Generation&             _old_gen;
321 public:
322  bool is_valid(int id) const { return id < length(); }
323  ParallelTaskTerminator* terminator() { return &_term; }
324};
325
326
327ParScanThreadStateSet::ParScanThreadStateSet(
328  int num_threads, Space& to_space, ParNewGeneration& gen,
329  Generation& old_gen, ObjToScanQueueSet& queue_set,
330  Stack<oop, mtGC>* overflow_stacks,
331  size_t desired_plab_sz, ParallelTaskTerminator& term)
332  : ResourceArray(sizeof(ParScanThreadState), num_threads),
333    _gen(gen), _old_gen(old_gen), _term(term)
334{
335  assert(num_threads > 0, "sanity check!");
336  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
337         "overflow_stack allocation mismatch");
338  // Initialize states.
339  for (int i = 0; i < num_threads; ++i) {
340    new ((ParScanThreadState*)_data + i)
341        ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
342                           overflow_stacks, desired_plab_sz, term);
343  }
344}
345
346inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
347{
348  assert(i >= 0 && i < length(), "sanity check!");
349  return ((ParScanThreadState*)_data)[i];
350}
351
352void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
353  for (int i = 0; i < length(); ++i) {
354    if (thread_state(i).promotion_failed()) {
355      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
356      thread_state(i).promotion_failed_info().reset();
357    }
358  }
359}
360
361void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed)
362{
363  _term.reset_for_reuse(active_threads);
364  if (promotion_failed) {
365    for (int i = 0; i < length(); ++i) {
366      thread_state(i).print_promotion_failure_size();
367    }
368  }
369}
370
371#if TASKQUEUE_STATS
372void
373ParScanThreadState::reset_stats()
374{
375  taskqueue_stats().reset();
376  _term_attempts = 0;
377  _overflow_refills = 0;
378  _overflow_refill_objs = 0;
379}
380
381void ParScanThreadStateSet::reset_stats()
382{
383  for (int i = 0; i < length(); ++i) {
384    thread_state(i).reset_stats();
385  }
386}
387
388void
389ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
390{
391  st->print_raw_cr("GC Termination Stats");
392  st->print_raw_cr("     elapsed  --strong roots-- "
393                   "-------termination-------");
394  st->print_raw_cr("thr     ms        ms       %   "
395                   "    ms       %   attempts");
396  st->print_raw_cr("--- --------- --------- ------ "
397                   "--------- ------ --------");
398}
399
400void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
401{
402  print_termination_stats_hdr(st);
403
404  for (int i = 0; i < length(); ++i) {
405    const ParScanThreadState & pss = thread_state(i);
406    const double elapsed_ms = pss.elapsed_time() * 1000.0;
407    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
408    const double term_ms = pss.term_time() * 1000.0;
409    st->print_cr("%3d %9.2f %9.2f %6.2f "
410                 "%9.2f %6.2f " SIZE_FORMAT_W(8),
411                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
412                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
413  }
414}
415
416// Print stats related to work queue activity.
417void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
418{
419  st->print_raw_cr("GC Task Stats");
420  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
421  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
422}
423
424void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
425{
426  print_taskqueue_stats_hdr(st);
427
428  TaskQueueStats totals;
429  for (int i = 0; i < length(); ++i) {
430    const ParScanThreadState & pss = thread_state(i);
431    const TaskQueueStats & stats = pss.taskqueue_stats();
432    st->print("%3d ", i); stats.print(st); st->cr();
433    totals += stats;
434
435    if (pss.overflow_refills() > 0) {
436      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
437                   SIZE_FORMAT_W(10) " overflow objects",
438                   pss.overflow_refills(), pss.overflow_refill_objs());
439    }
440  }
441  st->print("tot "); totals.print(st); st->cr();
442
443  DEBUG_ONLY(totals.verify());
444}
445#endif // TASKQUEUE_STATS
446
447void ParScanThreadStateSet::flush()
448{
449  // Work in this loop should be kept as lightweight as
450  // possible since this might otherwise become a bottleneck
451  // to scaling. Should we add heavy-weight work into this
452  // loop, consider parallelizing the loop into the worker threads.
453  for (int i = 0; i < length(); ++i) {
454    ParScanThreadState& par_scan_state = thread_state(i);
455
456    // Flush stats related to To-space PLAB activity and
457    // retire the last buffer.
458    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_gen.plab_stats());
459
460    // Every thread has its own age table.  We need to merge
461    // them all into one.
462    ageTable *local_table = par_scan_state.age_table();
463    _gen.age_table()->merge(local_table);
464
465    // Inform old gen that we're done.
466    _old_gen.par_promote_alloc_done(i);
467    _old_gen.par_oop_since_save_marks_iterate_done(i);
468  }
469
470  if (UseConcMarkSweepGC) {
471    // We need to call this even when ResizeOldPLAB is disabled
472    // so as to avoid breaking some asserts. While we may be able
473    // to avoid this by reorganizing the code a bit, I am loathe
474    // to do that unless we find cases where ergo leads to bad
475    // performance.
476    CFLS_LAB::compute_desired_plab_size();
477  }
478}
479
480ParScanClosure::ParScanClosure(ParNewGeneration* g,
481                               ParScanThreadState* par_scan_state) :
482  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
483{
484  _boundary = _g->reserved().end();
485}
486
487void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
488void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
489
490void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
491void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
492
493void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
494void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
495
496void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
497void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
498
499ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
500                                             ParScanThreadState* par_scan_state)
501  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
502{}
503
504void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
505void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
506
507#ifdef WIN32
508#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
509#endif
510
511ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
512    ParScanThreadState* par_scan_state_,
513    ParScanWithoutBarrierClosure* to_space_closure_,
514    ParScanWithBarrierClosure* old_gen_closure_,
515    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
516    ParNewGeneration* par_gen_,
517    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
518    ObjToScanQueueSet* task_queues_,
519    ParallelTaskTerminator* terminator_) :
520
521    _par_scan_state(par_scan_state_),
522    _to_space_closure(to_space_closure_),
523    _old_gen_closure(old_gen_closure_),
524    _to_space_root_closure(to_space_root_closure_),
525    _old_gen_root_closure(old_gen_root_closure_),
526    _par_gen(par_gen_),
527    _task_queues(task_queues_),
528    _terminator(terminator_)
529{}
530
531void ParEvacuateFollowersClosure::do_void() {
532  ObjToScanQueue* work_q = par_scan_state()->work_queue();
533
534  while (true) {
535
536    // Scan to-space and old-gen objs until we run out of both.
537    oop obj_to_scan;
538    par_scan_state()->trim_queues(0);
539
540    // We have no local work, attempt to steal from other threads.
541
542    // attempt to steal work from promoted.
543    if (task_queues()->steal(par_scan_state()->thread_num(),
544                             par_scan_state()->hash_seed(),
545                             obj_to_scan)) {
546      bool res = work_q->push(obj_to_scan);
547      assert(res, "Empty queue should have room for a push.");
548
549      //   if successful, goto Start.
550      continue;
551
552      // try global overflow list.
553    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
554      continue;
555    }
556
557    // Otherwise, offer termination.
558    par_scan_state()->start_term_time();
559    if (terminator()->offer_termination()) break;
560    par_scan_state()->end_term_time();
561  }
562  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
563         "Broken overflow list?");
564  // Finish the last termination pause.
565  par_scan_state()->end_term_time();
566}
567
568ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen, Generation* old_gen,
569                             HeapWord* young_old_boundary, ParScanThreadStateSet* state_set,
570                             StrongRootsScope* strong_roots_scope) :
571    AbstractGangTask("ParNewGeneration collection"),
572    _young_gen(young_gen), _old_gen(old_gen),
573    _young_old_boundary(young_old_boundary),
574    _state_set(state_set),
575    _strong_roots_scope(strong_roots_scope)
576  {}
577
578void ParNewGenTask::work(uint worker_id) {
579  GenCollectedHeap* gch = GenCollectedHeap::heap();
580  // Since this is being done in a separate thread, need new resource
581  // and handle marks.
582  ResourceMark rm;
583  HandleMark hm;
584
585  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
586  assert(_state_set->is_valid(worker_id), "Should not have been called");
587
588  par_scan_state.set_young_old_boundary(_young_old_boundary);
589
590  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
591                                      gch->rem_set()->klass_rem_set());
592  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
593                                           &par_scan_state.to_space_root_closure(),
594                                           false);
595
596  par_scan_state.start_strong_roots();
597  gch->gen_process_roots(_strong_roots_scope,
598                         GenCollectedHeap::YoungGen,
599                         true,  // Process younger gens, if any,
600                                // as strong roots.
601                         GenCollectedHeap::SO_ScavengeCodeCache,
602                         GenCollectedHeap::StrongAndWeakRoots,
603                         &par_scan_state.to_space_root_closure(),
604                         &par_scan_state.older_gen_closure(),
605                         &cld_scan_closure);
606
607  par_scan_state.end_strong_roots();
608
609  // "evacuate followers".
610  par_scan_state.evacuate_followers_closure().do_void();
611}
612
613#ifdef _MSC_VER
614#pragma warning( push )
615#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
616#endif
617ParNewGeneration::
618ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
619  : DefNewGeneration(rs, initial_byte_size, "PCopy"),
620  _overflow_list(NULL),
621  _is_alive_closure(this),
622  _plab_stats(YoungPLABSize, PLABWeight)
623{
624  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
625  NOT_PRODUCT(_num_par_pushes = 0;)
626  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
627  guarantee(_task_queues != NULL, "task_queues allocation failure.");
628
629  for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
630    ObjToScanQueue *q = new ObjToScanQueue();
631    guarantee(q != NULL, "work_queue Allocation failure.");
632    _task_queues->register_queue(i1, q);
633  }
634
635  for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
636    _task_queues->queue(i2)->initialize();
637
638  _overflow_stacks = NULL;
639  if (ParGCUseLocalOverflow) {
640
641    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
642    // with ','
643    typedef Stack<oop, mtGC> GCOopStack;
644
645    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
646    for (size_t i = 0; i < ParallelGCThreads; ++i) {
647      new (_overflow_stacks + i) Stack<oop, mtGC>();
648    }
649  }
650
651  if (UsePerfData) {
652    EXCEPTION_MARK;
653    ResourceMark rm;
654
655    const char* cname =
656         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
657    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
658                                     ParallelGCThreads, CHECK);
659  }
660}
661#ifdef _MSC_VER
662#pragma warning( pop )
663#endif
664
665// ParNewGeneration::
666ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
667  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
668
669template <class T>
670void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
671#ifdef ASSERT
672  {
673    assert(!oopDesc::is_null(*p), "expected non-null ref");
674    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
675    // We never expect to see a null reference being processed
676    // as a weak reference.
677    assert(obj->is_oop(), "expected an oop while scanning weak refs");
678  }
679#endif // ASSERT
680
681  _par_cl->do_oop_nv(p);
682
683  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
684    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
685    _rs->write_ref_field_gc_par(p, obj);
686  }
687}
688
689void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
690void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
691
692// ParNewGeneration::
693KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
694  DefNewGeneration::KeepAliveClosure(cl) {}
695
696template <class T>
697void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
698#ifdef ASSERT
699  {
700    assert(!oopDesc::is_null(*p), "expected non-null ref");
701    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
702    // We never expect to see a null reference being processed
703    // as a weak reference.
704    assert(obj->is_oop(), "expected an oop while scanning weak refs");
705  }
706#endif // ASSERT
707
708  _cl->do_oop_nv(p);
709
710  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
711    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
712    _rs->write_ref_field_gc_par(p, obj);
713  }
714}
715
716void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
717void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
718
719template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
720  T heap_oop = oopDesc::load_heap_oop(p);
721  if (!oopDesc::is_null(heap_oop)) {
722    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
723    if ((HeapWord*)obj < _boundary) {
724      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
725      oop new_obj = obj->is_forwarded()
726                      ? obj->forwardee()
727                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
728      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
729    }
730    if (_gc_barrier) {
731      // If p points to a younger generation, mark the card.
732      if ((HeapWord*)obj < _gen_boundary) {
733        _rs->write_ref_field_gc_par(p, obj);
734      }
735    }
736  }
737}
738
739void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
740void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
741
742class ParNewRefProcTaskProxy: public AbstractGangTask {
743  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
744public:
745  ParNewRefProcTaskProxy(ProcessTask& task,
746                         ParNewGeneration& gen,
747                         Generation& old_gen,
748                         HeapWord* young_old_boundary,
749                         ParScanThreadStateSet& state_set);
750
751private:
752  virtual void work(uint worker_id);
753private:
754  ParNewGeneration&      _young_gen;
755  ProcessTask&           _task;
756  Generation&            _old_gen;
757  HeapWord*              _young_old_boundary;
758  ParScanThreadStateSet& _state_set;
759};
760
761ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
762                                               ParNewGeneration& young_gen,
763                                               Generation& old_gen,
764                                               HeapWord* young_old_boundary,
765                                               ParScanThreadStateSet& state_set)
766  : AbstractGangTask("ParNewGeneration parallel reference processing"),
767    _young_gen(young_gen),
768    _task(task),
769    _old_gen(old_gen),
770    _young_old_boundary(young_old_boundary),
771    _state_set(state_set)
772{
773}
774
775void ParNewRefProcTaskProxy::work(uint worker_id)
776{
777  ResourceMark rm;
778  HandleMark hm;
779  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
780  par_scan_state.set_young_old_boundary(_young_old_boundary);
781  _task.work(worker_id, par_scan_state.is_alive_closure(),
782             par_scan_state.keep_alive_closure(),
783             par_scan_state.evacuate_followers_closure());
784}
785
786class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
787  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
788  EnqueueTask& _task;
789
790public:
791  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
792    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
793      _task(task)
794  { }
795
796  virtual void work(uint worker_id)
797  {
798    _task.work(worker_id);
799  }
800};
801
802
803void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
804{
805  GenCollectedHeap* gch = GenCollectedHeap::heap();
806  FlexibleWorkGang* workers = gch->workers();
807  assert(workers != NULL, "Need parallel worker threads.");
808  _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
809  ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
810                                 _young_gen.reserved().end(), _state_set);
811  workers->run_task(&rp_task);
812  _state_set.reset(0 /* bad value in debug if not reset */,
813                   _young_gen.promotion_failed());
814}
815
816void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
817{
818  GenCollectedHeap* gch = GenCollectedHeap::heap();
819  FlexibleWorkGang* workers = gch->workers();
820  assert(workers != NULL, "Need parallel worker threads.");
821  ParNewRefEnqueueTaskProxy enq_task(task);
822  workers->run_task(&enq_task);
823}
824
825void ParNewRefProcTaskExecutor::set_single_threaded_mode()
826{
827  _state_set.flush();
828  GenCollectedHeap* gch = GenCollectedHeap::heap();
829  gch->save_marks();
830}
831
832ScanClosureWithParBarrier::
833ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
834  ScanClosure(g, gc_barrier) {}
835
836EvacuateFollowersClosureGeneral::
837EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
838                                OopsInGenClosure* cur,
839                                OopsInGenClosure* older) :
840  _gch(gch),
841  _scan_cur_or_nonheap(cur), _scan_older(older)
842{}
843
844void EvacuateFollowersClosureGeneral::do_void() {
845  do {
846    // Beware: this call will lead to closure applications via virtual
847    // calls.
848    _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
849                                       _scan_cur_or_nonheap,
850                                       _scan_older);
851  } while (!_gch->no_allocs_since_save_marks(true /* include_young */));
852}
853
854
855// A Generation that does parallel young-gen collection.
856
857void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
858  assert(_promo_failure_scan_stack.is_empty(), "post condition");
859  _promo_failure_scan_stack.clear(true); // Clear cached segments.
860
861  remove_forwarding_pointers();
862  if (PrintGCDetails) {
863    gclog_or_tty->print(" (promotion failed)");
864  }
865  // All the spaces are in play for mark-sweep.
866  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
867  from()->set_next_compaction_space(to());
868  gch->set_incremental_collection_failed();
869  // Inform the next generation that a promotion failure occurred.
870  _old_gen->promotion_failure_occurred();
871
872  // Trace promotion failure in the parallel GC threads
873  thread_state_set.trace_promotion_failed(gc_tracer());
874  // Single threaded code may have reported promotion failure to the global state
875  if (_promotion_failed_info.has_failed()) {
876    _gc_tracer.report_promotion_failed(_promotion_failed_info);
877  }
878  // Reset the PromotionFailureALot counters.
879  NOT_PRODUCT(gch->reset_promotion_should_fail();)
880}
881
882void ParNewGeneration::collect(bool   full,
883                               bool   clear_all_soft_refs,
884                               size_t size,
885                               bool   is_tlab) {
886  assert(full || size > 0, "otherwise we don't want to collect");
887
888  GenCollectedHeap* gch = GenCollectedHeap::heap();
889
890  _gc_timer->register_gc_start();
891
892  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
893  FlexibleWorkGang* workers = gch->workers();
894  assert(workers != NULL, "Need workgang for parallel work");
895  uint active_workers =
896       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
897                                               workers->active_workers(),
898                                               Threads::number_of_non_daemon_threads());
899  workers->set_active_workers(active_workers);
900  _old_gen = gch->old_gen();
901
902  // If the next generation is too full to accommodate worst-case promotion
903  // from this generation, pass on collection; let the next generation
904  // do it.
905  if (!collection_attempt_is_safe()) {
906    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
907    return;
908  }
909  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
910
911  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
912  gch->trace_heap_before_gc(gc_tracer());
913
914  init_assuming_no_promotion_failure();
915
916  if (UseAdaptiveSizePolicy) {
917    set_survivor_overflow(false);
918    size_policy->minor_collection_begin();
919  }
920
921  GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer.gc_id());
922  // Capture heap used before collection (for printing).
923  size_t gch_prev_used = gch->used();
924
925  age_table()->clear();
926  to()->clear(SpaceDecorator::Mangle);
927
928  gch->save_marks();
929
930  // Set the correct parallelism (number of queues) in the reference processor
931  ref_processor()->set_active_mt_degree(active_workers);
932
933  // Always set the terminator for the active number of workers
934  // because only those workers go through the termination protocol.
935  ParallelTaskTerminator _term(active_workers, task_queues());
936  ParScanThreadStateSet thread_state_set(active_workers,
937                                         *to(), *this, *_old_gen, *task_queues(),
938                                         _overflow_stacks, desired_plab_sz(), _term);
939
940  thread_state_set.reset(active_workers, promotion_failed());
941
942  {
943    StrongRootsScope srs(active_workers);
944
945    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
946    gch->rem_set()->prepare_for_younger_refs_iterate(true);
947    // It turns out that even when we're using 1 thread, doing the work in a
948    // separate thread causes wide variance in run times.  We can't help this
949    // in the multi-threaded case, but we special-case n=1 here to get
950    // repeatable measurements of the 1-thread overhead of the parallel code.
951    if (active_workers > 1) {
952      workers->run_task(&tsk);
953    } else {
954      tsk.work(0);
955    }
956  }
957
958  thread_state_set.reset(0 /* Bad value in debug if not reset */,
959                         promotion_failed());
960
961  // Trace and reset failed promotion info.
962  if (promotion_failed()) {
963    thread_state_set.trace_promotion_failed(gc_tracer());
964  }
965
966  // Process (weak) reference objects found during scavenge.
967  ReferenceProcessor* rp = ref_processor();
968  IsAliveClosure is_alive(this);
969  ScanWeakRefClosure scan_weak_ref(this);
970  KeepAliveClosure keep_alive(&scan_weak_ref);
971  ScanClosure               scan_without_gc_barrier(this, false);
972  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
973  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
974  EvacuateFollowersClosureGeneral evacuate_followers(gch,
975    &scan_without_gc_barrier, &scan_with_gc_barrier);
976  rp->setup_policy(clear_all_soft_refs);
977  // Can  the mt_degree be set later (at run_task() time would be best)?
978  rp->set_active_mt_degree(active_workers);
979  ReferenceProcessorStats stats;
980  if (rp->processing_is_mt()) {
981    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
982    stats = rp->process_discovered_references(&is_alive, &keep_alive,
983                                              &evacuate_followers, &task_executor,
984                                              _gc_timer, _gc_tracer.gc_id());
985  } else {
986    thread_state_set.flush();
987    gch->save_marks();
988    stats = rp->process_discovered_references(&is_alive, &keep_alive,
989                                              &evacuate_followers, NULL,
990                                              _gc_timer, _gc_tracer.gc_id());
991  }
992  _gc_tracer.report_gc_reference_stats(stats);
993  if (!promotion_failed()) {
994    // Swap the survivor spaces.
995    eden()->clear(SpaceDecorator::Mangle);
996    from()->clear(SpaceDecorator::Mangle);
997    if (ZapUnusedHeapArea) {
998      // This is now done here because of the piece-meal mangling which
999      // can check for valid mangling at intermediate points in the
1000      // collection(s).  When a minor collection fails to collect
1001      // sufficient space resizing of the young generation can occur
1002      // an redistribute the spaces in the young generation.  Mangle
1003      // here so that unzapped regions don't get distributed to
1004      // other spaces.
1005      to()->mangle_unused_area();
1006    }
1007    swap_spaces();
1008
1009    // A successful scavenge should restart the GC time limit count which is
1010    // for full GC's.
1011    size_policy->reset_gc_overhead_limit_count();
1012
1013    assert(to()->is_empty(), "to space should be empty now");
1014
1015    adjust_desired_tenuring_threshold();
1016  } else {
1017    handle_promotion_failed(gch, thread_state_set);
1018  }
1019  // set new iteration safe limit for the survivor spaces
1020  from()->set_concurrent_iteration_safe_limit(from()->top());
1021  to()->set_concurrent_iteration_safe_limit(to()->top());
1022
1023  if (ResizePLAB) {
1024    plab_stats()->adjust_desired_plab_sz(active_workers);
1025  }
1026
1027  if (PrintGC && !PrintGCDetails) {
1028    gch->print_heap_change(gch_prev_used);
1029  }
1030
1031  TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1032  TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1033
1034  if (UseAdaptiveSizePolicy) {
1035    size_policy->minor_collection_end(gch->gc_cause());
1036    size_policy->avg_survived()->sample(from()->used());
1037  }
1038
1039  // We need to use a monotonically non-decreasing time in ms
1040  // or we will see time-warp warnings and os::javaTimeMillis()
1041  // does not guarantee monotonicity.
1042  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1043  update_time_of_last_gc(now);
1044
1045  rp->set_enqueuing_is_done(true);
1046  if (rp->processing_is_mt()) {
1047    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1048    rp->enqueue_discovered_references(&task_executor);
1049  } else {
1050    rp->enqueue_discovered_references(NULL);
1051  }
1052  rp->verify_no_references_recorded();
1053
1054  gch->trace_heap_after_gc(gc_tracer());
1055  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
1056
1057  _gc_timer->register_gc_end();
1058
1059  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1060}
1061
1062static int sum;
1063void ParNewGeneration::waste_some_time() {
1064  for (int i = 0; i < 100; i++) {
1065    sum += i;
1066  }
1067}
1068
1069static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1070
1071// Because of concurrency, there are times where an object for which
1072// "is_forwarded()" is true contains an "interim" forwarding pointer
1073// value.  Such a value will soon be overwritten with a real value.
1074// This method requires "obj" to have a forwarding pointer, and waits, if
1075// necessary for a real one to be inserted, and returns it.
1076
1077oop ParNewGeneration::real_forwardee(oop obj) {
1078  oop forward_ptr = obj->forwardee();
1079  if (forward_ptr != ClaimedForwardPtr) {
1080    return forward_ptr;
1081  } else {
1082    return real_forwardee_slow(obj);
1083  }
1084}
1085
1086oop ParNewGeneration::real_forwardee_slow(oop obj) {
1087  // Spin-read if it is claimed but not yet written by another thread.
1088  oop forward_ptr = obj->forwardee();
1089  while (forward_ptr == ClaimedForwardPtr) {
1090    waste_some_time();
1091    assert(obj->is_forwarded(), "precondition");
1092    forward_ptr = obj->forwardee();
1093  }
1094  return forward_ptr;
1095}
1096
1097void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1098  if (m->must_be_preserved_for_promotion_failure(obj)) {
1099    // We should really have separate per-worker stacks, rather
1100    // than use locking of a common pair of stacks.
1101    MutexLocker ml(ParGCRareEvent_lock);
1102    preserve_mark(obj, m);
1103  }
1104}
1105
1106// Multiple GC threads may try to promote an object.  If the object
1107// is successfully promoted, a forwarding pointer will be installed in
1108// the object in the young generation.  This method claims the right
1109// to install the forwarding pointer before it copies the object,
1110// thus avoiding the need to undo the copy as in
1111// copy_to_survivor_space_avoiding_with_undo.
1112
1113oop ParNewGeneration::copy_to_survivor_space(
1114        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1115  // In the sequential version, this assert also says that the object is
1116  // not forwarded.  That might not be the case here.  It is the case that
1117  // the caller observed it to be not forwarded at some time in the past.
1118  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1119
1120  // The sequential code read "old->age()" below.  That doesn't work here,
1121  // since the age is in the mark word, and that might be overwritten with
1122  // a forwarding pointer by a parallel thread.  So we must save the mark
1123  // word in a local and then analyze it.
1124  oopDesc dummyOld;
1125  dummyOld.set_mark(m);
1126  assert(!dummyOld.is_forwarded(),
1127         "should not be called with forwarding pointer mark word.");
1128
1129  oop new_obj = NULL;
1130  oop forward_ptr;
1131
1132  // Try allocating obj in to-space (unless too old)
1133  if (dummyOld.age() < tenuring_threshold()) {
1134    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1135    if (new_obj == NULL) {
1136      set_survivor_overflow(true);
1137    }
1138  }
1139
1140  if (new_obj == NULL) {
1141    // Either to-space is full or we decided to promote
1142    // try allocating obj tenured
1143
1144    // Attempt to install a null forwarding pointer (atomically),
1145    // to claim the right to install the real forwarding pointer.
1146    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1147    if (forward_ptr != NULL) {
1148      // someone else beat us to it.
1149        return real_forwardee(old);
1150    }
1151
1152    if (!_promotion_failed) {
1153      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1154                                      old, m, sz);
1155    }
1156
1157    if (new_obj == NULL) {
1158      // promotion failed, forward to self
1159      _promotion_failed = true;
1160      new_obj = old;
1161
1162      preserve_mark_if_necessary(old, m);
1163      par_scan_state->register_promotion_failure(sz);
1164    }
1165
1166    old->forward_to(new_obj);
1167    forward_ptr = NULL;
1168  } else {
1169    // Is in to-space; do copying ourselves.
1170    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1171    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1172    forward_ptr = old->forward_to_atomic(new_obj);
1173    // Restore the mark word copied above.
1174    new_obj->set_mark(m);
1175    // Increment age if obj still in new generation
1176    new_obj->incr_age();
1177    par_scan_state->age_table()->add(new_obj, sz);
1178  }
1179  assert(new_obj != NULL, "just checking");
1180
1181#ifndef PRODUCT
1182  // This code must come after the CAS test, or it will print incorrect
1183  // information.
1184  if (TraceScavenge) {
1185    gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1186       is_in_reserved(new_obj) ? "copying" : "tenuring",
1187       new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1188  }
1189#endif
1190
1191  if (forward_ptr == NULL) {
1192    oop obj_to_push = new_obj;
1193    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1194      // Length field used as index of next element to be scanned.
1195      // Real length can be obtained from real_forwardee()
1196      arrayOop(old)->set_length(0);
1197      obj_to_push = old;
1198      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1199             "push forwarded object");
1200    }
1201    // Push it on one of the queues of to-be-scanned objects.
1202    bool simulate_overflow = false;
1203    NOT_PRODUCT(
1204      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1205        // simulate a stack overflow
1206        simulate_overflow = true;
1207      }
1208    )
1209    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1210      // Add stats for overflow pushes.
1211      if (Verbose && PrintGCDetails) {
1212        gclog_or_tty->print("queue overflow!\n");
1213      }
1214      push_on_overflow_list(old, par_scan_state);
1215      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1216    }
1217
1218    return new_obj;
1219  }
1220
1221  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1222  // allocate it?
1223  if (is_in_reserved(new_obj)) {
1224    // Must be in to_space.
1225    assert(to()->is_in_reserved(new_obj), "Checking");
1226    if (forward_ptr == ClaimedForwardPtr) {
1227      // Wait to get the real forwarding pointer value.
1228      forward_ptr = real_forwardee(old);
1229    }
1230    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1231  }
1232
1233  return forward_ptr;
1234}
1235
1236#ifndef PRODUCT
1237// It's OK to call this multi-threaded;  the worst thing
1238// that can happen is that we'll get a bunch of closely
1239// spaced simulated overflows, but that's OK, in fact
1240// probably good as it would exercise the overflow code
1241// under contention.
1242bool ParNewGeneration::should_simulate_overflow() {
1243  if (_overflow_counter-- <= 0) { // just being defensive
1244    _overflow_counter = ParGCWorkQueueOverflowInterval;
1245    return true;
1246  } else {
1247    return false;
1248  }
1249}
1250#endif
1251
1252// In case we are using compressed oops, we need to be careful.
1253// If the object being pushed is an object array, then its length
1254// field keeps track of the "grey boundary" at which the next
1255// incremental scan will be done (see ParGCArrayScanChunk).
1256// When using compressed oops, this length field is kept in the
1257// lower 32 bits of the erstwhile klass word and cannot be used
1258// for the overflow chaining pointer (OCP below). As such the OCP
1259// would itself need to be compressed into the top 32-bits in this
1260// case. Unfortunately, see below, in the event that we have a
1261// promotion failure, the node to be pushed on the list can be
1262// outside of the Java heap, so the heap-based pointer compression
1263// would not work (we would have potential aliasing between C-heap
1264// and Java-heap pointers). For this reason, when using compressed
1265// oops, we simply use a worker-thread-local, non-shared overflow
1266// list in the form of a growable array, with a slightly different
1267// overflow stack draining strategy. If/when we start using fat
1268// stacks here, we can go back to using (fat) pointer chains
1269// (although some performance comparisons would be useful since
1270// single global lists have their own performance disadvantages
1271// as we were made painfully aware not long ago, see 6786503).
1272#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1273void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1274  assert(is_in_reserved(from_space_obj), "Should be from this generation");
1275  if (ParGCUseLocalOverflow) {
1276    // In the case of compressed oops, we use a private, not-shared
1277    // overflow stack.
1278    par_scan_state->push_on_overflow_stack(from_space_obj);
1279  } else {
1280    assert(!UseCompressedOops, "Error");
1281    // if the object has been forwarded to itself, then we cannot
1282    // use the klass pointer for the linked list.  Instead we have
1283    // to allocate an oopDesc in the C-Heap and use that for the linked list.
1284    // XXX This is horribly inefficient when a promotion failure occurs
1285    // and should be fixed. XXX FIX ME !!!
1286#ifndef PRODUCT
1287    Atomic::inc_ptr(&_num_par_pushes);
1288    assert(_num_par_pushes > 0, "Tautology");
1289#endif
1290    if (from_space_obj->forwardee() == from_space_obj) {
1291      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1292      listhead->forward_to(from_space_obj);
1293      from_space_obj = listhead;
1294    }
1295    oop observed_overflow_list = _overflow_list;
1296    oop cur_overflow_list;
1297    do {
1298      cur_overflow_list = observed_overflow_list;
1299      if (cur_overflow_list != BUSY) {
1300        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1301      } else {
1302        from_space_obj->set_klass_to_list_ptr(NULL);
1303      }
1304      observed_overflow_list =
1305        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1306    } while (cur_overflow_list != observed_overflow_list);
1307  }
1308}
1309
1310bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1311  bool res;
1312
1313  if (ParGCUseLocalOverflow) {
1314    res = par_scan_state->take_from_overflow_stack();
1315  } else {
1316    assert(!UseCompressedOops, "Error");
1317    res = take_from_overflow_list_work(par_scan_state);
1318  }
1319  return res;
1320}
1321
1322
1323// *NOTE*: The overflow list manipulation code here and
1324// in CMSCollector:: are very similar in shape,
1325// except that in the CMS case we thread the objects
1326// directly into the list via their mark word, and do
1327// not need to deal with special cases below related
1328// to chunking of object arrays and promotion failure
1329// handling.
1330// CR 6797058 has been filed to attempt consolidation of
1331// the common code.
1332// Because of the common code, if you make any changes in
1333// the code below, please check the CMS version to see if
1334// similar changes might be needed.
1335// See CMSCollector::par_take_from_overflow_list() for
1336// more extensive documentation comments.
1337bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1338  ObjToScanQueue* work_q = par_scan_state->work_queue();
1339  // How many to take?
1340  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1341                                 (size_t)ParGCDesiredObjsFromOverflowList);
1342
1343  assert(!UseCompressedOops, "Error");
1344  assert(par_scan_state->overflow_stack() == NULL, "Error");
1345  if (_overflow_list == NULL) return false;
1346
1347  // Otherwise, there was something there; try claiming the list.
1348  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1349  // Trim off a prefix of at most objsFromOverflow items
1350  Thread* tid = Thread::current();
1351  size_t spin_count = ParallelGCThreads;
1352  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1353  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1354    // someone grabbed it before we did ...
1355    // ... we spin for a short while...
1356    os::sleep(tid, sleep_time_millis, false);
1357    if (_overflow_list == NULL) {
1358      // nothing left to take
1359      return false;
1360    } else if (_overflow_list != BUSY) {
1361     // try and grab the prefix
1362     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1363    }
1364  }
1365  if (prefix == NULL || prefix == BUSY) {
1366     // Nothing to take or waited long enough
1367     if (prefix == NULL) {
1368       // Write back the NULL in case we overwrote it with BUSY above
1369       // and it is still the same value.
1370       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1371     }
1372     return false;
1373  }
1374  assert(prefix != NULL && prefix != BUSY, "Error");
1375  size_t i = 1;
1376  oop cur = prefix;
1377  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1378    i++; cur = cur->list_ptr_from_klass();
1379  }
1380
1381  // Reattach remaining (suffix) to overflow list
1382  if (cur->klass_or_null() == NULL) {
1383    // Write back the NULL in lieu of the BUSY we wrote
1384    // above and it is still the same value.
1385    if (_overflow_list == BUSY) {
1386      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1387    }
1388  } else {
1389    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1390    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1391    cur->set_klass_to_list_ptr(NULL);     // break off suffix
1392    // It's possible that the list is still in the empty(busy) state
1393    // we left it in a short while ago; in that case we may be
1394    // able to place back the suffix.
1395    oop observed_overflow_list = _overflow_list;
1396    oop cur_overflow_list = observed_overflow_list;
1397    bool attached = false;
1398    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1399      observed_overflow_list =
1400        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1401      if (cur_overflow_list == observed_overflow_list) {
1402        attached = true;
1403        break;
1404      } else cur_overflow_list = observed_overflow_list;
1405    }
1406    if (!attached) {
1407      // Too bad, someone else got in in between; we'll need to do a splice.
1408      // Find the last item of suffix list
1409      oop last = suffix;
1410      while (last->klass_or_null() != NULL) {
1411        last = last->list_ptr_from_klass();
1412      }
1413      // Atomically prepend suffix to current overflow list
1414      observed_overflow_list = _overflow_list;
1415      do {
1416        cur_overflow_list = observed_overflow_list;
1417        if (cur_overflow_list != BUSY) {
1418          // Do the splice ...
1419          last->set_klass_to_list_ptr(cur_overflow_list);
1420        } else { // cur_overflow_list == BUSY
1421          last->set_klass_to_list_ptr(NULL);
1422        }
1423        observed_overflow_list =
1424          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1425      } while (cur_overflow_list != observed_overflow_list);
1426    }
1427  }
1428
1429  // Push objects on prefix list onto this thread's work queue
1430  assert(prefix != NULL && prefix != BUSY, "program logic");
1431  cur = prefix;
1432  ssize_t n = 0;
1433  while (cur != NULL) {
1434    oop obj_to_push = cur->forwardee();
1435    oop next        = cur->list_ptr_from_klass();
1436    cur->set_klass(obj_to_push->klass());
1437    // This may be an array object that is self-forwarded. In that case, the list pointer
1438    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1439    if (!is_in_reserved(cur)) {
1440      // This can become a scaling bottleneck when there is work queue overflow coincident
1441      // with promotion failure.
1442      oopDesc* f = cur;
1443      FREE_C_HEAP_ARRAY(oopDesc, f);
1444    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1445      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1446      obj_to_push = cur;
1447    }
1448    bool ok = work_q->push(obj_to_push);
1449    assert(ok, "Should have succeeded");
1450    cur = next;
1451    n++;
1452  }
1453  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1454#ifndef PRODUCT
1455  assert(_num_par_pushes >= n, "Too many pops?");
1456  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1457#endif
1458  return true;
1459}
1460#undef BUSY
1461
1462void ParNewGeneration::ref_processor_init() {
1463  if (_ref_processor == NULL) {
1464    // Allocate and initialize a reference processor
1465    _ref_processor =
1466      new ReferenceProcessor(_reserved,                  // span
1467                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1468                             ParallelGCThreads,          // mt processing degree
1469                             refs_discovery_is_mt(),     // mt discovery
1470                             ParallelGCThreads,          // mt discovery degree
1471                             refs_discovery_is_atomic(), // atomic_discovery
1472                             NULL);                      // is_alive_non_header
1473  }
1474}
1475
1476const char* ParNewGeneration::name() const {
1477  return "par new generation";
1478}
1479